Learning Whom to Trust with MACE

Dirk Hovy' Taylor Berg-Kirkpatrick? Ashish Vaswani’ Eduard Hovy?
(1) Information Sciences Institute, University of Southern California, Marina del Rey
(2) Computer Science Division, University of California at Berkeley
(3) Language Technology Institute, Carnegie Mellon University, Pittsburgh
{dirkh, avaswani}@isi.edu, tberglcs.berkeley.edu, hovy@cmu.edu

Abstract

Non-expert annotation services like Amazon’s
Mechanical Turk (AMT) are cheap and fast
ways to evaluate systems and provide categor-
ical annotations for training data. Unfortu-
nately, some annotators choose bad labels in
order to maximize their pay. Manual iden-
tification is tedious, so we experiment with
an item-response model. It learns in an un-
supervised fashion to a) identify which an-
notators are trustworthy and b) predict the
correct underlying labels. We match perfor-
mance of more complex state-of-the-art sys-
tems and perform well even under adversarial
conditions. We show considerable improve-
ments over standard baselines, both for pre-
dicted label accuracy and trustworthiness es-
timates. The latter can be further improved
by introducing a prior on model parameters
and using Variational Bayes inference. Ad-
ditionally, we can achieve even higher accu-
racy by focusing on the instances our model is
most confident in (trading in some recall), and
by incorporating annotated control instances.
Our system, MACE (Multi-Annotator Compe-
tence Estimation), is available for download!.

1 Introduction

Amazon’s MechanicalTurk (AMT) is frequently
used to evaluate experiments and annotate data in
NLP (Callison-Burch et al., 2010; Callison-Burch
and Dredze, 2010; Jha et al.,, 2010; Zaidan and
Callison-Burch, 2011). However, some turkers try to
maximize their pay by supplying quick answers that
have nothing to do with the correct label. We refer to

! Available under http://www.isi.edu/
publications/licensed-sw/mace/index.html

1120

this type of annotator as a spammer. In order to mit-
igate the effect of spammers, researchers typically
collect multiple annotations of the same instance so
that they can, later, use de-noising methods to infer
the best label. The simplest approach is majority
voting, which weights all answers equally. Unfor-
tunately, it is easy for majority voting to go wrong.
A common and simple spammer strategy for cate-
gorical labeling tasks is to always choose the same
(often the first) label. When multiple spammers
follow this strategy, the majority can be incorrect.
While this specific scenario might seem simple to
correct for (remove annotators that always produce
the same label), the situation grows more tricky
when spammers do not annotate consistently, but in-
stead choose labels at random. A more sophisticated
approach than simple majority voting is required.

If we knew whom to trust, and when, we could
reconstruct the correct labels. Yet, the only way
to be sure we know whom to trust is if we knew
the correct labels ahead of time. To address this
circular problem, we build a generative model of the
annotation process that treats the correct labels as
latent variables. We then use unsupervised learning
to estimate parameters directly from redundant
annotations. This is a common approach in the
class of unsupervised models called item-response
models (Dawid and Skene, 1979; Whitehill et al.,
2009; Carpenter, 2008; Raykar and Yu, 2012).
While such models have been implemented in
other fields (e.g., vision), we are not aware of their
availability for NLP tasks (see also Section 6).

Our model includes a binary latent variable that
explicitly encodes if and when each annotator is
spamming, as well as parameters that model the
annotator’s specific spamming “strategy”. Impor-

Proceedings of NAACL-HLT 2013, pages 1120-1130,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics

tantly, the model assumes that labels produced by
an annotator when spamming are independent of
the true label (though, a spammer can still produce
the correct label by chance).

In experiments, our model effectively differenti-
ates dutiful annotators from spammers (Section 4),
and is able to reconstruct the correct label with high
accuracy (Section 5), even under extremely adver-
sarial conditions (Section 5.2). It does not require
any annotated instances, but is capable of including
varying levels of supervision via token constraints
(Section 5.2). We consistently outperform major-
ity voting, and achieve performance equal to that of
more complex state-of-the-art models. Additionally,
we find that thresholding based on the posterior la-
bel entropy can be used to trade off coverage for ac-
curacy in label reconstruction, giving considerable
gains (Section 5.1). In tasks where correct answers
are more important than answering every instance,
e.g., when constructing a new annotated corpus, this
feature is extremely valuable. Our contributions are:

e We demonstrate the effectiveness of our model

on real world AMT datasets, matching the ac-
curacy of more complex state-of-the-art sys-
tems

e We show how posterior entropy can be used to
trade some coverage for considerable gains in
accuracy

e We study how various factors affect perfor-
mance, including number of annotators, anno-
tator strategy, and available supervision

e We provide MACE (Multi-Annotator Compe-
tence Estimation), a Java-based implementa-
tion of a simple and scalable unsupervised
model that identifies malicious annotators and
predicts labels with high accuracy

2 Model

We keep our model as simple as possible so that it
can be effectively trained from data where annotator
quality is unknown. If the model has too many
parameters, unsupervised learning can easily pick
up on and exploit coincidental correlations in the
data. Thus, we make a modeling assumption that
keeps our parameterization simple. We assume that
an annotator always produces the correct label when

1121

N e

. s

Figure 1: Graphical model: Annotator j produces
label A;; on instance 7. Label choice depends on
instance’s true label 7;, and whether j is spam-
ming on 4, modeled by binary variable S;;. N =
linstances|, M = |annotators|.

fori=1...N:
T; ~ Uniform
foryj=1...M:
Sij ~ Bernoulli(1 — 6;)
if S =0:
Aij =T,
else :
A;; ~ Multinomial(&;)

Figure 2: Generative process: see text for descrip-
tion.

he tries to. While this assumption does not reflect
the reality of AMT, it allows us to focus the model’s
power where it’s important: explaining away labels
that are not correlated with the correct label.

Our model generates the observed annotations as
follows: First, for each instance i, we sample the
true label 7; from a uniform prior. Then, for each
annotator j we draw a binary variable S;; from a
Bernoulli distribution with parameter 1 — 6;. S;;
represents whether or not annotator j is spamming
on instance i. We assume that when an annotator
is not spamming on an instance, i.e. S;; = 0, he
just copies the true label to produce annotation A;;.
If S;; = 1, we say that the annotator is spamming
on the current instance, and A;; is sampled from
a multinomial with parameter vector §;. Note that
in this case the annotation A;; does not depend on
the true label T;. The annotations A;; are observed,

while the true labels T; and the spamming indicators
S;j are unobserved. The graphical model is shown
in Figure 1 and the generative process is described
in Figure 2.

The model parameters are 0; and &;. 6; specifies
the probability of trustworthiness for annotator j
(i.e. the probability that he is not spamming on
any given instance). The learned value of 0; will
prove useful later when we try to identify reliable
annotators (see Section 4). The vector &; determines
how annotator j behaves when he is spamming. An
annotator can produce the correct answer even while
spamming, but this can happen only by chance since
the annotator must use the same multinomial param-
eters §; across all instances. This means that we only
learn annotator biases that are not correlated with
the correct label, e.g., the strategy of the spammer
who always chooses a certain label. This contrasts
with previous work where additional parameters are
used to model the biases that even dutiful annotators
exhibit. Note that an annotator can also choose not
to answer, which we can naturally accommodate be-
cause the model is generative. We enhance our gen-
erative model by adding Beta and Dirichlet priors on
6; and ; respectively which allows us to incorporate
prior beliefs about our annotators (section 2.1).

2.1 Learning

We would like to set our model parameters to
maximize the probability of the observed data, i.e.,
the marginal data likelihood:

P(A;0,¢) =

M
SO [TI P - TT Psisi 03) - P(AG1S:, T)]
T,5 i=1 j=1
where A is the matrix of annotations, S is the
matrix of competence indicators, and 7' is the vector
of true labels.

We maximize the marginal data likelihood using
Expectation Maximization (EM) (Dempster et al.,
1977), which has successfully been applied to
similar problems (Dawid and Skene, 1979). We ini-
tialize EM randomly and run for 50 iterations. We
perform 100 random restarts, and keep the model
with the best marginal data likelihood. We smooth
the M-step by adding a fixed value ¢ to the fractional
counts before normalizing (Eisner, 2002). We find
that smoothing improves accuracy, but, overall,

. . . o 0.1
learning is robust to varying ¢, and set § = ——5-—.

1122

We observe, however, that the average annota-
tor proficiency is usually high, i.e., most annota-
tors answer correctly. The distribution learned by
EM, however, is fairly linear. To improve the cor-
relation between model estimates and true annotator
proficiency, we would like to add priors about the
annotator behavior into the model. A straightfor-
ward approach is to employ Bayesian inference with
Beta priors on the proficiency parameters, 0;. We
thus also implement Variational-Bayes (VB) train-
ing with symmetric Beta priors on ; and symmet-
ric Dirichlet priors on the strategy parameters, §;.
Setting the shape parameters of the Beta distribution
to 0.5 favors the extremes of the distribution, i.e.,
either an annotator tried to get the right answer, or
simply did not care, but (almost) nobody tried “a lit-
tle”. With VB training, we observe improved corre-
lations over all test sets with no loss in accuracy. The
hyper-parameters of the Dirichlet distribution on &;
were clamped to 10.0 for all our experiments with
VB training. Our implementation is similar to John-
son (2007), which the reader can refer to for details.

3 Experiments

We evaluate our method on existing annotated
datasets from various AMT tasks. However, we
also want to ensure that our model can handle
adversarial conditions. Since we have no control
over the factors in existing datasets, we create
synthetic data for this purpose.

3.1 Natural Data

In order to evaluate our model, we use the
datasets from (Snow et al., 2008) that use discrete
label values (some tasks used continuous values,
which we currently do not model). Since they
compared AMT annotations to experts, gold anno-
tations exist for these sets. We can thus evaluate
the accuracy of the model as well as the proficiency
of each annotator. We show results for word sense
disambiguation (WSD: 177 items, 34 annotators),
recognizing textual entailment (RTE: 800 items,
164 annotators), and recognizing temporal relation
(Temporal: 462 items, 76 annotators).

3.2 Synthetic Data
In addition to the datasets above, we generate
synthetic data in order to control for different

factors. This also allows us to create a gold standard
to which we can compare. We generate data sets
with 100 items, using two or four possible labels.

For each item, we generate answers from 20
different annotators. The “annotators” are functions
that return one of the available labels according
to some strategy. Better annotators have a smaller
chance of guessing at random.

For various reasons, usually not all annotators see
or answer all items. We thus remove a randomly
selected subset of answers such that each item is
only answered by 10 of the annotators. See Figure
3 for an example annotation of three items.

‘ annotators

1 -0 - - 0 -
0 - 10 - -0
- -0 -01 -0 -0

items
p—
|
|

Figure 3: Annotations: 10 annotators on three items,
labels {1, 0}, 5 annotations/item. Missing annota-
tions marked ‘-’

3.3 Evaluations

First, we want to know which annotators to trust.
We evaluate whether our model’s learned trustwor-
thiness parameters ¢; can be used to identify these
individuals (Section 4).

We then compare the label predicted by our model
and by majority voting to the correct label. The
results are reported as accuracy (Section 5). Since
our model computes posterior entropies for each
instance, we can use this as an approximation for the
model’s confidence in the prediction. If we focus on
predictions with high confidence (i.e., low entropy),
we hope to see better accuracy, even at the price of
leaving some items unanswered. We evaluate this
trade-off in Section 5.1. In addition, we investigate
the influence of the number of spammers and their
strategy on the accuracy of our model (Section 5.2).

4 Identifying Reliable Annotators

One of the distinguishing features of the model
is that it uses a parameter for each annotator to
estimate whether or not they are spamming. Can
we use this parameter to identify trustworthy indi-
viduals, to invite them for future tasks, and block
untrustworthy ones?

1123

RTE | Temporal | WSD

raw agreement 0.78 0.73 0.81

Cohen’s 0.70 0.80 0.13

G-index 0.76 0.73 0.81

MACE-EM 0.87 0.88 0.44

MACE-VB (9505 | 091 0.90 0.90
Table 1: Correlation with annotator proficiency:

Pearson p of different methods for various data sets.
MACE-VB’s trustworthiness parameter (trained
with Variational Bayes with & = 3 = 0.5) corre-
lates best with true annotator proficiency.

It is natural to apply some form of weighting.
One approach is to assume that reliable annotators
agree more with others than random annotators.
Inter-annotator agreement is thus a good candidate
to weigh the answers. There are various measures
for inter-annotator agreement.

Tratz and Hovy (2010) compute the average
agreement of each annotator and use it as a weight
to identify reliable ones. Raw agreement can be
directly computed from the data. It is related to
majority voting, since it will produce high scores for
all members of the majority class. Raw agreement
is thus a very simple measure.

In contrast, Cohen’s k corrects the agreement
between two annotators for chance agreement. It
is widely used for inter-annotator agreement in
annotation tasks. We also compute the « values
for each pair of annotators, and average them for
each annotator (similar to the approach in Tratz and
Hovy (2010)). However, whenever one label is more
prevalent (a common case in NLP tasks), x overesti-
mates the effect of chance agreement (Feinstein and
Cicchetti, 1990) and penalizes disproportionately.
The G-index (Gwet, 2008) corrects for the number
of labels rather than chance agreement.

We compare these measures to our learned trust-
worthiness parameters 6; in terms of their ability to
select reliable annotators. A better measure should
lend higher score to annotators who answer correctly
more often than others. We thus compare the ratings
of each measure to the true proficiency of each
annotator. This is the percentage of annotated items
the annotator answered correctly. Methods that can
identify reliable annotators should highly correlate

to the annotator’s proficiency. Since the methods
use different scales, we compute Pearson’s p for the
correlation coefficient, which is scale-invariant. The
correlation results are shown in Table 1.

The model’s 0; correlates much more strongly
with annotator proficiency than either x or raw
agreement. The variant trained with VB performs
consistently better than standard EM training, and
yields the best results. This show that our model
detects reliable annotators much better than any
of the other measures, which are only loosely
correlated to annotator proficiency.

The numbers for WSD also illustrate the low &
score resulting when all annotators (correctly) agree
on a small number of labels. However, all inter-
annotator agreement measures suffer from an even
more fundamental problem: removing/ignoring
annotators with low agreement will always improve
the overall score, irrespective of the quality of their
annotations. Worse, there is no natural stopping
point: deleting the most egregious outlier always
improves agreement, until we have only one anno-
tator with perfect agreement left (Hovy, 2010). In
contrast, MACE does not discard any annotators,
but weighs their contributions differently. We are
thus not losing information. This works well even
under adversarial conditions (see Section 5.2).

5 Recovering the Correct Answer

RTE | Temporal | WSD
majority 0.90 0.93 0.99
Raykar/Yu 2012 | 0.93 0.94 —
Carpenter 2008 | 0.93 — —
MACE-EM/VB | 0.93 0.94 0.99
MACE-EM@90 | 0.95 0.97 0.99
MACE-EM@75 | 0.95 0.97 1.0
MACE-VB@90 | 0.96 0.97 1.0
MACE-VB@75 | 0.98 0.98 1.0

Table 2: Accuracy of different methods on data sets
from (Snow et al., 2008). MACE-VB uses Varia-
tional Bayes training. Results @n use the n% items
the model is most confident in (Section 5.1). Results
below double line trade coverage for accuracy and
are thus not comparable to upper half.

The previous sections showed that our model reli-
ably identifies trustworthy annotators. However, we

1124

also want to find the most likely correct answer. Us-
ing majority voting often fails to find the correct la-
bel. This problem worsens when there are more than
two labels. We need to take relative majorities into
account or break ties when two or more labels re-
ceive the same number of votes. This is deeply un-
satisfying.

Figure 2 shows the accuracy of our model on
various data sets from Snow et al. (2008). The
model outperforms majority voting on both RTE
and Temporal recognition sets. It performs as well
as majority voting for the WSD task. This last set
is somewhat of an exception, though, since almost
all annotators are correct all the time, so majority
voting is trivially correct. Still, we need to ensure
that the model does not perform worse under such
conditions. The results for RTE and Temporal data
also rival those reported in Raykar and Yu (2012)
and Carpenter (2008), yet were achieved with a
much simpler model.

Carpenter (2008) models instance difficulty as
a parameter. While it seems intuitively useful to
model which items are harder than other, it increases
the parameter space more than our trustworthiness
variable. We achieve comparable performance with-
out modeling difficulty, which greatly simplifies
inference. The model of Raykar and Yu (2012) is
more similar to our approach, in that it does not
model item difficulty. However, it adds an extra step
that learns priors from the estimated parameters. In
our model, this is part of the training process. For
more details on both models, see Section 6.

5.1 Trading Coverage for Accuracy

Sometimes, we want to produce an answer for ev-
ery item (e.g., when evaluating a data set), and some-
times, we value good answers more than answering
all items (e.g., when developing an annotated
corpus). Jha et al. (2010) have demonstrated how to
achieve better coverage (i.e., answer more items) by
relaxing the majority voting constraints. Similarly,
we can improve accuracy if we only select high qual-
ity annotations, even if this incurs lower coverage.

We provide a parameter in MACE that allows
users to set a threshold for this trade-off: the
model only returns a label for an instance if it is
sufficiently confident in its answer. We approximate
the model’s confidence by the posterior entropy of

100

0.98

e
=]
=

accuracy
2

+—oMACE-EM
»—<MACE-VB

m—amajorily

o
©
N

0.90 RTE

0.5 0.6 0.7 0.8 0.9 1.0
coverage

100

0.98 -

0.96

0.94 -

0.92 -

0.90 +
Temporal

0.5 0.6 0.7 0.8 0.9 1.0
coverage

Figure 4: Tradeoff between coverage and accuracy for RTE (left) and temporal (right). Lower thresholds

lead to less coverage, but result in higher accuracy.

each instance. However, entropy depends strongly
on the specific makeup of the dataset (number of
annotators and labels, etc.), so it is hard for the user
to set a specific threshold.

Instead of requiring an exact entropy value, we
provide a simple thresholding between 0.0 and 1.0
(setting the threshold to 1.0 will include all items).
After training, MACE orders the posterior entropies
for all instances and selects the value that covers
the selected fraction of the instances. The threshold
thus roughly corresponds to coverage. It then only
returns answers for instances whose entropy is
below the threshold. This procedure is similar to
precision/recall curves.

Jha et al. (2010) showed the effect of varying the
relative majority required, i.e., requiring that at least
n out of 10 annotators have to agree to count an
item. We use that method as baseline comparison,
evaluating the effect on coverage and accuracy
when we vary n from 5 to 10.

Figure 4 shows the tradeoff between coverage
and accuracy for two data sets. Lower thresholds
produce more accurate answers, but result in lower
coverage, as some items are left blank. If we pro-
duce answers for all items, we achieve accuracies
of 0.93 for RTE and 0.94 for Temporal, but by
excluding just the 10% of items in which the model
is least confident, we achieve accuracies as high as
0.95 for RTE and 0.97 for Temporal. We omit the
results for WSD here, since there is little headroom
and they are thus not very informative. Using Varia-
tional Bayes inference consistently achieves higher

1125

results for the same coverage than the standard im-
plementation. Increasing the required majority also
improves accuracy, although not as much, and the
loss in coverage is larger and cannot be controlled.
In contrast, our method allows us to achieve better
accuracy at a smaller, controlled loss in coverage.

5.2 Influence of Strategy, Number of
Annotators, and Supervision

Adverse Strategy We showed that our model
recovers the correct answer with high accuracy.
However, to test whether this is just a function of
the annotator pool, we experiment with varying
the trustworthiness of the pool. If most annotators
answer correctly, majority voting is trivially correct,
as is our model. What happens, however, if more
and more annotators are unreliable? While some
agreement can arise from randomness, majority
voting is bound to become worse—can our model
overcome this problem? We set up a second set of
experiments to test this, using synthetic data. We
choose 20 annotators and vary the amount of good
annotators among them from 0 to 10 (after which
the trivial case sets in). We define a good annotator
as one who answers correctly 95% of the time.’
Adverse annotators select their answers randomly or
always choose a certain value (minimal annotators).
These are two frequent strategies of spammers.

For different numbers of labels and varying
percentage of spammers, we measure the accuracy

The best annotators on the Snow data sets actually found
the correct answer 100% of the time.

a) random annotators

2 values

0.8 1

o
o
.

accuracy

N
~
T
.

O'?OO 90 80 70 60 50
% of adverse annotators

4 values

0.8

o
o

accuracy

I
IS

e—eMACE-EM
~—~MACE-VB

s—amajority

0.2

0"f\OO 90 80 70 60 50
% of adverse annotators

b) minimal annotators

2 values

o
o
T

accuracy

I
>
T

0.2f

0'900 90 80 70 60 50
% of adverse annotators

10F

4 values

0.8

o
=Y

accuracy

o
s

0.2 -

905 50 30 70 50 50
% of adverse annotators

Figure 5: Influence of adverse annotator strategy on label accuracy (y-axis). Number of possible labels
varied between 2 (top row) and 4 (bottom row). Adverse annotators either choose at random (a) or always
select the first label (b). MACE needs fewer good annotators to recover the correct answer.

1.00 T T T T T T T T 1.00

1.000

0.95F

=3
©
=)

accuracy
o

0.75

0.70 n s L n L n n L 0.70

09951

0.990 -

+—oMACE-EM
»—~MACE-VB
B—mmajority

0.985

Temporal WSD
0.980

1 2 3 4 5 6 7 8 9 10 1 2 3 4

5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

number of annotators

Figure 6: Varying number of annotators: effect on prediction accuracy. Each point averaged over 10 runs.

Note different scale for WSD.

of our model and majority voting on 100 items,
averaged over 10 runs for each condition. Figure
5 shows the effect of annotator proficiency on both
majority voting and our method for both kinds of
spammers. Annotator pool strategy affects majority

voting more than our model. Even with few good
annotators, our model learns to dismiss the spam-
mers as noise. There is a noticeable point on each
graph where MACE diverges from the majority
voting line. It thus reaches good accuracy much

1126

faster than majority voting, i.e., with fewer good an-
notators. This divergence point happens earlier with
more label values when adverse annotators label
randomly. In general, random annotators are easier
to deal with than the ones always choosing the first
label. Note that in cases where we have a majority
of adversarial annotators, VB performs worse than
EM, since this condition violates the implicit as-
sumptions we encoded with the priors in VB. Under
these conditions, setting different priors to reflect
the annotator pool should improve performance.
Obviously, both of these pools are extremes: it is
unlikely to have so few good or so many malicious
annotators. Most pools will be somewhere in
between. It does show, however, that our model
can pick up on reliable annotators even under very
unfavorable conditions. The result has a practical
upshot: AMT allows us to require a minimum rating
for annotators to work on a task. Higher ratings
improve annotation quality, but delay completion,
since there are fewer annotators with high ratings.
The results in this section suggest that we can find
the correct answer even in annotator pools with low
overall proficiency. We can thus waive the rating
requirement and allow more annotators to work on
the task. This considerably speeds up completion.

Number of Annotators Figure 6 shows the effect
different numbers of annotators have on accuracy.
As we increase the number of annotators, MACE
and majority voting achieve better accuracy results.
We note that majority voting results level or even
drop when going from an odd to an even number.
In these cases, the new annotator does not improve
accuracy if it goes with the previous majority (i.e.,
going from 3:2 to 4:2), but can force an error when
going against the previous majority (i.e., from 3:2 to
3:3), by creating a tie. MACE-EM and MACE-VB
dominate majority voting for RTE and Temporal.
For WSD, the picture is less clear, where majority
voting dominates when there are fewer annotators.
Note that the differences are minute, though (within
1 percentage point). For very small pool sizes (< 3),
MACE-VB outperforms both other methods.

Amount of Supervision So far, we have treated
the task as completely unsupervised. MACE does
not require any expert annotations in order to
achieve high accuracy. However, we often have

1127

annotations for some of the items. These annotated
data points are usually used as control items (by
removing annotators that answer them incorrectly).
If such annotated data is available, we would like
to make use of it. We include an option that lets
users supply annotations for some of the items,
and use this information as token constraints in the
E-step of training. In those cases, the model does
not need to estimate the correct value, but only has
to adjust the trust parameter. This leads to improved
performance.’

We explore for RTE and Temporal how per-
formance changes when we vary the amount of
supervision in increments of 5%.* We average over
10 runs for each value of n, each time supplying an-
notations for a random set of n items. The baseline
uses the annotated label whenever supplied, other-
wise the majority vote, with ties split at random.

Figure 7 shows that, unsurprisingly, all methods
improve with additional supervision, ultimately
reaching perfect accuracy. However, MACE uses
the information more effectively, resulting in
higher accuracy for a given amount of supervision.
This gain is more pronounced when only little
supervision is available.

6 Related Research

Snow et al. (2008) and Sorokin and Forsyth
(2008) showed that Amazon’s MechanicalTurk use
in providing non-expert annotations for NLP tasks.
Various models have been proposed for predicting
correct annotations from noisy non-expert annota-
tions and for estimating annotator trustworthiness.
These models divide naturally into two categories:
those that use expert annotations for supervised
learning (Snow et al., 2008; Bian et al., 2009), and
completely unsupervised ones. Our method falls
into the latter category because it learns from the
redundant non-expert annotations themselves, and
makes no use of expertly annotated data.

Most previous work on unsupervised models
belongs to a class called “Item-response models”,
used in psychometrics. The approaches differ with
respect to which aspect of the annotation process

31f we had annotations for all items, accuracy would be per-
fect and require no training.

4Given the high accuracy for the WSD data set even in the
fully unsupervised case, we omit the results here.

1.00

0.981

accuracy
o
o
(2]
:

o

©

IS
T

0.92

0.90}

1.001

Temporal

0.98F

accuracy
o
o
=)

=
©
>

o—e MACE-EM
~—~MACE-VB
=—amajority

0.92f

0.90}

0.4 0.6 0.8 1.0
% of supervised data

0.0 0.2

0.4 0.6 0.8 1.0
% of supervised data

0.0 0.2

Figure 7: Varying the amount of supervision: effect on prediction accuracy. Each point averaged over 10

runs. MACE uses supervision more efficiently.

they choose to focus on, and the type of annotation
task they model. For example, many methods ex-
plicitly model annotator bias in addition to annotator
competence (Dawid and Skene, 1979; Smyth et al.,
1995). Our work models annotator bias, but only
when the annotator is suspected to be spamming.

Other methods focus modeling power on instance
difficulty to learn not only which annotators are
good, but which instances are hard (Carpenter,
2008; Whitehill et al., 2009). In machine vision,
several models have taken this further by parameter-
izing difficulty in terms of complex features defined
on each pairing of annotator and annotation instance
(Welinder et al., 2010; Yan et al., 2010). While
such features prove very useful in vision, they are
more difficult to define for the categorical problems
common to NLP. In addition, several methods are
specifically tailored to annotation tasks that involve
ranking (Steyvers et al., 2009; Lee et al., 2011),
which limits their applicability in NLP.

The method of Raykar and Yu (2012) is most
similar to ours. Their goal is to identify and filter
out annotators whose annotations are not correlated
with the gold label. They define a function of the
learned parameters that is useful for identifying
these spammers, and then use this function to build
a prior. In contrast, we use simple priors, but incor-
porate a model parameter that explicitly represents
the probability that an annotator is spamming. Our
simple model achieves the same accuracy on gold

1128

label predictions as theirs.

7 Conclusion

We provide a Java-based implementation, MACE,
that recovers correct labels with high accuracy, and
reliably identifies trustworthy annotators. In
addition, it provides a threshold to control the
accuracy/coverage trade-off and can be trained with
standard EM or Variational Bayes EM. MACE
works fully unsupervised, but can incorporate token
constraints via annotated control items. We show
that even small amounts help improve accuracy.

Our model focuses most of its modeling power
on learning trustworthiness parameters, which
are highly correlated with true annotator relia-
bility (Pearson p 0.9). We show on real-world
and synthetic data sets that our method is more
accurate than majority voting, even under ad-
versarial conditions, and as accurate as more
complex state-of-the-art systems. Focusing on high-
confidence instances improves accuracy consider-
ably. MACE is freely available for download under
http://www.isi.edu/publications/
licensed-sw/mace/index.html.

Acknowledgements

The authors would like to thank Chris Callison-
Burch, Victoria Fossum, Stephan Gouws, Marc
Schulder, Nathan Schneider, and Noah Smith for
invaluable discussions, as well as the reviewers for
their constructive feedback.

References

Jiang Bian, Yandong Liu, Ding Zhou, Eugene Agichtein,
and Hongyuan Zha. 2009. Learning to recognize re-
liable users and content in social media with coupled
mutual reinforcement. In Proceedings of the 18th in-
ternational conference on World wide web, pages 51—
60. ACM.

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pages 1-12, Los Angeles,
June. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 17-53, Uppsala, Sweden, July. Association for
Computational Linguistics.

Bob Carpenter. 2008. Multilevel Bayesian models of
categorical data annotation. Unpublished manuscript.

A. Philip Dawid and Allan M. Skene. 1979. Maximum
likelihood estimation of observer error-rates using the
EM algorithm. Applied Statistics, pages 20-28.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1-38.

Jason Eisner. 2002. An interactive spreadsheet for teach-
ing the forward-backward algorithm. In Proceed-
ings of the ACL-02 Workshop on Effective tools and
methodologies for teaching natural language process-
ing and computational linguistics-Volume 1, pages 10—
18. Association for Computational Linguistics.

Alvan R. Feinstein and Domenic V. Cicchetti. 1990.
High agreement but low kappa: 1. the problems of
two paradoxes. Journal of Clinical Epidemiology,
43(6):543-549.

Kilem Li Gwet. 2008. Computing inter-rater reliabil-
ity and its variance in the presence of high agreement.
British Journal of Mathematical and Statistical Psy-
chology, 61(1):29-48.

Eduard Hovy. 2010. Annotation. A Tutorial. In 48th
Annual Meeting of the Association for Computational
Linguistics.

Mukund Jha, Jacob Andreas, Kapil Thadani, Sara Rosen-
thal, and Kathleen McKeown. 2010. Corpus creation
for new genres: A crowdsourced approach to pp at-
tachment. In Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk, pages 13-20. Asso-
ciation for Computational Linguistics.

1129

Mark Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 296-305.

Michael D. Lee, Mark Steyvers, Mindy de Young, and
Brent J. Miller. 2011. A model-based approach to
measuring expertise in ranking tasks. In L. Carlson,
C. Holscher, and T.F. Shipley, editors, Proceedings of
the 33rd Annual Conference of the Cognitive Science
Society, Austin, TX. Cognitive Science Society.

Vikas C. Raykar and Shipeng Yu. 2012. Eliminating
Spammers and Ranking Annotators for Crowdsourced
Labeling Tasks. Journal of Machine Learning Re-
search, 13:491-518.

Padhraic Smyth, Usama Fayyad, Mike Burl, Pietro Per-
ona, and Pierre Baldi. 1995. Inferring ground truth
from subjective labelling of Venus images. Advances
in neural information processing systems, pages 1085—
1092.

Rion Snow, Brendan O’Connor, Dan Jurafsky, and An-
drew Y. Ng. 2008. Cheap and fast—but is it
good? Evaluating non-expert annotations for natural
language tasks. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 254-263. Association for Computational Lin-
guistics.

Alexander Sorokin and David Forsyth. 2008. Utility
data annotation with Amazon Mechanical Turk. In
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition Workshops, CVPRW *08,
pages 1-8. IEEE.

Mark Steyvers, Michael D. Lee, Brent Miller, and
Pernille Hemmer. 2009. The wisdom of crowds in the
recollection of order information. Advances in neural
information processing systems, 23.

Stephen Tratz and Eduard Hovy. 2010. A taxonomy,
dataset, and classifier for automatic noun compound
interpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 678-687. Association for Computational
Linguistics.

Peter Welinder, Steve Branson, Serge Belongie, and
Pietro Perona. 2010. The multidimensional wisdom
of crowds. In Neural Information Processing Systems
Conference (NIPS), volume 6.

Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob
Bergsma, and Javier Movellan. 2009. Whose vote
should count more: Optimal integration of labels from
labelers of unknown expertise. Advances in Neural In-
formation Processing Systems, 22:2035-2043.

Yan Yan, Romer Rosales, Glenn Fung, Mark Schmidt,
Gerardo Hermosillo, Luca Bogoni, Linda Moy, and

Jennifer Dy. 2010. Modeling annotator expertise:
Learning when everybody knows a bit of something.
In International Conference on Artificial Intelligence
and Statistics.

Omar F. Zaidan and Chris Callison-Burch. 2011. Crowd-
sourcing translation: Professional quality from non-
professionals. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1220—
1229, Portland, Oregon, USA, June. Association for
Computational Linguistics.

1130

