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Abstract

The advent of social media has brought Inter-
net memes, a unique social phenomenon, to
the front stage of the Web. Embodied in the
form of images with text descriptions, little do
we know about the “language of memes”. In
this paper, we statistically study the correla-
tions among popular memes and their word-
ings, and generate meme descriptions from
raw images. To do this, we take a multi-
modal approach—we propose a robust non-
paranormal model to learn the stochastic de-
pendencies among the image, the candidate
descriptions, and the popular votes. In experi-
ments, we show that combining text and vision
helps identifying popular meme descriptions;
that our nonparanormal model is able to learn
dense and continuous vision features jointly
with sparse and discrete text features in a prin-
cipled manner, outperforming various com-
petitive baselines; that our system can gener-
ate meme descriptions using a simple pipeline.

1 Introduction

In the past few years, Internet memes become a new,
contagious social phenomenon: it all starts with an
image with a witty, catchy, or sarcastic sentence, and
people circulate it from friends to friends, colleagues
to colleagues, and families to families. Eventually,
some of them go viral on the Internet.

Meme is not only about the funny picture, the
Internet culture, or the emotion that passes along,
but also about the richness and uniqueness of its
language: it is often highly structured with special
written style, and forms interesting and subtle con-
notations that resonate among the readers. For ex-
ample, the LOL cat memes (e.g., Figure 1) often

Figure 1: An example of the LOL cat memes.

include superimposed text with broken grammars
and/or spellings.

Even though the memes are popular over the In-
ternet, the “language of memes” is still not well-
understood: there are no systematic studies on pre-
dicting and generating popular Internet memes from
the Natural Language Processing (NLP) and Com-
puter Vision (CV) perspectives.

In this paper, we take a multimodal approach to
predict and generate popular meme descriptions. To
do this, we collect a set of original meme images,
a list of candidate descriptions, and the correspond-
ing votes. We propose a robust nonparanormal ap-
proach (Liu et al., 2009) to model the multimodal
stochastic dependencies among images, text, and
votes. We then introduce a simple pipeline for gen-
erating meme descriptions combining reverse im-
age search and traditional information retrieval ap-
proaches. In empirical experiments, we show that
our model outperforms strong discriminative base-
lines by very large margins in the regression/ranking
experiments, and that in the generation experiment,
the nonparanormal outperforms the second-best su-
pervised baseline by 4.35 BLEU points, and obtains
a BLEU score improvement of 4.48 over an unsu-
pervised recurrent neural network language model
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trained on a large meme corpus that is almost 90
times larger. Our contributions are three-fold:

• We are the first to study the “language of
memes” combining NLP, CV, and machine
learning techniques, and show that combining
the visual and textual signals helps identifying
popular meme descriptions;

• Our approach empowers Internet users to select
better wordings and generate new memes auto-
matically;

• Our proposed robust nonparanormal model
outperforms competitive baselines for predict-
ing and generating popular meme descriptions.

In the next section, we outline related work. In
Section 3, we introduce the theory of copula, and
our nonparanormal approach. In Section 4, we de-
scribe the datasets. We show the prediction and gen-
eration results in Section 5 and Section 6. Finally,
we conclude in Section 7.

2 Related Work

Although the language of Internet memes is a rel-
atively new research topic, our work is broadly re-
lated to studies on predicting popular social media
messages (Hong et al., 2011; Bakshy et al., 2011;
Artzi et al., 2012). Most recently, Tan et al. (2014)
study the effect on wordings for Tweets. However,
none of the above studies have investigated multi-
modal approaches that combine text and vision.

Recently, there has been growing interests in
inter-disciplinary research on generating image de-
scriptions. Gupta el al. (2009) have studied the prob-
lem of constructing plots from video understand-
ing. The work by Farhadi et al. (2010) is among
the first to generate sentences from images. Kulka-
rni et al. (2011) use linguistic constraints and a con-
ditional random field model for the task, whereas
Mitchell et al. (2012) leverage syntactic information
and co-occurrence statistics and Dodge et al. (2012)
use a large text corpus and CV algorithms for detect-
ing visual text. With the surge of interests in deep
learning techniques in NLP (Socher et al., 2013; De-
vlin et al., 2014) and CV (Krizhevsky et al., 2012;
Oquab et al., 2013), there have been several unref-
ereed manuscripts on parsing images and generating
text descriptions lately (Vinyals et al., 2014; Chen

and Zitnick, 2014; Donahue et al., 2014; Fang et
al., 2014; Karpathy and Fei-Fei, 2014) using neural
network models. Although the above studies have
shown interesting results, our task is arguably more
complex than generating text descriptions: in ad-
dition to the visual and textual signals, we have to
model the popular votes as a third dimension for
learning. For example, we cannot simply train a con-
volutional neural network image parser on billions
of images, and use recurrent neural networks to gen-
erate texts such as “There is a white cat sitting next
to a laptop.” for Figure 1. Additionally, since not
all images are suitable as meme images, collecting
training images is also more challenging in our task.

In contrast to prior work, we take a very
different approach: we investigate copula meth-
ods (Schweizer and Sklar, 1983; Nelsen, 1999), in
particular, the nonparanormals (Liu et al., 2009), for
joint modeling of raw images, text descriptions, and
popular votes. Copula is a statistical framework for
analyzing random variables from Statistics (Liu et
al., 2012), and often used in Economics (Chen and
Fan, 2006). Only until very recently, researchers
from the machine learning and information retrieval
communities (Ghahramani et al., 2012; Han et al.,
2012; Eickhoff et al., 2013). start to understand the
theory and the predictive power of copula models.
Wang and Hua (2014) are the first to introduce semi-
parametric Gaussian copula (a.k.a. nonparanormals)
for text prediction. However, their approach may
be prone to overfitting. In this work, we generalize
Wang and Hua’s method to jointly model text and
vision features with popular votes, while scaling up
the model using effective dropout regularization.

3 Our Approach

A key challenge for joint modeling of text and vision
is that, because textual features are often relatively
sparse and discrete, while visual features are typi-
cally dense and continuous, it is difficult to model
them jointly in a principled way.

To avoid comparing “apple and oranges” in the
same probabilistic space, we propose the non-
paranormal approach, which extends the Gaussian
graphical model by transforming its variables by
smooth functions. More specifically, for each di-
mension of textual and visual features, instead of
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Figure 2: Our nonparanormal method extends Gaussian
by transforming each dimension with a smooth function,
and jointly models the stochastic dependencies among
textual and visual features, as well as the popular votes
by the crowd.

using raw counts or histograms, we first use prob-
ability integral transform to generate empirical cu-
mulative density functions (ECDF): now instead of
the probability density function (PDF) space, we are
working in the ECDF space where the value of each
feature is based on the rank, and is strictly restricted
between 0 and 1. Then, we use kernel density esti-
mation to smooth out the zeroing features1. Finally,
now textual and visual features are compatible, and
we then build a parametric Gaussian copula model
to estimate the pair-wise correlations among the co-
variate and the dependent variable.

In this section, we first explain the visual and tex-
tual features used in this study. Then, we introduce
the theory of copula, and describe the robust non-
paranormal. Finally, we show a simple pipeline for
generating meme descriptions.

3.1 Features
Textual Features To model the meme descriptions,
we take a broad range of textual features into con-
siderations:
• Lexical Features: we extract unigrams and bi-

grams from meme descriptions as surface-level
lexical features.

• Part-of-Speech Features: to model shallow
syntactic cues, we extract lexicalized part-of-
speech features using the Stanford part-of-
speech tagger (Toutanova et al., 2003).

• Dependency Triples: to better understand the
deeper syntactic dependencies of keywords in

1This is necessary for the normal inversion of the ECDFs,
which we will describe in Section 3.2.

Figure 3: An example of the standard SIFT keypoints de-
tected on the “doge” meme.

memes, we have also extracted typed depen-
dency triples (e.g., subj(I,are)) using the Malt-
Parser (Nivre et al., 2007).

• Named Entity Features: after browsing the
dataset, we notice that certain names are of-
ten mentioned in memes (e.g. “Drake”, “Kenye
West”, and “Justin Bieber”), so we utilize the
Stanford named entity recognizer (Finkel et al.,
2005) to extract lexicalized named entities.

• Frame-Semantics Features: SEMAFOR (Das
et al., 2010) is a state-of-the-art frame-
semantics parser that produces FrameNet-style
semantic annotation. We use SEMAFOR to ex-
tract frame-level semantic features.

Visual Features A key insight on viral memes is
that the images producing a shared social signal are
typically inter-related in style. For example, LOL-
cats are an early series of memes involving funny cat
photos. Similarly, “Bieber memes” involve modified
pictures of Bieber.

Therefore, we hypothesize that, by extracting vi-
sual features, it is of crucial importance to capture
the entities, objects, and styles as visual words in
these inter-related meme images. The popular vi-
sual bag-of-words representation (Sivic and Zisser-
man, 2003) is used to describe images:

1. PHOW Features Extraction: unlike text fea-
tures, SIFT first detects the Harris keypoints
from an image, and then describes each key-
point with a vector. An example of the SIFT
frames are shown in Figure 3. PHOW (Bosch
et al., 2007) is a dense and multi-scale vari-
ant of the Scale Invariant Feature Transform
(SIFT) descriptors. Using PHOW, we obtain
about 20K keypoints for each image.
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2. Elkan K-means Clustering is the clustering
method (Elkan, 2003) that we use to obtain
the vocabulary for visual words. Compar-
ing to other variants of K-means, this method
quickly constructs the codebook from PHOW
keypoints.

3. Bag-of-Words Histograms are used to repre-
sent each image. We match the PHOW key-
points of each image with the vocabulary that
we extract from the previous step, and generate
a 1× 200 sized visual bag-of-words vector.

3.2 The Theory of Copula
In the Statistics literature, copula is widely known
as a family of distribution function. The idea be-
hind copula theory is that the cumulative distribu-
tion function (CDF) of a random vector can be rep-
resented in the form of uniform marginal cumula-
tive distribution functions, and a copula that con-
nects these marginal CDFs, which describes the cor-
relations among the input random variables. How-
ever, in order to have a valid multivariate distribution
function regardless of n-dimensional covariates, not
every function can be used as a copula function. The
central idea behind copula, therefore, can be sum-
marize by the Sklar’s theorem and the corollary.
Theorem 1 (Sklar’s Theorem (1959)) Let F be
the joint cumulative distribution function of n ran-
dom variables X1, X2, ..., Xn. Let the correspond-
ing marginal cumulative distribution functions of
the random variable be F1(x1), F2(x2), ..., Fn(xn).
Then, if the marginal functions are continuous, there
exists a unique copula C, such that

F (x1, ..., xn) = C[F1(x1), ..., Fn(xn)]. (1)

Furthermore, if the distributions are continuous, the
multivariate dependency structure and the marginals
might be separated, and the copula can be consid-
ered independent of the marginals (Joe, 1997; Parsa
and Klugman, 2011). Therefore, the copula does not
have requirements on the marginal distributions, and
any arbitrary marginals can be combined and their
dependency structure can be modeled using the cop-
ula. The inverse of Sklar’s Theorem is also true in
the following:
Corollary 1 If there exists a copula C : (0, 1)n

and marginal cumulative distribution func-
tions F1(x1), F2(x2), ..., Fn(xn), then

C[F1(x1), ..., Fn(xn)] defines a multivariate
cumulative distribution function.

3.3 The Nonparanormal

To model multivariate text and vision variables,
we choose the nonparanormal (NPN) as the copula
function in this study, which can be explained in the
following two parts.

The Nonparametric Estimation
Assume we have n random variables of vision and

text features X1, X2, ..., Xn. The problem is that
text features are sparse, so we need to perform non-
parametric kernel density estimation to smooth out
the distribution of each variable. Let f1, f2, ..., fn

be the unknown density, we are interested in deriv-
ing the shape of these functions. Assume we havem
samples, the kernel density estimator can be defined
as:

f̂h(x) =
1
m

m∑
i=1

Kh(x− xi) (2)

=
1
mh

m∑
i=1

K

(
x− xi

h

)
(3)

Here, K(·) is the kernel function, where in our case,
we use the Box kernel2 K(z):

K(z) =
1
2
, |z| ≤ 1, (4)

= 0, |z| > 1. (5)

Comparing to the Gaussian kernel and other kernels,
the Box kernel is simple, and computationally in-
expensive. The parameter h is the bandwidth for
smoothing3.

Now, we can derive the empirical cumulative dis-
tribution functions

F̂X1(f̂1(X1)), F̂X2(f̂2(X2)), ..., F̂Xn(f̂n(Xn))

of the smoothed covariates, as well as the dependent
variable y (which is the reciprocal rank of the pop-
ular votes of a meme) and its CDF F̂y(f̂(y)). The

2It is also known as the original Parzen windows (Parzen,
1962).

3In our implementation, we use the default h of the Box
kernel in the ksdensity function in Matlab.
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empirical cumulative distribution functions are de-
fined as:

F̂ (ν) =
1
m

m∑
i=1

I{xi ≤ ν} (6)

where I{·} is the indicator function, and ν indicates
the current value that we are evaluating. Note that
the above step is also known as probability integral
transform (Diebold et al., 1997), which allows us to
convert any given continuous distribution to random
variables having a uniform distribution. This is cru-
cial for text: instead of using the raw counts, we are
now working with uniform marginal CDFs, which
helps coping with the overfitting issue due to noise
and data sparsity. We also use the same procedure to
transform the vision features into CDF space to be
compatible with text features.

The Robust Estimation of Copula
Now that we have obtained the marginals, and

then the joint distribution can be constructed by ap-
plying the copula function that models the stochastic
dependencies among marginal CDFs:

F̂ (f̂1(X1), ..., f̂1(Xn), f̂(y))

= C[F̂X1

(
f̂1(X1)

)
, ..., F̂Xn

(
f̂n(Xn)

)
, F̂y

(
f̂y(y)

)
]
(7)

In this work, we apply the parametric Gaussian cop-
ula to model the correlations among the text features
and the label. Assume xi is the smoothed version of
random variable Xi, and y is the smoothed label, we
have:
F (x1, ..., xn, y)

= ΦΣ

(
Φ−1[Fx1(x1)], ..., ,Φ−1[Fxn

(xn)],Φ−1[Fy(y)]
)

(8)
where ΦΣ is the joint cumulative distribution func-
tion of a multivariate Gaussian with zero mean and
Σ variance. Φ−1 is the inverse CDF of a standard
Gaussian. In this parametric part of the model, the
parameter estimation boils down to the problem of
learning the covariance matrix Σ of this Gaussian
copula. In this work, we perform standard maxi-
mum likelihood estimation (MLE) for the Σ matrix,
where we follow the details from prior work (Wang
and Hua, 2014).

To avoid overfitting, traditionally, one resorts to
classic regularization techniques such as Lasso (Tib-

shirani, 1996). While Lasso is widely used, the non-
differentiable nature of the L1 norm often make the
objective function difficult to optimize. In this work,
we propose dropout training (Hinton et al., 2012)
as copula regularization. Dropout was proposed by
Hinton et al. as a method to prevent feature co-
adaptation in the deep learning framework, but re-
cently studies (Wager et al., 2013) also show that its
behaviour is similar to L2 regularization, and can be
approximated efficiently (Wang and Manning, 2013)
in many other machine learning tasks. Another ad-
vantage of dropout training is that, unlike Lasso, it
does not require all the features for training, and
training is “embarrassingly” parallelizable.

In Gaussian copula estimation context, we can in-
troduce another dimension `: the number of dropout
learners, to extend the Σ into a dropout tensor. Es-
sentially, the task becomes the estimation of

Σ1,Σ2, ...,Σ`

where the input feature space for each dropout com-
ponent is randomly corrupted by (1 − δ) percent of
the original dimension. In the inference time, we
use geometric mean to average the predictions from
each dropout learner, and generate the final predic-
tion. Note that the final Σ matrix has to be symmet-
ric and positive definite, so we apply tiny random
Gaussian noise ε to maintain the property.
Computational Complexity

One important question regarding the proposed
nonparanormal model is the corresponding compu-
tational complexity. This boils down to the es-
timation of the Σ̂ matrix (Liu et al., 2012): one
only needs to calculate the correlation coefficients
of n(n − 1)/2 pairs of random variables. Chris-
tensen (2005) shows that sorting and balanced bi-
nary trees can be used to calculate the correlation
coefficients with complexity of O(n log n). There-
fore, the computational complexity of MLE for the
proposed model is O(n log n).
Efficient Approximate Inference

In this prediction task, in order to perform
the exact inference of the conditional probabil-
ity distribution p(Fy(y)|Fx1(x1), ..., Fxn(xn)),
one needs to solve the mean response
Ê(Fy(y)|Fx1(x1), ..., Fx1(x1)) from a joint
distribution of high-dimensional Gaussian cop-
ula. Unfortunately, the exact inference can be
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Figure 4: Our pipeline for generating memes from raw
images.

intractable in the multivariate case, and approximate
inference, such as Markov Chain Monte Carlo
sampling (Gelfand and Smith, 1990; Pitt et al.,
2006) is often used for posterior inference. In this
work, we propose an efficient sampling method
to derive y given the text features — we sample

ˆFy(y) s.t. it maximizes the joint high-dimensional
Gaussian copula density:

arg max
ˆFy(y)∈(0,1)

1√
det Σ

exp
(
−1

2
∆T · (Σ−1 − I

) ·∆)
(9)

where

∆ =


Φ−1(Fx1(x1))

...
Φ−1(Fxn(xn))
Φ−1(Fy(y))


This approximate inference scheme using max-

imum density sampling from the Gaussian copula
significantly relaxes the complexity of inference. Fi-
nally, to derive ŷ, the last step is to compute the
inverse CDF of ˆFy(y). A detailed description of
the inference algorithm can be found in our prior
work (Wang and Hua, 2014).

3.4 A Simple Meme Generation Pipeline
Now after we train a nonparanormal model for rank-
ing meme descriptions, we show the simple meme
generation pipeline in Figure 4.

Given a test image, we disguise as the Internet
Explorer, and query Google’s “Search By Image”
inverse image search service4. By comparing the

4http://www.google.com/imghp/

query image with all possible images with their cap-
tions in Google’s database, a “Best Guess” of the
keywords in the image is then revealed.

Using the extracted image keywords, we further
query a TF-IDF based Lucene5 meme search en-
gine, which we indexed with a large number of Web-
crawled meme descriptions. After we obtain the
candidate generations, we then extract all the text
and vision features that we described in Section 3.1.
Finally, our nonparanormal model ranks all possible
candidates, and selects the final generation with the
highest posterior.

4 Datasets
We collected meme images and text descriptions6

from two popular meme websites7. In the predic-
tion experiment, we use 3,008 image-description
pairs for training, and 526 image-description pairs
for testing. In the generation experiment, we use
269,473 meme descriptions to index the meme
search engine, and 50 randomly selected images for
testing. During training, we convert the raw counts
of popular votes into reciprocal ranks (e.g., the most
popular text descriptions will all have a reciprocal
rank of 1, and n-th popular one will have a score of
1/n).

5 Prediction Experiments
In the first experiment, we compare the proposed
NPN with various baselines in a prediction task,
since prior literature (Hodosh et al., 2013) also sug-
gests using ranking based evaluation for associating
images with text descriptions. Throughout the ex-
periment sections, we set ` = 10, and δ = 80 as the
dropout hyperparameters.

Baselines:
The baselines are standard squared-loss lin-

ear regression, linear kernel SVM, and non-linear
(Gaussian) kernel SVM. In a recent empirical
study (Fernández-Delgado et al., 2014) that evalu-
ates 179 classifiers from 17 families on 121 UCI
datasets, the authors find that Gaussian SVM is one
of the top performing classifiers. We use the Sta-
tistical Toolbox’s linear regression implementation
in Matlab, and LibSVM (Chang and Lin, 2011) for

5http://lucene.apache.org/
6http://www.cs.cmu.edu/˜yww/data/meme dataset.zip.
7memegenerator.net and cheezburger.com

360



training and testing the SVM models. The hyperpa-
rameter C in linear SVM, and the γ and C hyperpa-
rameters in Gaussian SVM are tuned on the training
set using 10-fold cross-validation.

Evaluation Metrics:
Spearman’s correlation (Hogg and Craig, 1994)

and Kendall’s tau (Kendall, 1938) have been widely
used in many real-valued prediction (regression)
problems in NLP (Albrecht and Hwa, 2007; Yo-
gatama et al., 2011), and here we use them to mea-
sure the quality of predicted values ŷ by comparing
to the vector of ground truth y. Kendall’s tau is a
nonparametric statistical metric that have shown to
be inexpensive, robust, and representation indepen-
dent (Lapata, 2006). We use paired two-tailed t-test
to measure the statistical significance.

5.1 Comparison with Various Baselines

The first two figures in Figure 5 show the learn-
ing curve of our system, comparing other baselines.
We see that when increasing the amount of training
data, our approach clearly dominates all other meth-
ods by a large margin. Linear and Gaussian SVMs
perform similarly, and have good performances with
only 25% of the training data, but the improvements
are not large when increasing the amount of training
data.

In the last two figures in Figure 5, we increase
the amount of features, and compare various mod-
els. We see that the linear regression model overfits
with 600 features, and Gaussian SVM outperforms
the linear SVM. We see that our NPN model clearly
outperforms all baselines by a big gap, and does not
overfit.

5.2 Combination of Text and Vision

In Table 1, we systematically compare the contribu-
tions of each feature set. First, we see that bigram
features clearly improve the performance on top of
unigram features. Second, named entities are crucial
for further boosting the performance. Third, adding
the shallow part-of-speech features does not benefit
all models, but the dependency triples are shown to
be useful for all methods. Finally, we see that using
semantic features helps increasing the performances
for most of the cases, and combining text and vision
features in our NPN framework doubles the perfor-

Feature Sets LR LSVM GSVM NPN
Unigrams 0.152 0.158 0.176 0.241*
+ Bigrams 0.163 0.248 0.279 0.318*
+ Named Entities 0.188 0.296 0.312 0.339*
+ Part-of-Speech 0.184 0.318 0.337 0.343
+ Dependency 0.191 0.322 0.348 0.350
+ Semantics 0.183 0.368 0.388 0.367
All Text + Vision 0.413 0.415 0.451 0.754*

Unigrams 0.102 0.105 0.118 0.181*
+ Bigrams 0.115 0.164 0.187 0.237*
+ Named Entities 0.127 0.202 0.213 0.248*
+ Part-of-Speech 0.125 0.218 0.232 0.239
+ Dependency 0.130 0.223 0.242 0.255
+ Semantics 0.124 0.257 0.270 0.270
All Text + Vision 0.284 0.288 0.314 0.580*

Table 1: The Spearman correlation (top table) and
Kendall’s τ (bottom table) for comparing various text fea-
tures and combining with vision features. The best results
of each row are highlighted in bold. * indicates p < .001
comparing to the second best result.

mance for associating popular votes, meme images,
and text descriptions.

5.3 The Effects of Dropout Training for
Nonparanormals

As we mentioned before, because NPNs model the
complex network of random variables, a key issue
for training NPN is to prevent the model from over-
fitting to the training data. So far, none of the prior
work have investigated dropout training for regular-
izing the nonparanormals or even copula in general.
To empirical test the effects of dropout training for
nonparanormals, in addition to our datasets, we also
compare with the unregularized copula from Wang
and Hua (2014) on predicting financial risks from
earnings calls. Table 2 clearly suggests that dropout
training for NPNs significant improves the perfor-
mances on various datasets.

5.4 Qualitative Analysis

Table 3 shows the top ranked text features that are
highly correlated with popular votes. We see that the
named entity features are useful: Paul Walker, UPS,
Bruce Willis, Pencil Guy, Amy Winehouse are rec-
ognized as entities in the meme dataset. Dependency
triples, as a less-understood feature set, also perform
well in this task. For example, xcomp(tell,mean)
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Figure 5: Two figures on the left: varying the amount of training data. L(1): Spearman. L(2): Kendall. Two figures on
the right: varying the amount of features. R(1): Spearman. R(2): Kendall.

Datasets No Dropout With Dropout
Meme 0.625 0.754*
Finance (pre2009) 0.416 0.482*
Finance (2009) 0.412 0.445*
Finance (post2009) 0.377 0.409*
Meme 0.491 0.580*
Finance (pre2009) 0.307 0.349*
Finance (2009) 0.302 0.318*
Finance (post2009) 0.282 0.297*

Table 2: The effects of dropout training for NPNs on
meme and other datasets. The best results of each row
are highlighted in bold. * indicates p < .001 comparing
to the no dropout setting.

captures the dependency relation of the popular
meme series “You mean to tell me...”. Interestingly,
the transitional dependency feature dep(when,but)
plays an important role in the language of memes.
The object of a preposition, such as pobj(vegas,in)
and pobj(life,of), also made the list.

Bigrams are shown to be important features as
usual. For example, “Yo daw” is a popular meme
based on rapper Xzibit’s famous reality car show
“Pimp My Ride”, where the rapper customizes peo-
ple’s car according to personal preferences. This vi-
ral meme follows the pattern8 of “Yo daw(g), I herd
you like X (noun), so I put an X in your Y (noun)
so you can W (verb) while you Z (verb).”

The use of pronouns, captured by frame semantics
features, is associated with popular memes. We hy-
pothesize that by using pronouns such as “i”, “you”,
“we”, and “they”, the meme recalls personal expe-
riences and emotions, thus connects better with the
audience. Finally, we see that the punctuation bi-
gram “... :” is an important feature in the language

8http://knowyourmeme.com/memes/xzibit-yo-dawg

Top 1-10 Top 11-20 Top 21-30
paul/PER FE party you new
xcomp(tell,mean) dep(when,but) FE Entity it
possessive(’s,it) ... : bruce/PER
yo daw FE Theme i FE party we
pobj(vegas,in) on a FE Food fat
ups/ORG FE Exp. they <start> make
into FE Entity you so you
so you’re <start> how penci/PER
FE Cognizer i of the y
yo . pobj(life,of) winehouse/PER

Table 3: Top-30 linguistic features that are highly corre-
lated with the popular votes.

of memes, and Web dialect such as “y” (why) also
exhibits high correlation with the popular votes.

6 Generation Experiments
In this section, we investigate the performance of
our meme generation system using 50 test meme
images. To quantitatively evaluate our system, we
compare with both unsupervised and supervised
baselines. For the unsupervised baselines, we com-
pare with a compact recurrent neural network lan-
guage model (RNNLM) (Mikolov, 2012) trained on
the 3,008 text descriptions of our meme training set,
as well as a full model of RNNLM trained on a large
meme corpus of 269K sentences9. For the super-
vised baselines, all models are trained on the 3,008
training image-description pairs with labels. All
these models can be viewed as different re-ranking
methods for the retrieved candidate descriptions. We
use BLEU score (Papineni et al., 2002) as the evalu-
ation metric, since the generation task can be viewed
as translating raw images into sentences, and it is

9Note that there are no image features feeding to the unsu-
pervised RNN models.
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Figure 6: Examples from the meme generation exper-
iment. First row: the chemistry cat meme. Second
row: the forever alone meme. Third row: the Batman
slaps Robin meme. Left column: human generated top-
voted meme descriptions on memegenerator.net at the
time of writing. Middle column: generated output from
RNNLM. Right column: generated output from NPNs.

used in many caption generation studies (Vinyals
et al., 2014; Chen and Zitnick, 2014; Donahue et
al., 2014; Fang et al., 2014; Karpathy and Fei-Fei,
2014).

The generation result is shown in Table 4. Note
that when combining B-1 to B-4 scores, BLEU in-
cludes a brevity penalty as described in the original
BLEU paper. We see that our NPN model outper-
forms the best supervised baseline by 4.35 BLEU
points, while also obtaining an advantage of 4.48

Systems BLEU B-1 B-2 B-3 B-4
RNN-C 19.52 62.2 21.2 12.1 9.0
RNN-F 23.76 72.2 31.4* 16.2 8.7
LR 23.89 72.3 28.3 15.0 10.6
LSVM 21.06 65.0 24.8 13.1 9.3
GSVM 20.63 66.2 22.8 12.8 9.3
NPN 28.24* 66.9 29.0 19.7* 16.6*

Table 4: The BLEU scores for generating memes from
images. B-1 to B-4: BLEU unigram to four-grams. The
best BLEU results are highlighted in bold. * indicates
p < .001 comparing to the second best system.

BLEU points over the full RNNLM, which is trained
on a corpus that is ∼90 times larger, in an unsuper-
vised fashion. When breaking down the results, we
see that our NPN’s advantage is on generating longer
phrases, typically trigrams and four-grams, compar-
ing to the other models. This is very interesting, be-
cause generating high-quality long phrases is diffi-
cult, since the memes are often short.

We show some generation examples in Figure 6.
We see that on the left column, the reference memes
are the ones with top votes by the crowd. The first
chemistry cat meme includes puns, the second for-
ever alone meme includes reference to the life sim-
ulation video game, while the last Batman meme
has interesting conversations. In the second col-
umn, we see that the memes generated by the full
RNNLM model are short, which corresponds to the
quantitative results in Table 4. In the third col-
umn, our NPN meme generator was able to gen-
erate longer descriptions. Interestingly, it also cre-
ates a pun for the chemistry cat meme. Our genera-
tion on the forever alone meme is also accurate. In
the Batman example, we show that the NPN model
makes a sentence-image-mismatch type of error: al-
though the generated sentence includes the entities
Batman and Robin, as well as their slapping activ-
ity, it was originally created for the “overly attached
girlfriend” meme10.

7 Conclusions

In this paper, we study the language of memes
by jointly learning the image, the description, and
the popular votes. In particular, we propose a ro-
bust nonparanormal approach to transform all vi-
sion and text features into the cumulative density
function space. By learning the stochastic depen-
dencies, we show that our model significantly out-
performs various competitive baselines in the pre-
diction experiments. In addition, we also propose
a simple pipeline for generating memes from raw
images, drawing the wisdom from reverse image
search and traditional information retrieval perspec-
tives. Finally, we show that our model obtains sig-
nificant BLEU point improvements over an unsuper-
vised RNNLM baseline trained on a larger corpus,
as well as other strong supervised baselines.

10http://www.overlyattachedgirlfriend.com
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