
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 244–249,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

When and why are log-linear models self-normalizing?
Jacob Andreas and Dan Klein

Computer Science Division
University of California, Berkeley

{jda,klein}@cs.berkeley.edu

Abstract

Several techniques have recently been pro-
posed for training “self-normalized” discrimi-
native models. These attempt to find parameter
settings for which unnormalized model scores
approximate the true label probability. How-
ever, the theoretical properties of such tech-
niques (and of self-normalization generally)
have not been investigated. This paper exam-
ines the conditions under which we can ex-
pect self-normalization to work. We character-
ize a general class of distributions that admit
self-normalization, and prove generalization
bounds for procedures that minimize empiri-
cal normalizer variance. Motivated by these
results, we describe a novel variant of an estab-
lished procedure for training self-normalized
models. The new procedure avoids computing
normalizers for most training examples, and
decreases training time by as much as factor of
ten while preserving model quality.

1 Introduction

This paper investigates the theoretical properties of
log-linear models trained to make their unnormalized
scores approximately sum to one.

Recent years have seen a resurgence of interest in
log-linear approaches to language modeling. This
includes both conventional log-linear models (Rosen-
feld, 1994; Biadsy et al., 2014) and neural networks
with a log-linear output layer (Bengio et al., 2006).
On a variety of tasks, these LMs have produced sub-
stantial gains over conventional generative models
based on counting n-grams. Successes include ma-
chine translation (Devlin et al., 2014) and speech
recognition (Graves et al., 2013). However, log-linear
LMs come at a significant cost for computational ef-
ficiency. In order to output a well-formed probability
distribution over words, such models must typically
calculate a normalizing constant whose computa-
tional cost grows linearly in the size of the vocab-
ulary.

Fortunately, many applications of LMs remain
well-behaved even if LM scores do not actually cor-
respond to probability distributions. For example,
if a machine translation decoder uses output from a
pre-trained LM as a feature inside a larger model, it
suffices to have all output scores on approximately
the same scale, even if these do not sum to one for
every LM context. There has thus been considerable
research interest around training procedures capa-
ble of ensuring that unnormalized outputs for every
context are “close” to a probability distribution. We
are aware of at least two such techniques: noise-
contrastive estimation (NCE) (Vaswani et al., 2013;
Gutmann and Hyvärinen, 2010) and explicit penal-
ization of the log-normalizer (Devlin et al., 2014).
Both approaches have advantages and disadvantages.
NCE allows fast training by dispensing with the need
to ever compute a normalizer. Explicit penalization
requires full normalizers to be computed during train-
ing but parameterizes the relative importance of the
likelihood and the “sum-to-one” constraint, allowing
system designers to tune the objective for optimal
performance.

While both NCE and explicit penalization are ob-
served to work in practice, their theoretical properties
have not been investigated. It is a classical result that
empirical minimization of classification error yields
models whose predictions generalize well. This pa-
per instead investigates a notion of normalization
error, and attempts to understand the conditions un-
der which unnormalized model scores are a reliable
surrogate for probabilities. While language model-
ing serves as a motivation and running example, our
results apply to any log-linear model, and may be of
general use for efficient classification and decoding.

Our goals are twofold: primarily, to provide intu-
ition about how self-normalization works, and why it
behaves as observed; secondarily, to back these intu-
itions with formal guarantees, both about classes of
normalizable distributions and parameter estimation
procedures. The paper is built around two questions:

244

When can self-normalization work—for which dis-
tributions do good parameter settings exist? And
why should self-normalization work—how does vari-
ance of the normalizer on held-out data relate to vari-
ance of the normalizer during training? Analysis
of these questions suggests an improvement to the
training procedure described by Devlin et al., and
we conclude with empirical results demonstrating
that our new procedure can reduce training time for
self-normalized models by an order of magnitude.

2 Preliminaries

Consider a log-linear model of the form

p(y|x; θ) =
exp{θ>y x}∑
y′ exp{θ>y′x}

(1)

We can think of this as a function from a context x to a
probability distribution over decisions yi, where each
decision is parameterized by a weight vector θy.1 For
concreteness, consider a language modeling problem
in which we are trying to predict the next word after
the context the ostrich. Here x is a vector of fea-
tures on the context (e.g. x = {1-2=the ostrich,

1=the, 2=ostrich, . . . }), and y ranges over the
full vocabulary (e.g. y1 = the, y2 = runs, . . .).

Our analysis will focus on the standard log-linear
case, though later in the paper we will also relate
these results to neural networks. We are specifically
concerned with the behavior of the normalizer or
partition function

Z(x; θ) def=
∑
y

exp{θ>y x} (2)

and in particular with choices of θ for which
Z(x; θ) ≈ 1 for most x.

To formalize the questions in the title of this paper,
we introduce the following definitions:

Definition 1. A log-linear model p(y|x,θ) is nor-
malized with respect to a set X if for every x ∈ X ,
Z(x; θ) = 1. In this case we call X normalizable
and θ normalizing.

Now we can state our questions precisely: What
distributions are normalizable? Given data points

1An alternative, equivalent formulation has a single weight
vector and a feature function from contexts and decisions onto
feature vectors.

Figure 1: A normalizable set, the solutions [x, y] to
Z([x, y]; {[−1, 1], [−1,−2]}) = 1. The set forms a
smooth one-dimensional manifold bounded on either side
by the hyperplanes normal to [−1, 1] and [−1,−2].

from a normalizableX , how do we find a normalizing
θ?

In sections 3 and 4, we do not analyze whether the
setting of θ corresponds to a good classifier—only a
good normalizer. In practice we require both good
normalization and good classification; in section 5
we provide empirical evidence that both are achiev-
able.

Some notation: Weight vectors θ (and feature vec-
tors x) are d-dimensional. There are k output classes,
so the total number of parameters in θ is kd. || · ||p
is the `p vector norm, and || · ||∞ specifically is the
max norm.

3 When should self-normalization work?

In this section, we characterize a large class of
datasets (i.e. distributions p(y|x)) that are normal-
izable either exactly, or approximately in terms of
their marginal distribution over contexts p(x). We
begin by noting simple features of Equation 2: it is
convex in x, so in particular its level sets enclose con-
vex regions, and are manifolds of lower dimension
than the embedding space.

As our definition of normalizability requires the
existence of a normalizing θ, it makes sense to begin
by fixing θ and considering contexts x for which it
is normalizing.

Observation. Solutions x to Z(x; θ) = 1, if any
exist, lie on the boundary of a convex region in Rd.

245

This follows immediately from the definition of a
convex function, but provides a concrete example of
a set for which θ is normalizing: the solution set of
Z(x; θ) = 1 has a simple geometric interpretation as
a particular kind of smooth surface. An example is
depicted in Figure 1.

We cannot expect real datasets to be this well be-
haved, so seems reasonable to ask whether “good-
enough” self-normalization is possible for datasets
(i.e. distributions p(x)) which are only close to some
exactly normalizable distribution.

Definition 2. A context distribution p(x) is D-close
to a set X if

Ep

[
inf
x∗∈X

||X − x∗||∞
]

= D (3)

Definition 3. A context distribution p(x) is ε-
approximately normalizable if Ep| logZ(X; θ)| ≤ ε.
Theorem 1. Suppose p(x) is D-close to {x :
Z(x; θ) = 1}, and each ||θi||∞ ≤ B. Then p(x)
is dBD-approximately normalizable.

Proof sketch.2 Represent each X as X∗ + X−,
where X∗ solves the optimization problem in Equa-
tion 3. Then it is possible to bound the normalizer by
log exp {θ̃>X−}, where θ̃ maximizes the magnitude
of the inner product with X− over θ.

In keeping with intuition, data distributions that
are close to normalizable sets are themselves approx-
imately normalizable on the same scale.3

4 Why should self-normalization work?

So far we have given a picture of what approxi-
mately normalizable distributions look like, but noth-
ing about how to find normalizing θ from training
data in practice. In this section we prove that any pro-
cedure that causes training contexts to approximately
normalize will also have log-normalizers close to
zero in unseen contexts. As noted in the introduction,
this does not follow immediately from correspond-
ing results for classification with log-linear models.
While the two problems are related (it would be quite
surprising to have uniform convergence for classifi-
cation but not normalization), we nonetheless have a

2Full proofs of all results may be found in the Appendix.
3Here (and throughout) it is straightforward to replace quan-

tities of the form dB with B by working in `2 instead of `∞.

different function class and a different loss, and need
new analysis.

Theorem 2. Consider a sample (X1, X2, . . .), with
all ||X||∞ ≤ R, and θ with each ||θi||∞ ≤ B. Ad-
ditionally define L̂ = 1

n

∑
i | logZ(Xi)| and L =

E| logZ(X)|. Then with probability 1− δ,

|L̂ − L| ≤ 2

√
dk(log dBR+ log n) + log 1

δ

2n
+

2
n

(4)

Proof sketch. Empirical process theory provides
standard bounds of the form of Equation 4 (Kakade,
2011) in terms of the size of a cover of the function
class under consideration (here Z(·; θ)). In particu-
lar, given some α, we must construct a finite set of
Ẑ(·; θ) such that some Ẑ is everywhere a distance
of at most α from every Z. To provide this cover,
it suffices to provide a cover θ̂ for θ. If the θ̂ are
spaced at intervals of length D, the size of the cover
is (B/D)kd, from which the given bound follows.

This result applies uniformly across choices of θ
regardless of the training procedure used—in partic-
ular, θ can be found with NCE, explicit penalization,
or the variant described in the next section.

As hoped, sample complexity grows as the number
of features, and not the number of contexts. In partic-
ular, skip-gram models that treat context words inde-
pendently will have sample efficiency multiplicative,
rather than exponential, in the size of the condition-
ing context. Moreover, if some features are correlated
(so that data points lie in a subspace smaller than d
dimensions), similar techniques can be used to prove
that sample requirements depend only on this effec-
tive dimension, and not the true feature vector size.

We emphasize again that this result says nothing
about the quality of the self-normalized model (e.g.
the likelihood it assigns to held-out data). We de-
fer a theoretical treatment of that question to future
work. In the following section, however, we provide
experimental evidence that self-normalization does
not significantly degrade model quality.

5 Applications

As noted in the introduction, previous approaches
to learning approximately self-normalizing distribu-
tions have either relied on explicitly computing the

246

normalizer for each training example, or at least keep-
ing track of an estimate of the normalizer for each
training example.

Our results here suggest that it should be possi-
ble to obtain approximate self-normalizing behavior
without any representation of the normalizer on some
training examples—as long as a sufficiently large
fraction of training examples are normalized, then
we have some guarantee that with high probability
the normalizer will be close to one on the remaining
training examples as well. Thus an unnormalized
likelihood objective, coupled with a penalty term that
looks at only a small number of normalizers, might
nonetheless produce a good model. This suggests the
following:

l(θ) =
∑
i

θ>yi
xi +

α

γ

∑
h∈H

(logZ(xh; θ))2 (5)

where the parameter α controls the relative impor-
tance of the self-normalizing constraint, H is the
set of indices to which the constraint should be ap-
plied, and γ controls the size of H , with |H| = dnγe.
Unlike the objective used by Devlin et al. (2014)
most examples are never normalized during training.
Our approach combines the best properties of the
two techniques for self-normalization previously dis-
cussed: like NCE, it does not require computation of
the normalizer on all training examples, but like ex-
plicit penalization it allows fine-grained control over
the tradeoff between the likelihood and the quality of
the approximation to the normalizer.

We evaluate the usefulness of this objective with
a set of small language modeling experiments. We
train a log-linear LM with features similar to Biadsy
et al. (2014) on a small prefix of the Europarl cor-
pus of approximately 10M words.4 We optimize the
objective in Equation 5 using Adagrad (Duchi et al.,
2011). The normalized set H is chosen randomly for
each new minibatch. We evaluate using two metrics:
BLEU on a downstream machine translation task, and
normalization risk R, the average magnitude of the
log-normalizer on held-out data. We measure the re-
sponse of our training to changes in γ and α. Results
are shown in Table 1 and Table 2.

4This prefix was chosen to give the fully-normalized model
time to finish training, allowing a complete comparison. Due
to the limited LM training data, these translation results are far
from state-of-the-art.

Normalized fraction (γ)
0 0.001 0.01 0.1 1

Rtrain 22.0 1.7 1.5 1.5 1.5
Rtest 21.6 1.7 1.5 1.5 1.5

BLEU 1.5 19.1 19.2 20.0 20.0

Table 1: Result of varying normalized fraction γ, with
α = 1. When no normalization is applied, the model’s be-
havior is pathological, but when normalizing only a small
fraction of the training set, performance on the down-
stream translation task remains good.

Normalization strength (α)
α 0.01 0.1 1 10

Rtrain 20.4 9.7 1.5 0.5
Rtest 20.1 9.7 1.5 0.5

BLEU 1.5 2.6 20.0 16.9

Table 2: Result of varying normalization parameter α,
with γ = 0.1. Normalization either too weak or too strong
results in poor performance on the translation task, em-
phasizing the importance of training procedures with a
tunable normalization parameter.

Table 1 shows that with small enough α, normal-
ization risk grows quite large. Table 2 shows that
forcing the risk closer to zero is not necessarily desir-
able for a downstream machine translation task. As
can be seen, no noticeable performance penalty is
incurred when normalizing only a tenth of the train-
ing set. Performance gains are considerable: setting
γ = 0.1, we observe a roughly tenfold speedup over
γ = 1.

On this corpus, the original training procedure of
Devlin et al. with α = 0.1 gives a BLEU score of
20.1 and Rtest of 2.7. Training time is equivalent
to choosing γ = 1, and larger values of α result
in decreased BLEU, while smaller values result in
significantly increased normalizer risk. Thus we see
that we can achieve smaller normalizer variance and
an order-of-magnitude decrease in training time with
a loss of only 0.1 BLEU.

6 Relation to neural networks

Our discussion has focused on log-linear models.
While these can be thought of as a class of single-
layer neural networks, in practice much of the de-
mand for fast training and querying of log-linear LMs

247

comes from deeper networks. All of the proof tech-
niques used in this paper can be combined straight-
forwardly with existing tools for covering the out-
put spaces of neural networks (Anthony and Bartlett,
2009). If optimization of the self-normalizing portion
of the objective is deferred to a post-processing step
after standard (likelihood) training, and restricted
to parameters in the output layers, then Theorem 2
applies exactly.

7 Conclusion

We have provided both qualitative and formal charac-
terizations of “self-normalizing” log-linear models,
including what we believe to be the first theoretical
guarantees for self-normalizing training procedures.
Motivated by these results, we have described a novel
objective for training self-normalized log-linear mod-
els, and demonstrated that this objective achieves
significant performance improvements without a de-
crease in the quality of the models learned.

A Quality of the approximation

Proof of Theorem 1. Using the definitions of X∗,
X− and θ̃ given in the proof sketch for Theorem 1,

E| log(
∑

exp{θ>i X})|
= E| log(

∑
exp{θ>i (X∗ +X−)})|

≤ E| log(exp{θ̃>X−}
∑

exp{θ>i X∗})|
≤ E| log(exp{θ̃>X−})|
≤ dDB

B Generalization error

Lemma 3. For any θ1, θ2 with ||θ1,i − θ2,i||∞ ≤
D

def= α/dR for all i,

|| logZ(x; θ1)| − | logZ(x; θ2)|| ≤ α (6)

Proof.

|| logZ(x; θ1)| − | logZ(x; θ2)||
≤ | logZ(x; θ1)− logZ(x; θ2)|
≤ log

Z(x; θ1)
Z(x; θ2)

(w.l.o.g.)

= log
∑

i exp
{
(θ1i − θ2i)>x

}
exp

{
θ>2ix

}∑
i exp

{
θ>2ix

}
≤ dDR+ log

Z(x; θ2)
Z(x; θ2)

= α

Corollary 4. The set of partition functions Z =
{Z(·; θ) : ||θ||∞ ≤ B ∀θ ∈ θ} can be covered
on on the `∞ ball of radius R by a grid of θ̂ with
distance D. The size of this cover is

|Ẑ| =
(
B

D

)dk
=
(
dBR

α

)dk
(7)

Proof of Theorem 2. From a standard discretization
lemma (Kakade, 2011) and Corollary 4, we immedi-
ately have that with probabilty 1− δ,

sup
Z∈Z
|L̂ − L| ≤

≤ inf
α

2

√
dk(log dBR− logα) + log 1

δ

2n
+ 2α

Taking α = 1/n,

≤ 2

√
dk(log dBR+ log n) + log 1

δ

2n
+

2
n

Acknowledgements

The authors would like to thank Peter Bartlett, Robert
Nishihara and Maxim Rabinovich for useful discus-
sions. This work was partially supported by BBN
under DARPA contract HR0011-12-C-0014. The
first author is supported by a National Science Foun-
dation Graduate Fellowship.

References
Martin Anthony and Peter Bartlett. 2009. Neural net-

work learning: theoretical foundations. Cambridge
University Press.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal,
Fréderic Morin, and Jean-Luc Gauvain. 2006. Neu-
ral probabilistic language models. In Innovations in
Machine Learning, pages 137–186. Springer.

248

Fadi Biadsy, Keith Hall, Pedro Moreno, and Brian Roark.
2014. Backoff inspired features for maximum entropy
language models. In Proceedings of the Conference of
the International Speech Communication Association.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for statisti-
cal machine translation. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 273–
278.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, pages 297–304.

Sham Kakade. 2011. Uniform and empirical cov-
ering numbers. http://stat.wharton.
upenn.edu/˜skakade/courses/stat928/
lectures/lecture16.pdf.

Ronald Rosenfeld. 1994. Adaptive statistical language
modeling: a maximum entropy approach. Ph.D. thesis.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale neural
language models improves translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

249

