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Abstract

In this paper, a Maximum Entropy Markov
Model (MEMM) for dialog state tracking
is proposed to efficiently handle user goal
evolvement in two steps. The system first
predicts the occurrence of a user goal change
based on linguistic features and dialog context
for each dialog turn, and then the proposed
model could utilize this user goal change in-
formation to infer the most probable dialog
state sequence which underlies the evolve-
ment of user goal during the dialog. It is
believed that with the suggested various do-
main independent feature functions, the pro-
posed model could better exploit not only the
intra-dependencies within long ASR N-best
lists but also the inter-dependencies of the ob-
servations across dialog turns, which leads to
more efficient and accurate dialog state infer-
ence.

1 Introduction

The ability to converse with humans is usually con-
sidered the most important characteristic which de-
fines the intelligent nature of a machine. In recent
years, advanced approaches for handling different
components within a spoken dialogue system have
been proposed and studied. Both statistical infer-
ence methods for dialog state tracking and machine
learning techniques (such as reinforcement learning)
for automatic policy optimization are active domains
of research, which implies that there are still many
open challenges in this field that are worth being ex-
plored. One of such challenges is how to better ex-
ploit the ASR (Automatic Speech Recognition) N-
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best list when the top ASR hypothesis is incorrect.
Furthermore, reasoning over different ASR N-best
lists is also difficult since it is hard to decide when
to detect commonality (when user repeats) and when
to look for differences (when user changes her or his
mind) among multiple ASR N-best lists. Another
challenge is how to handle more complex user ac-
tions such as negotiating alternative choices or seek-
ing out other potential solutions when interacting
with the system.

This proposal presents a probabilistic framework
for modeling the evolvement of user goal during the
dialog (focusing on the shaded component Dialog
State Tracking in Figure 1 that shows a typical di-
agram for a spoken dialog system), which aims to
endow the system with the ability to model natural
negotiation strategies, in the hope of leading to more
accurate and efficient dialog state tracking perfor-
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2 Unanswered Challenges for Spoken
Dialog Systems

Due to the inevitable erroneous hypotheses made by
the speech recognizer as well as the ubiquitous am-
biguity existing in the natural language understand-
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ing process, it is impossible for a spoken dialog sys-
tem to observe the true user goal directly. Therefore,
methods to efficiently infer the true hidden dialog
states from noisy observations over multiple dialog
turns become crucial for building a robust spoken
dialog system.

The POMDP (Partially Observable Markov De-
cision Process) framework has been proposed to
maintain multiple dialog state hypotheses under
uncertainty with automated dialog policy learn-
ing (Williams and Young, 2007; Henderson et
al., 2008; Thomson and Young, 2010; Young et
al., 2010). Although the original POMDP frame-
work suffers difficulties of scaling up the model to
handle real-world domains in practice, it provides
a unified statistical framework for existing tech-
niques with global optimization. Partition-based ap-
proaches (Gasi¢ and Young, 2011; Williams, 2010;
Young et al., 2010) attempt to group user goals into
a number of partitions and won’t split a partition un-
less when a distinction is required by observations.
Due to this property, partition-based methods could
have high scalability for more complex practical do-
mains.

Bayesian network based approximate methods
also emerged to tackle the complexity of represent-
ing and tracking multiple dialog states within proba-
bilistic frameworks (Raux and Ma, 2011; Thomson
and Young, 2010). In previous work, we presented
a new probabilistic model — DPOT (Dynamic Prob-
abilistic Ontology Trees) — to track dialog state in a
spoken dialog system (Raux and Ma, 2011). DPOT
captures both the user goal and the history of user di-
alog acts (user actions) using a unified Bayesian net-
work. Efficient inference (a form of blocked Gibbs
sampling) is performed to exploit the structure of
the model. Evaluation on a corpus of dialogs from
the CMU Let’s Go system shows that DPOT signif-
icantly outperforms a deterministic baseline by ex-
ploiting long ASR N-best lists without loss of ac-
curacy. At any point in the dialog, the joint distri-
bution over the goal network represents the inferred
dialog state about the user goal.! The goal network
of DPOT does not expand per time slice for each
turn but the evidence accumulates as the dialog pro-

'In the Let’s Go bus information system, a user goal is de-
composed into three concepts: Bus (the bus number), Orig
(the origin stop) and De st (the destination stop).

92

gresses. Therefore the model becomes inefficient
when users change their mind — user has to repeat
multiple times in order to possibly trigger a goal
change in the inferred dialog state.

System: How can | help you?

User: | would like a flight from Columbus to San Francisco.

System: | hear you say you want a flight from Columbus to
San Francisco, is that correct?

User:  Yes.

System: OK, at what time?

User:  Saturday morning.

System: Leaving on Saturday morning. Searching available flights...
[some time later] | have found one flight from CMH to SFO
leaving at 7am on Saturday morning. Do you want me to
print out itinerary, make flight reservation or hear more
information about the flight?

User:  How about Sunday morning?

System: Sorry | am afraid | didn't catch that.

You can say print itinerary, book flight or more information.

None of them.

Do you have any flights leaving on Sunday morning instead?

System: Sorry, what can | do for you?

[system reset itself for a new dialog to recover from the failure]

User:

User:

Figure 2: Example of user goal change: at the end of the
dialog the user would like to explore alternative flights at
a different time, but the dialog system did not expect such
a user action, leading to a system failure

Current approaches often assume that user would
have a fixed goal in his or her mind before convers-
ing with the system and this single goal remains un-
changed throughout the dialog. However, the key
question we would like to raise here is that whether
the assumption that a user would not change her or
his mind during the dialog is reasonable or not in
the first place.” Figure 2 shows an example where
user goal evolves as the dialog moves on. In this ex-
ample, the system did not catch the partial change
of user goal and failed to return alternative answers
given a new request from the user — now the fixed
goal assumption has been challenged. Moreover,
sometimes people do not even have a clear goal in
their minds before they start speaking to the system
(e.g., a user might want a flight from Columbus to
San Francisco during the coming weekend, but the
exact departure date depends on user’s schedule as
well as the price of the ticket.). From the example
dialog shown in Figure 2, clearly it can be noticed
that there are some useful hints or linguistic patterns
— such as How about ...7 and ... instead? — which
could be extracted from the user’s spoken language

21t is true that for some simple domains such as luggage re-
trieval or call routing, users are less likely to change their mind.



as predictors for potential user goal change. We can
then further use this predicted information (user goal
changed or not) to better infer the true user goal and
prevent a system failure or start over. In fact, it is
this intuition that forms the basis of the proposed
methods.

However, existing methods heavily rely on the as-
sumption that user won’t change her or his mind
throughout the dialog. In order to keep the compu-
tations tractable in practice, POMDP-based methods
often assume that user goal does not change during
the dialog (Young et al., 2010). Moreover, within
the POMDP framework there is a user action model
which would suppress the weights of conflict ob-
servations for those slots which have already been
filled — the intuition is that if a value for a certain
slot has already been provided or observed, it is
less likely that a new value will be provided again
(based on the assumption of fixed user goal) and it
is more likely to be a speech recognition error in-
stead (Williams and Young, 2007). Furthermore,
one of the claimed benefit for existing statistical di-
alog state inference methods is the ability to exploit
the information lower down from ASR N-best lists
by aggregating weak information across multiple di-
alog turns — the intuition is that overlapped consis-
tent weak evidence is sometimes a useful hint for
predicting the underlying true user goal (as illus-
trated in Figure 3) — again it implies that the user
would repeatedly refine the same goal until the ma-
chine gets it.

AUSTIN 0.40 MADISON 0.37

BOSTON 0.35 BOSTON 0.35

OTHER 0.25 OTHER 0.28
Turn 1 Turn 2

User: | want to go to Boston. User: | said Boston.

Figure 3: Given the fact that user action BOSTON has
been repeatedly observed as DEPARTURE_CITY across
the first two turns — although not at the top position of the
ASR N-best list — existing statistical dialog state tracking
algorithms would capture this pattern and put a strong
bias on BOSTON as the inferred user goal.

It is true that putting such a constraint — assum-
ing a fixed user goal during the dialog — simplifies
the computational complexity, it also sacrifices the
flexibility and usability of a spoken dialog system.
Although one could think of some hand-crafted and
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ad-hoc rules such as explicit or implicit confirma-
tion/disconfirmation to deal with sudden user goal
changes during a dialog, it increases the number of
dialog turns and makes the dialog system less natu-
ral and user friendly.

3 Spoken Dialog State Tracking with
Explicit Model of User Goal Change

3.1 BuildByVoice Domain

In fact, there are many situations where frequent
user goal changes would be highly expected (i.e. the
user might try to negotiate with the system). These
domains might include but not limited to finding
nearby restaurants or hotels, searching for movies
to watch, ordering food or online shopping, etc., in
which users are very likely to explore different alter-
natives and their goals would probably change fre-
quently as the dialog progresses.

Figure 4: An experimental web interface prototype for
BuildByVoice — a spoken dialog system aimed to assist
potential car buyers to customize a car by voice

Considering one typical example among those do-
mains — a spoken interactive system which could al-
low a user to configure a new car by speech (a pro-
totype web interface of the BuildByVoice system is
shown in Figure 4) — one could imagine the user
would tend to experiment many possible combina-
tions of different configurations for a car. Indeed
that is the purpose of having such a system so that
users could preview the resulting effect before a real
car is made. A BuildByVoice domain may consist of

3 A baseline BuildByVoice system by using DPOT for dialog
state tracking (without user goal change detection) is under im-
plementation. The baseline system will be deployed to Amazon
Mechanical Turk for initial data collection.



the following five independent concepts with their
possible values listed as follows:*

Model: Accord Coupe,

Accord Plug-In,
5

Accord Sedan,
Civic Coupe,
Civic Sedan,...

Engine: v4, V4 Turbo, V4 Sport, V6, V6
Turbo, V6 Sport,...

Exterior Color: Toffee Brown, Coffee
Brown, Candy Brown, Night Blue,
Moonlight Blue,Midnight Bluse,...

Black
Gray Vinyl,

Interior Color: Black Leather,
Vinyl, Gray Leather,
Brown Leather,Brown Vinyl,...

Wheels: 17 inches Steel, 17 inches
Alloy, 18 inches Steel, 18 inches
Alloy, 18 inches Polished Alloy,

In (Ammicht et al., 2007), the semantic represen-
tation of a spoken dialog system is augmented with
a dynamic parameter that determines the evolution
of a concept-value pair over time, which could be
considered as early attempts for coping with user
goal changes. However, the determined dynamic
confidence score is used to make a hard choice
for the candidate semantic values, i.e., determin-
ing the birth and death of the observed concept-
value pairs. Thomson and Young (2010) intro-
duced a new POMDP-based framework for building
spoken dialog systems by using Bayesian updates
of dialog state (BUDS). It accommodates for user
goal changes by using a dynamic Bayesian network,
but BUDS is generative rather than a discriminative
model. Therefore it lacks the flexibility of incor-
porating all kinds of overlapping features — one of
the advantages discriminative models have. Further-
more, BUDS assumes limited changes in the user
goal in order to gain further efficiency. More re-
cently, GaSi¢ and Young (2011) introduces the ex-
plicit representation of complements in partitions
which enables negotiation-type dialogs when user

*More concepts could also be included such as Accessories
or MPG Level, but only these five concepts are picked for
demonstration purpose.

SHere Honda car models are used as an example.
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goal evolves during the dialog. However, the explicit
representation of complements is used to provide ex-
istential and universal quantifiers in the system’s re-
sponse.® Also a special pruning technique is needed
in their approach to ensure the number of partitions
doesn’t grow exponentially.

Therefore, new approaches for recognizing the
event of user goal change and utilizing the goal
change information to better infer dialog states have
been proposed in the following two subsections 3.2
and 3.3.

3.2 Dialog State Tracking with Detected User
Goal Change

Dialog state tracking is usually considered as the
core component of a spoken dialog system where di-
alog manager uses the inferred dialog states to gen-
erate system responses (normally through a learned
or hand-crafted policy mapping from dialog states to
system actions). A specialized version of Maximum
Entropy Markov Model with user goal change vari-
able is proposed for dialog state tracking.” The most
probable dialog state sequence as well as the most
likely dialog state value for the latest turn can be in-
ferred given the model. Figure 5 illustrates how the
proposed model could infer dialog states of a sin-
gle concept Exterior Color for a dialog of four user
turns where the user changes her or his mind at the
third dialog turn.®

For traditional dialog state tracking methods with-
out user goal change model, the system would be
quite confused by completely conflicting observed
user actions starting from the third dialog turn. How-
ever, the proposed MEMM with user goal change
detection could notice that the user has already
changed her or his mind. Therefore the proposed
model would not only trust more on the observed
user actions for the current dialog turn, but also fa-
vor those transitions which lead to a different state
value by increasing corresponding transition proba-
bilities.

SE.g., “Charlie Chan is the only Chinese restaurant in the
center.” or “All Chinese restaurants are in the center.”

"Methods for detecting user goal change are described in
Section 3.3.

8We assume every concept in the domain is mutually inde-

pendent with each other and we model the user goal change
separately for each concept.



Coffee Brown
Candy Brown
Toffee Brown

Coffee Brown
Candy Brown
Toffee Brown

Toffee Brown 40
Coffee Brown 35
Candy Brown 30

Candy Brown 50
Coffee Brown 40
Cocoa Brown 25

Turn 1
User: Coffee Brown.

Turn 2

Moonlight Blue
Midnight Blue
Night Blue

Night Blue 60
Moonlight Blue 40
Midnight Blue 35

Turn 3
User: | want Coffee Brown. User: How about Moonlight Blue?  User: Try Moonlight Blue.

Moonlight Blue
Midnight Blue
Night Blue

Midnight Blue 45
Moonlight Blue 40
Light Blue 30

Turn 4

Figure 5: MEMM for dialog state tracking with explicit user goal change variable. A single concept Exterior Color
from BuildByVoice domain is tracked by the model. The shaded nodes are observed user actions and the white nodes
are hidden dialog states. The bold text in the observed nodes indicates the true user actions whereas the bold text in
the hidden states shows the true dialog state sequence (in this case it is also the most probable decoded dialog state

path inferred by the model).

A more formal description of the proposed
MEMM is given as follows. The observations o,
(shaded nodes) consist of N-best lists of semantic
speech hypotheses (or dialog acts) with confidence
scores (scale from O to 100) for the current dialog
turn hyp; and previous turn hyp;_; as well as the
binary goal change variable gc; for the current turn
— essentially a context window of speech hypotheses
including history:

o = {hypt—la hypt, gCt}

Typically the semantic speech hypotheses hyp; are
extracted concept-value pairs out of ASR results by
using a semantic tagger (such as an FST (Finite State
Transducer) parser or a segment-based semi-Markov
CRF semantic labeler (Liu et al., 2012)). The hid-
den dialog state ¢; (white nodes) represents the user
goal for dialog turn ¢ (such as a particular color
Moonlight Blue for Exterior Color at time ¢).
The individual probability of a transition from a state
qi—1 to a state ¢; producing an observation oy is in a
form of the following:

eXp(ZZ:l wkfk(qt—la qt, Ot))
Z (0, q1—1)

Given labeled sequences of true dialog states (true
user goal) for each turn, the corresponding obser-
vations and designed feature functions, we want to

P(gtlgi—1,01) =
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learn a set of weights w;, to optimize the discrimina-
tion among competing state values given the train-
ing data. In other words, the learning procedure in-
volves searching in parameter space to maximize the
following conditional likelihood:

gl exp(D_p_y Wi fr(Git—1,Git, 0it))
P(Q‘O) ;tl_[l (Ozt7Q7,,t—1)
where NNV is the number of training dialogs. MEMM
can be trained with methods from the field of convex
optimization and Viterbi decoding algorithm could
be applied to MEMMs for inference (McCallum et
al., 2000).

The proposed feature functions are as follows.
The first feature function (1a) implies that if the user
goal is not changed, the system should look for the
common evidence across dialog turns.

1 if ge=0 &
vecommon(hyp—1, hypt)
0 otherwise

f(Qt = U7Ot) =
(la)

where common(hypi—1, hyp;) will return the over-
lapped values from the two N-best lists of dialog
acts hyp;—1 and hyp;. The second and third feature
functions ((1b) and (1c)) are basically saying that if a
user goal change has been detected, then we should
expect a different state value, otherwise we should



remain the same value from previous dialog turn.

1 if ge;=0 & u=v
f(%lZU,Qt:UaOt):{ 0 Jet

otherwise
(1b)
- _ [ 1 ifga=1& utv
flg—1=u,qe = v,00) = { 0 otherwise
(Ic)

The intuition behind the following four feature func-
tions (feature function (1d) to (1g)) is that if the user
changes her or his mind then the model should trust
more on the current observed user actions than those
from previous turn; but if the user does not change
her or his mind, we could then consider the observa-
tions from the past.

1 if ge;=0 & vehyp;_
f(qt = ’U,Ot) = { 0 gce v Ypt—1

otherwise
(1d)
B [ 1 ifgey=1& vehypi
flae =v,00) = { 0 otherwise
(le)
B [ 1 if gee=0 & vehyp;
flar =v,00) = { 0 otherwise (o
B [ 1 if ge=1& vehyp,
flae =v,0¢) = { 0 otherwise (e

The last two feature functions ((1h) and (11)) try
to incorporate information from confidence scores
— the higher the confidence score is, the more likely
the hypothesis is to be correct.

1 ifvehyp: &

flgg=v,01) = confidencey,,,, (v)>C
0 otherwise
(1h)
1 ifg=0&
veEhypi—1 &
flg=v,0) = Ypt—1

confidencey,,, | (v)>C

0 otherwise

(11)
where confidencey,,,, (v) returns the confidence
score for value v in the speech hypotheses N-best
list hyp; and C' is an empirical constant threshold
range between 0 to 100 obtained from the training
corpus.

3.3 User Goal Change Detection with
Linguistic Features and Dialog Context

In previous subsection 3.2, we assume we already
know whether or not user changes her or his mind
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at each dialog turn, whereas this subsection we dis-
cuss the possible approaches on how to detect a user
goal change. Detecting user goal changes during a
dialog could be cast as a binary classification prob-
lem where class 0 means no goal change and class 1
indicates user changes her or his mind during a dia-
log turn. Candidate machine learning algorithms in-
cluding MLP (Multi-layer Perceptron), SVM (Sup-
port Vector Machine) or Logistic Regression could
be applied to this binary classification problem in
a supervised manner. The input features might be
extracted from user utterance transcription’ and the
corresponding ASR N-best list for each dialog turn.
As mentioned in Section 2, the language patterns
found in the user utterances as presented in the ex-
ample dialog (shown in Figure 2) forms the intuition
for linguistic features to identify user goal change.
The dialog context such as last system action could
also be included as useful hint for predicting a po-
tential user goal change — user is likely to change
her or his goal if system returns empty results for a
request. Also other helpful features could include
bag of words model, n-grams, prosodic features
(e.g., a pitch change or initial pause) and parsed fea-
tures (e.g., WH questions). Baseline system such
as key word spotting based approach (i.e. look for
How/What about in a sentence) could also be imple-
mented for performance comparison.'?

4 Conclusion

By modeling the user goal change in a probabilistic
framework, the proposed approach should better ex-
ploit the mutual information buried deep in the ASR
N-best lists across dialog turns, which leads to more
robust and accurate dialog state estimation. With
the ability to predict and handle user goal change,
proposed techniques provide a bottom-up solution
for managing negotiation style dialogs and not only
should produce more efficient and natural conver-
sations but also open up new possibilities for auto-
mated negotiation dialog policy learning.

% At test time, this could be approximated by the top hypoth-
esis in the ASR N-best list.

10A detailed list of proposed features is omitted due to space
limit.
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