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Abstract

We address the problem of automatically
aligning natural language sentences with cor-
responding video segments without any direct
supervision. Most existing algorithms for in-
tegrating language with videos rely on hand-
aligned parallel data, where each natural lan-
guage sentence is manually aligned with its
corresponding image or video segment. Re-
cently, fully unsupervised alignment of text
with video has been shown to be feasible us-
ing hierarchical generative models. In contrast
to the previous generative models, we propose
three latent-variable discriminative models for
the unsupervised alignment task. The pro-
posed discriminative models are capable of in-
corporating domain knowledge, by adding di-
verse and overlapping features. The results
show that discriminative models outperform
the generative models in terms of alignment
accuracy.

1 Introduction

Learning to integrate natural language descriptions
with video events is attracting increasing attention
in the natural language processing and computer vi-
sion communities. The Grounded Language Learn-
ing task aims to map the meaning of natural lan-
guage expressions to their corresponding referents
in videos (e.g., objects, actions, and events) with-
out any dictionary. Most existing grounded lan-
guage learning algorithms are either supervised or
weakly-supervised. During the training stage, they
assume each video is pre-segmented to chunks of
short duration, and each video segment is manually
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Figure 1: The proposed discriminative learning algorithm
aligns protocol sentences to corresponding video frames.
We incorporate features that can learn the co-occurrences
of nouns and verbs in the sentences with the objects in
the video.

aligned with a natural language sentence that de-
scribes that segment. Manually aligning each video
segment with a sentence is tedious, especially for
long videos. Therefore, it is desirable to automati-
cally align video segments with their corresponding
natural language sentences without direct supervi-
sion.

Recently, Naim et al. (2014) proposed an unsuper-
vised learning algorithm for automatically aligning
sentences in a document with corresponding video
segments. Given a sequence of natural language
instructions and an unaligned video recording of a
person following these instructions, a hierarchical
generative model was applied to align each instruc-
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tion to its corresponding video segment, and to align
nouns in each instruction to their corresponding ob-
jects in the video. We extend this generative align-
ment framework by applying several discriminative
models with latent variables. Discriminative mod-
els are attractive as they can easily incorporate do-
main knowledge by adding many diverse, overlap-
ping, and complex features. By incorporating a large
number of features and regularizing their weights
properly, discriminative models have been shown to
outperform generative models in many natural lan-
guage processing tasks (Collins, 2002; Dyer et al.,
2011; Yu et al., 2013).

Similar to Naim et al. (2014), we applied our al-
gorithm to align the natural language instructions
for biological experiments in “wet laboratories” with
recorded videos of people performing these experi-
ments. Typically, each wetlab experiment has a pro-
tocol written in natural language, describing the se-
quence of steps necessary for that experiment. How-
ever, these instructions are often incomplete, and do
not spell out implicit assumptions and knowledge,
causing the results to be difficult to reproduce (Be-
gley and Ellis, 2012). Given a set of such wetlab
experiment protocols and associated videos, our ini-
tial goal is to infer the correct alignment between
the steps mentioned in the protocol and correspond-
ing video segments in which a person performs these
steps (Figure 1). The aligned and segmented out-
put of the system described in this paper can even-
tually be used to learn detailed visual models of cor-
rectly performed activities and to identify experi-
mental anomalies.

In this paper, we apply three latent discriminative
learning algorithms: latent conditional random field
(LCREF), latent structured perceptron (LSP), and la-
tent structured support vector machine (LSSVM) for
unsupervised alignment of video with text. We show
that discriminative models outperform the existing
generative models by incorporating diverse features.
While the previous models only considered the map-
pings of nouns to blobs, and ignored verbs, we in-
corporated the co-occurrences of verbs with blobs
as features in our model. Finally, we propose a con-
strained variant of the standard LSP and LSSVM up-
date rule, which provided better alignment accuracy
and more stable convergence on our datasets.
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2 Background Research

2.1 Unsupervised Grounded Language
Learning

Most existing grounded language learning algo-
rithms for integrating language with vision rely
on either a fully supervised (Kollar et al., 2010;
Matuszek et al., 2012) or a weakly supervised
training stage (Yu and Ballard, 2004; Kate and
Mooney, 2007; Krishnamurthy and Kollar, 2013;
Yu and Siskind, 2013; Krishnamoorthy et al., 2013;
Rohrbach et al., 2013; Tellex et al., 2013). The fully
supervised methods assume that each sentence in
the training data is manually paired with the corre-
sponding image or video segment, and furthermore,
each word or phrase in a sentence is already mapped
to its corresponding blob or action in the image
or video segment. Given the detailed annotations,
these methods train a set of classifiers to recog-
nize perceptual representations for commonly used
words or phrases. After the initial fully supervised
training stage, these methods can learn the mean-
ing of new words as they are encountered. Such
detailed supervision is difficult to obtain, and as a
result most of the recent grounded language learn-
ing algorithms rely on weaker supervision (Krish-
namurthy and Kollar, 2013; Yu and Siskind, 2013;
Krishnamoorthy et al., 2013; Rohrbach et al., 2013;
Tellex et al., 2013), where each image or video
frame is manually paired with corresponding sen-
tence, but the mapping between objects and words
is not provided, and instead learned and inferred au-
tomatically as latent variables. Manually pairing
each video segment or image frame with the cor-
responding sentence can be tedious, especially for
long videos. Furthermore, these methods can be rel-
atively difficult to extend to new domains, as this
may require collecting new annotated data.
Recently, Naim et al. (2014) proposed a fully
unsupervised approach for aligning wetlab experi-
ment videos with associated text protocols, with-
out any direct supervision. They proposed a hier-
archical generative model to infer the alignment be-
tween each video segment with corresponding pro-
tocol sentence, and also the mapping of each blob
with corresponding noun in that sentence. First, it
models the generation of each video segment from
one of the sentences in the protocol using a Hidden



Markov Model (HMM) (Rabiner, 1989; Vogel et al.,
1996). Next, each tracked object or blob in a video
segment is generated from one of the nouns in the
corresponding sentence using IBM Model 1 (Brown
et al., 1993), a generative model frequently used in
machine translation. The IBM Model 1 probabilities
are incorporated as emission probabilities in HMM.
The transition probabilities are parameterized using
the jump size, i.e., the difference between the align-
ments of two consecutive video segments. They
also extended IBM Model 1 by introducing latent
variables for each noun, allowing some of the non-
object nouns to be unobserved in the video. While
the alignment results are encouraging, and show that
unsupervised alignment is feasible, they considered
the mappings between nouns and blobs only, and ig-
nored the verbs and other relations in the sentences.
Moreover, incorporating domain knowledge is not
straightforward in these generative models.

2.2 Discriminative Word Alignment

In machine translation, alignment of the words in
source language with the words in target language
has traditionally been done using the IBM word
alignment models (Brown et al., 1993), which are
generative models, and typically trained using Ex-
pectation Maximization (Dempster et al., 1977).
Early attempts (Blunsom and Cohn, 2006; Taskar
et al., 2005) towards discriminative word alignment
relied on supervised hand-aligned parallel corpora.
Dyer et al. (2011) first applied a latent variable con-
ditional random field (LCRF) to perform unsuper-
vised discriminative word alignment. They treated
the words’ alignments as latent variables, and for-
mulated the task as predicting the target sentence,
given the source sentence. We apply similar la-
tent variable discriminative models for unsupervised
alignment of sentences with video segments.

3 Problem Formulation and Notations

The input to our system is a dataset containing N
pairs of observations {(x;,y;)},, where x; rep-
resents the i*" experiment protocol, and y; repre-
sents a video of a person carrying out the instruc-
tions in that protocol. The protocols are not neces-
sarily unique, as we have multiple videos of different
people carrying out the same protocol.
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Figure 2: Each X; ,, is a sentence in the protocol, consist-
ing of the nouns and verbs in the sentence, and each Y; ,,
is a video chunk represented by the set of blobs touched
by hands in that chunk. The alignment h; = [1,2,2, 3]
maps each video chunk to the corresponding sentence.

We apply similar data preprocessing as Naim et
al. (2014). First, we parse each protocol sentence
using the two-stage Charniak-Johnson parser (Char-
niak and Johnson, 2005), and extract the head nouns
and verbs from each sentence. Let m; be the num-
ber of sentences in the protocol x;. We represent x;
as a sequence of sets x; = [Xj1,..., X m,], Where
Xi.m 1s the set of nouns and verbs in the m* sen-
tence of x;. Each video y; is segmented into a se-
quence of chunks, each one second long. For each
video chunk, we determine the set of objects touched
by the participant’s hands using automated image
segmentation and tracking. We ignore the chunks
over which no object is touched by a hand. Let n; be
the number of chunks in y;. We represent the video
yi as a sequence of sets: y; = [Y;1,...,Yin,], one
for each video chunk, where Y; ,, is the set of ob-
jects or blobs touched by hands in the n* chunk of
y;. If Vy is the set of all blobs in the videos, then
Yvi,n c VY~

Our goal is to learn the alignment h; between
the sentences in x; with their corresponding video
chunks in y; (Figure 2). Formally, h;[n] €
{1,...,m;}, for 1 < n < n;, where h;[n] = m
indicates that the video segment Y;,, is aligned to
the protocol sentence X; .

4 Discriminative Alignment

To formulate the alignment problem as a discrim-
inative learning task, we assume the text sequence
x; as the observed input, and the video sequence
y; as the output sequence that we aim to predict.
Since the alignments are unknown, we treat them



as latent variables. Let h; be the hidden alignment
vector for an observation pair (x;,y;). The feature
function ®(x;,y;,h;) maps the input observation
(xi,yi), and their latent alignment vector h; to a d-
dimensional feature vector. Our goal is to learn the
weights w € R for these features.

4.1 Latent Variable Conditional Random Field

Given a text sequence x; and a video sequence y;
with lengths |x;| = m; and |y;| = n;, the condi-
tional probability of the video sequence is:

p(yi, nilx;)
= p(yilxi, ni) p(ni|x;)

p(yilx:)
ey
Since we only aim to learn the alignments given

(xi,yi), we ignore the length probability p(n;|x;),
and consider only the first term:

p(yilxi,ni) =Y p(yi, hulx, ni) 2
h;
We  model the conditional  probability
p(yi, hi|x;, n;) using a log-linear model:
T
expw! ®(x;,y;, h;
plyis by, ny) = SPWLLYLR) )

Z(xi,ni) ’

where Z(x;,n;) = >, >, €xp w!®(x;,y,h). To
keep our models tractable, we assume our feature
function ® decomposes linearly, similar to a linear-
chain graphical model:

n;
(P(Xia Yi, hz) = Z ¢(Xi,m7 Yvi,ny m,n, m,)a

n=1

where h;[n] = m and h;[n — 1] = m/. There-
fore, each factor in our linear chain graph structure
depends on the alignment state for the current and
the previous video chunk. For any two consecutive
alignment states h;[n] = m and h;[n — 1] = m/, we
represent the factor potential as:

\II(Xi,mv Y:i,nu m,n, m/) =

exp [WT¢(Xi,m7 Yin,m,n, ml)]

Our goal is to maximize the following log-
likelihood function:

N
L(w)=> log> plyihilxi,n). (4
i=1 h;
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The gradient of the log-likelihood function with re-
spect to the weight parameters is:

L &
8W = Z Ep(hlxz',ni,yi) [¢<XZ7 Yi, h)] -
i=1

EP(Yvh‘Xivni) [@(xi,y,h)]| (5)
We apply the stochastic gradient descent algo-
rithm (Vishwanathan et al., 2006) to maximize the
conditional log-likelihood. For each observation
(xi,yi), we perform forward-backward dynamic
programming to estimate the two expectation terms
in equation 5, as discussed next.

4.1.1 Estimation of E,y,x;, n, v.) [®(Xi, ¥i, h)]

To estimate the first expectation term in equa-
tion 5, we need to sum over all the possible align-
ment states h[n] = m, where n € {1,...,n;} and
m € {1,...,m;}. Since the output sequence y; is
given, we refer to this stage as “forced” forward-
backward stage. The forward messages ol [m] o
p(Yi1,...,Yin, hin] = m | x;) are estimated using
the following recursion:

aﬁ(m) = Z ai—l(m/) \Il(Xi,ma Yviﬂw m,n, m/)
m/

where m/’ is one of the predecessors of the alignment
state h[n] = m. Assuming no restrictions on the
possible alignments, the computational complexity
of each iteration on a single observation pair (x;,y;)
is O(m?n;d) for m; sentences, n; video chunks, and
d dimensional features. However, we allow only a
constant number of predecessor and successor states
for each alignment state, and hence the computa-
tional complexity becomes O(m;n;d). Similarly,
we apply backward recursions, with the same com-
putational complexity.

4.1.2 Estimation of E,(y px; n,) [®(x;,y,h)]
While computing the second expectation term, we
assume only x; and the number of video chunks
n; are observed, and we need to sum probabilities
over all possible alignments h[n] = m and all pos-
sible video sequences y. Again we apply forward-
backward. The computational complexity, however,
grows significantly, as we need to sum over all pos-
sible set of blobs that may be touched by hands in



each video segment. The forward message o, (m)
is computed as:

ap(m) = Zan,l(m') Z U(Xim, Y, m,n,m’)

YCVy

There can be 2/V¥| — 1 possible subset of blobs
at each of the alignment position, and the overall
computational complexity becomes O (21V¥lm;n;d),
which is prohibitively expensive, even for a small
number of blobs. In our videos, the hands never
touch more than 3 objects at a time. So we con-
sidered only the non-empty subsets with 3 or less
elements: P = {S : S C W,|S| < 3,5 # 0}.
The pruning of larger subsets reduces the complex-
ity to O(|Vy [>m;n;d). We can further reduce com-
putation by decomposing the forward-backward re-
cursions to the co-occurrence features and alignment
path features:

U(Xim, Y,m,n,m') = Ueo(Xim, Y)Vap(m,n,m’)

The potential due to alignment path features (W)
does not depend on the subset of blobs, and only
depends on the current and previous alignment states
hln] = m and h[n — 1] = m/. On the other hand,
the co-occurrence potential W, for a given set of
blobs Y depends only on the sentence that it is being
aligned to, and does not depend on the video chunk
index n. Therefore we can decompose the forward
recursion as:

ap(m) = Z an—1(m’) Wop(m,n,m’) §(m)

where §(m) = >y cp Veo(Xim, Y). We can pre-
compute the values of §(m) for each of the m; sen-
tences, which takes O(m;d|Vy|?) operations. Fi-
nally, we run forward recursions over all the align-
ment states using the precomputed values, and the
complexity becomes O (m;d|Vy |> + m;n;d) Simi-
larly the backward recursion becomes:

Bu(m) = " Buer(m') Wy n+1,m) 5(m')

The alignment state transition probabili-
ties  &,(m’,m) represents the probability
p(hp,—1 = m/;h, = m | x;), which can be

estimated by marginalizing over all possible sets of
blobs:

En(m',m) o< ap—1(m) Wy, (m,n,m')6(m) B, (m)
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4.2 Latent Variable Structured Perceptron

Structured Perceptron (Collins, 2002) has become a
popular method for discriminative structured learn-
ing due to its relatively fast convergence rate and
theoretical convergence guarantee. Since true align-
ments are unknown, we apply the latent variable
structured perceptron algorithm (Liang et al., 2006;
Sun et al., 2009; Yu et al., 2013) for our discrimina-
tive alignment task.

We iteratively scan through our dataset, one pro-
tocol and video pair (x;,y;) at a time. First, we infer
the best alignment h""¢¢? for the given observation
pair (x;,y;) and the current weight vector w:

Forced
hi

= argmaxw! B(xi, yih).  (6)
This step is known as Forced Decoding, as we are
given both the protocol sentences and the associated
video chunks. Forced decoding is performed using
Viterbi-like dynamic programming (Algorithm 1),
where the dynamic programming states are the
alignment states (m, n) such that h[n] = m.

Algorithm 1 Perceptron Forced-Decoding

Input: Observation pair (x;,y;) and a weight vector w.

1: m; < length(x;), and n; < length(y;),
2: Dim,n] «— —ocofor0 <m <m;and0 <n < n;
3: D[0,0] — 0
4. for m = 1tom; do
5: for n = 1ton; do
6: for each (m’,n — 1) € Predecessors(m,n) do
7: ® — create-features(X; m, Yin, m,n,m’)
8: if Dim’,n — 1] + wT® > D[m, n] then
9: Dim,n] « D[m/,n —1]+w'®
10: Backpointers[m, n] «— m’
11: hforeed  Backtrack(D, Backpointers)

12: Return hforeed

Next, we decode both the highest scoring align-
ment h; and video sequence ¥;, given the protocol
x; and the number of video chunks 7;.

fliv yl = arg HﬁaX WT@(XD Y, h) (7)

Y
We refer to this step as Full Decoding (Algorithm 2).
The dynamic programming is similar to that for
forced decoding, except that we need to find the best
set of blobs given a set of nouns, for every protocol
sentence X ,,:

B[m| = argmax wg;@co(Xiym, S) )
SepP



where P is the pruned set of blobs and
®co(Xim,S) is a vector containing only the
co-occurrence features, and w,, contains their
corresponding weights. The detailed algorithm is
described in Algorithm 2. Finally, we update the
weight vector w:

w(new) _ W(Old)—i—@(xi, Vi, hforced)_q)(xi’ Vi, flz)

Algorithm 2 Perceptron Full Decoding

Input: Input protocol x;, set of all blobs Vy-, number of video
chunks n;, weight vector w.

I: «— length(x;)

2: Dim,n] — —cofor0 <m <m;and 0 < n < n;

3: Bim] «— 0for0 <m <m,

4: D[0,0] <0

5: P—{S:5CW,|S] <3,5#0} // precompute the
pruned list of subsets of blobs

6: for m = 1tom; do

7: B[m] « argmaxsep W ®co(Xim, S)

8: for n = 1ton; do

9: for each (m',n — 1) € Predecessors(m, n) do

10: ® — create-features(X; m, B[m], m,n,m’)

11: if Dm’,n — 1] + w'® > D[m, n] then

12: D[m,n] «— D[m/,n — 1]+ w’®

13: Backpointer[m, n] < m’

14: h — Backtrack(D Backpomter%)

15: 95 — [Blhidl;. ., Blhin, ]

16: Return hz, yL

4.3 Constrained Decoding

During the full decoding of (h,¥;), we have no in-
formation regarding how many video chunks to as-
sign to each sentence. As a result, the full decoding
is unlikely to predict the correct video sequence, no
matter how many training iterations performed. In
practice, the unconstrained full decoding often ends
up aligning too many video chunks to one of the pro-
tocol sentences.

To address this problem, we modified the per-
ceptron update rule. Instead of performing uncon-
strained full decoding, we constrain the alignment
h; to be same as the forced alignment h¢¢?_ and
infer the best sequence of video chunks yc"mt’" un-
der this constraint:

~ Constr

F d
¢ hforce )

= argmaxw’ ®(x;,y,
y

We refer to this decoding step as “constrained de-
coding” (Algorithm 3), and refer to this constrained
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LSP variant as LSP-C. The modified weight update
rule is:

W(new) —

W(old) + {)(Xiv i, hForced) .

'I)(XZ, yConstr hForced)

Algorithm 3 Perceptron Constrained-Decoding

Input: Input protocol x;, set of all blobs Vy-, number of video
chunks n;, forced alignment hi"°m¢¢?, weight vector w.
I: P—{S:5CW,|S|<3,5 #0}
2: forn =1ton; do

3- m «— hfo'r'ced [TL}
4 Yiconstr «— arg maxsep WCO<I>CO( imyS)
5: Return S,CUTL&tT _ [Yi,Cionstv' ) YLC;LU:L&t’!]

4.4 Latent Structured SVM

Structured SVM can be formulated by extending
structured perceptron with two simple modifica-
tions: (1) incorporating a large-margin regulariza-
tion term, and (2) incorporating a general loss func-
tion, instead of the zero-one loss of perceptron. The
regularization reduces overfitting by keeping feature
weights relatively small. Let the loss-augmented full
decoding be:

(i i) = arg Ig}ahXWT‘I’(Xz” y,h) + Li(y,h),
where £;(y, h) is the loss function for the i’ obser-

vation. LSSVM minimizes the following objective
function:

)+£ (¥is Z)

XzaYza

1 N
W=
T Forced A 2
w ®(x;,y;, h; ) +§||w|| )

which is non-convex and non-differentiable, and op-
timized utilizing the subgradient method (Ratliff et
al., 2007). We perform online learning, and the sub-
gradient in each iteration is:

@(Xia yiv 1:12) -

9i (W) = (I)(Xi’ Yi, thO’rced) + Aw.

Similar to LSP-C, we can obtain a constrained vari-
ant LSSVM-C, by replacing loss-augmented decod-
ing with a constrained variant, where we fix h; to
forced alignment hforeed,



4.5 Latent Variables to Map Blobs to Nouns

Given a sentence X ,, and a video segment Y; ,,,, we
further introduce additional latent variables to map
each blob in Y; ,, to one of the nouns in X ,,. These
latent variables are similar to the IBM Model 1 la-
tent variables of Naim et al. (2014). Instead of turn-
ing on the (noun, blob) co-occurrence feature for ev-
ery noun and blob in X ;, and Yj ,,,, the latent vari-
ables map each blob to one of the nouns only. For
LCREF, we sum over all the latent variables for esti-
mating the expectations. For LSP and LSSVM, the
(noun,blob) feature with maximum feature weight
triggers for each blob.

5 Feature Design

The features used in our discriminative models can
be grouped in two categories: (1) co-occurrence
features, and (2) alignment path features. The co-
occurrence features depend only on a protocol sen-
tence and the video segment it aligns to. The align-
ment path features, on the other hand, do not depend
on the co-occurrence of sentence and video segment,
and instead capture general alignment properties,
e.g., jump size and the distance of an alignment state
from the diagonal.

5.1 Co-occurrence Features

The co-occurrence features included in our experi-
ments are:

e Co-occurrence of Nouns and Blobs: For each
noun in the input protocols and each blob in the
videos, we add a boolean feature (noun, blob),
which is turned on if we align a sentence con-
taining that noun with a video segment contain-
ing that blob.

o Co-occurrence of Verbs and Blobs: For each
verb in the input protocols and each blob in
the videos, we add a boolean feature. This fea-
ture captures the observation that certain verbs
are more likely to occur with certain objects
(e.g., ‘write’ co-occurs with ‘pen’, ‘aspirate’
co-occurs with ‘pipette’).

We experimented with co-occurrence features of
the form: (noun, verb, blob) triplets. However, in-
cluding these features did not provide any noticeable
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gain, while significantly increasing the computation
time, as the number of features increased drastically.
Therefore, we did not include these features in our
final experiments.

5.2 Alignment Path Features

Alignment path features depend on the current align-
ment state h[n] = m, and the previous alignment
states h[n — 1] = m/. These features do not depend
on the nouns and verbs in the sentences and the blobs
in the video segments. We used the following align-
ment path features:

e Jump Size: Since we allow monotonic jumps
only, the jump sizes can be either zero or one.
Therefore, we added two features for these two
jump sizes.

e Positional Features: we added positional fea-
tures (Dyer et al., 2011) to discourage align-
ment states that are too far from the diago-
nal. For each alignment state (m,n), we es-
timate normalized distance from the diagonal
as \mﬂz — |- Again we used boolean features
by assigning this normalized distance to five

equally spaced bins.

The alignment features are not updated by the LSP-
C and LSSVM-C methods, as they assume hf orced
and h; to be identical.

6 Results

Our dataset contains 12 wetlab experiment videos,
for 3 different protocols (4 videos per protocol).
Each protocol contains natural language instructions
for an actual biological experiment. On average,
each protocol has 9 steps, and 24 sentences. The
videos are recorded using an RGB-D Kinect camera,
in a mock wetlab setup. The average video length is
~ 5 minutes. There are 34 unique nouns and 25
unique verbs in the protocols, and 22 distinct blobs
in the videos.

We follow the same data pre-processing technique
as described by Naim et al. (2014). The num-
ber of blobs is assumed to be known apriori. We
oversegment each frame into many superpixels us-
ing the SLIC Superpixels algorithm (Achanta et al.,
2012). We combine multiple adjacent superpixels
into a blob, based on a pre-trained Gaussian mixture



Average Alignment Accuracy (%)

Dataset LAMM | LCRF | LSP | LSP-C | LSP-H | LSSVM | LSSVM-C | LSSVM-H
Manual-Tracking [| 75.58 | 85.09 [ 79.64 | 80.68 | 80.41 | 79.64 80.68 80.41
[ Auto-Tracking [ 64.04 [ 6559 [ 6199 | 63.95 [ 6527 | 6199 [ 6395 [ 6527 |

Table 1: Alignment accuracy (% of video chunks aligned to the correct protocol step) for both manual and automatic
tracking data. LHMM is the existing state-of-the-art generative model. For the variants of latent perceptron (LSP) and
latent structured SVM (LSSVM), “C” indicates constrained decoding, and “H” indicates hybrid update.

color model and their boundary maps (Luo and Guo,
2003), and track each blob using a 3D Kalman filter.
In order to isolate alignment error from computer
vision tracking and segmentation error, we manu-
ally tracked and annotated each of the video seg-
ments with the set of blobs touched by hands us-
ing the video annotation tool Anvil (Kipp, 2012).
The alignment accuracies are reported both for the
manual and automated tracking datasets. Parsing er-
ror is relatively small. The Charniak-Johnson parser
correctly identified the nouns and verbs for most
sentences, except for several single-word imperative
sentences (e.g., Mix.), for which the verbs were mis-
takenly parsed as nouns.

We experimented with the latent CRF (LCRF),
latent perceptron (LSP) and its constrained vari-
ant (LSP-C), and latent SVM (LSSVM) and its
constrained variant (LSSVM-C). Furthermore, we
tried two hybrid variants LSP-H and LSSVM-H,
where we started with constrained decoding, and
later switched to full decoding. We experimented
by incorporating additional latent variables for Blob-
to-Noun mapping (Section 4.5), which significantly
improved alignment accuracy for LCREF, but de-
creased accuracy for LSP and LSSVM and their
variants. We report the best result for each model.
The discriminative algorithms are compared with
the state-of-the-art LHMM model (Naim et al.,
2014), which is a generative HMM with latent vari-
ables for blob-to-noun mapping and the observation
states of each noun.

We initialized the weights for co-occurrence and
jump size features to the log-probabilities learned by
the generative HMM model. All the other features
are initialized to zero. For both LHMM and the
discriminative models, we used monotonic jumps
as they performed better than the non-monotonic
jumps. We used the same learning rate = 2001

Vit
(where t is the iteration number) for all the discrim-
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inative models, and the LSSVM regularization con-
stant A = 0.001. All the Perceprton and SVM vari-
ants performed “weight averaging” (Collins, 2002).
The number of iterations are set to 100 for all the
algorithms.

Table 1 shows that the discriminative models, es-
pecially LCRF and LSP-H/LSSVM-H, outperform
the generative model LHMM both on the manual-
tracking and auto-tracking datasets. For the manual-
tracking dataset, the difference between LHMM and
each of the discriminative models is statistically sig-
nificant (p-value < 0.0001). On the auto-tracking
dataset, however, the differences are not significant
(p-value > 0.1). Table 2 shows an example of an
alignment obtained by LCRF for a short segment of
a manually tracked video.

The average running time for each iteration per
video is 0.8 seconds for LHMM, 1.1 seconds for
LSP and LSSVM, and 2.5 seconds for LCRF on a
2.9 GHz Intel Core-i7 processor and 8GB RAM.

7 Discussions and Future Work

The results show that discriminative methods out-
perform the generative LHMM model on both the
manual and auto-tracking datasets. We achieved
the best overall accuracy using the LCRF model.
LCREF takes expectations over all possible alignment
states and video sequences. On the other hand, LSP
and LSSVM consider the highest scoring predic-
tion only, which is similar to the hard-decision de-
coding. With no information regarding how many
video segments to align to each sentence, LSP and
LSSVM could not correctly predict the output video
sequences during full decoding, and the weight vec-
tors did not converge. By constraining the alignment
to the forced alignment, we avoid aggressive up-
dates, which may have helped LSP-C and LSSVM-
C to learn better alignments. However, constrained
decoding has a limitation that it can not update align-



H Start (s) [ End (s) [ Blobs in Hands | Detected Nouns

Detected Verbs

Protocol Sentence H

40.58 42.58 boat boat, scale place place the plastic boat on the scale .

42.58 42.90 boat scale zero the scale .

42.90 48.48 base spatula, base, boat | measure using the spatula , measure 20 g of Ib broth base
into the plastic boat .

48.48 58.95 base, spatula spatula, base, boat | measure using the spatula , measure 20 g of 1b broth base
into the plastic boat .

58.95 65.93 base spatula, base, boat | measure using the spatula , measure 20 g of 1b broth base
into the plastic boat .

65.93 80.90 boat, bottle base, bottle pour pour the Ib broth base into the 1000 ml bottle .

83.80 84.80 water water add add 800 ml of di water .

84.80 88.95 water water, sink use use the di water near the sink .

88.95 96.68 water, bottle water, sink use use the di water near the sink .

96.68 104.67 | water mix mix .

108.15 118.12 bottle cap, bottle, water put, shake, mix | puta cap on the bottle and shake to mix
the dry ingredients with the water .

Table 2: An example of an alignment, obtained for a part of a manually tracked video. We notice several incorrect
parses, e.g., the verbs “mix” and “zero” were not detected correctly.

ment path features. LCRF sums over all possible
output and latent variables, which includes the cor-
rect solution, and hence constrained decoding is not
necessary. While the latent variables for blob-to-
noun mappings improved the alignment accuracy for
LCRE, it did not improve alignment accuracy for
LSP and LSSVM and their variants, presumably be-
cause of their hard-decision decoding approach.

Among the different variants of LSP and LSSVM,
we obtained the best accuracy with the hybrid vari-
ants (LSP-H and LSSVM-H), where we started with
constrained decoding, and then switched to standard
updates. While these hybird approaches provided
better accuracy, they still suffer from the issue of not
converging. The feature weights learned by LSSVM
and its variants were smaller than that for LSP (due
to regularization). However, they always resulted in
the same forced decoding alignments in our experi-
ments, and obtained same alignment accuracy.

Unlike the previous models, we considered the
co-occurrences of verbs with blobs in the video. The
highest weighted features include: (write, pen), (as-
pirate, pipette), which agree with our intuition. Our
immediate next step will be to automatically learn
a dictionary of hand motion patterns, and consider
the co-occurrence of these patterns with verbs in the
sentences. Some of the objects in our video are small
and thin (e.g., pen, pipette, spatula, plastic boat), and
were not reliably detected by the computer vision
segmentation and tracking system. This may be the
reason why we achieved relatively smaller improve-
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ments on the auto-tracking dataset.

Our alignment models are different from the tra-
ditional discriminative approaches in that our cost
function is not same as our evaluation criteria. Al-
though our goal is to improve alignment accuracy,
the objective function that we minimize is either the
negative conditional log-likelihood (LCRF) or the
number of mis-predicted video segments (LSSVM).
Since the ground truth alignments are unknown, we
could not integrate alignment error in our objective
function. The proposed discriminative models out-
perform LHMM despite the fact that the discrimi-
native models are simpler — lacking latent variables
for the observation states of nouns. The alignment
accuracy of the discriminative models is expected to
improve even further once these latent variables are
incorporated.

8 Conclusion

We proposed three discriminative unsupervised
alignment algorithms and their novel variants us-
ing constrained decoding. The proposed algorithms
incorporate overlapping features to capture the co-
occurrences of nouns and verbs with video blobs,
and outperform the state-of-the-art latent HMM
model via discriminative training.
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