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Abstract

Information extraction from microblog posts
is an important task, as today microblogs cap-
ture an unprecedented amount of information
and provide a view into the pulse of the world.
As the core component of information extrac-
tion, we consider the task of Twitter entity
linking in this paper.

In the current entity linking literature, mention
detection and entity disambiguation are fre-
quently cast as equally important but distinct
problems. However, in our task, we find that
mention detection is often the performance
bottleneck. The reason is that messages on
micro-blogs are short, noisy and informal texts
with little context, and often contain phrases
with ambiguous meanings.

To rigorously address the Twitter entity link-
ing problem, we propose a structural SVM
algorithm for entity linking that jointly op-
timizes mention detection and entity disam-
biguation as a single end-to-end task. By com-
bining structural learning and a variety of first-
order, second-order, and context-sensitive fea-
tures, our system is able to outperform exist-
ing state-of-the art entity linking systems by
15% F1.

1 Introduction

Microblogging services, such as Twitter and Face-
book, are today capturing the largest volume ever
recorded of fine-grained discussions spanning a
huge breadth of topics, from the mundane to the his-
toric. The micro-blogging service Twitter reports
that it alone captures over 340M short messages,

or tweets, per day.1 From such micro-blogging ser-
vices’ data streams, researchers have reported min-
ing insights about a variety of domains, from elec-
tion results (Tumasjan et al., 2010) and democracy
movements (Starbird and Palen, 2012) to health is-
sues and disease spreading (Paul and Dredze, 2011;
Sadilek et al., 2012), as well as tracking prod-
uct feedback and sentiment (Asur and Huberman,
2010).

A critical step in mining information from a
micro-blogging service, such as Twitter, is the iden-
tification of entities in tweets. In order to mine
the relationship between drugs, symptoms and side-
effects, or track the popularity of politicians or sen-
timent about social issues, we must first be able to
identify the topics and specific entities being dis-
cussed. The challenge is that messages on micro-
blogs are short, noisy, and informal texts with little
context, and often contain phrases with ambiguous
meanings. For example, “one day” may be either a
set phrase or a reference to a movie. Given such
difficulties, current mining and analysis of micro-
blogs lists limits its application to certain domains
with easy-to-recognize, unambiguous entities in or-
der to avoid noise in the extraction results.

We begin this paper with a thorough investigation
of mention detection and entity disambiguation for
social media, focused on the Twitter micro-blogging
service. Mention detection is the task of extraction
surface form candidates that can link to an entity in
the domain of interest. Entity disambiguation is the
task of linking an extracted mention to a specific def-
inition or instance of an entity in a knowledge base.

1http://blog.twitter.com/2012/03/twitter-turns-six.html
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While mention detection and entity disambigua-
tion are frequently cast as equally important but dis-
tinct and separate problems, we find that mention
detection is where today’s systems and our base-
line techniques incur the most failures. Detecting
the correct entity mention is a significant challenge
given mis-capitalizations, incorrect grammar, and
ambiguous phrases. In (Ritter et al., 2011), the au-
thors report their system achieves 0.64 to 0.67 F1 on
named entity segmentation results with 34K tokens
of labeled examples. On the other hand, once the
correct entity mention is detected, a trivial disam-
biguation that maps to the most popular entity2 will
achieve 85% accuracy in our set.

Our primary contribution in this paper is a re-
casting and merging of the tasks of mention detec-
tion and entity disambiguation into a single end-
to-end entity linking task. We achieve significant
improvements by applying structural learning tech-
niques to jointly optimize the detection and disam-
biguation of entities. Treating detection and disam-
biguation as a single task also enables us to apply a
large set of new features, conventionally used only
for disambiguation, to the initial detection of men-
tions. These features, derived from external knowl-
edge bases, include entity popularity and inter-entity
relations from external knowledge bases, and are not
well utilized in current mention detection systems.
For example, consider the following partial tweet:

(1) The town is so, so good. And don’t
worry Ben, we already forgave you
for Gigli. Really.

Determining whether or not “The town” is a mention
of a location or other specific entity based solely on
lexical and syntactic features is challenging. Know-
ing “The Town” is the name of a recent movie helps,
and we can we be more confident if we know that
Ben Affleck is an actor in the movie, and Gigli is
another of his movies.

To train and evaluate our system, we created three
separate annotated data sets of approximately 500
tweets each. These data sets are hand annotated
with entity links to Wikipedia. We evaluate our sys-
tem by comparing its performance at detecting en-

2What we mean here is “the most linked entity”. See Sec-
tion 3 for details.

tities to the performance of two state-of-the-art en-
tity linking systems, Cucerzan (Cucerzan, 2007) and
TagMe (Ferragina and Scaiella, 2010), and find that
our system outperforms them significantly by 15%
in absolute F1.

The rest of this paper describes related work, our
structured learning approach to entity linking, and
our experimental results.

2 Related Work

Building an entity linking system requires solving
two interrelated sub-problems: mention detection
and entity disambiguation. The significant portion
of recent work in the literature (Ratinov et al., 2011;
Davis et al., 2012; Sil et al., 2012; Demartini et al.,
2012; Wang et al., 2012; Han and Sun, 2011; Han
et al., 2011) focuses solely upon the entity linking
problem. The entity linking systems of these studies
assume that entity mentions are provided by a sepa-
rate mention detection system. In contrast, our study
jointly identifies and disambiguates entity mentions
within tweets (short text fragments).

A subset of existing literature targets end-to-end
linking (Cucerzan, 2007; Milne and Witten, 2008;
Kulkarni et al., 2009; Ferragina and Scaiella, 2010;
Han and Sun, 2011; Meij et al., 2012), but there
are quite a few differences between our work and
each of these systems. Some systems (Milne and
Witten, 2008; Kulkarni et al., 2009; Han and Sun,
2011) heavily depend on Wikipedia text and might
not work well in short and noisy tweets. Many sys-
tems (Mihalcea and Csomai, 2007; Cucerzan, 2007;
Milne and Witten, 2008; Ferragina and Scaiella,
2010) treat mention detection and entity disam-
biguation as two different problems. (Meij et al.,
2012) is the most related to our paper. While their
system also considers mention detection and entity
disambiguation together, they do not consider entity-
to-entity relationships and do not incorporate con-
textual words from tweets.

An area of work closely related to the mention
detection problem is the Named Entity Recogni-
tion (NER) problem, the identification of textual
phrases which belong to core categories (Person,
Location, Organization). It is well-known that NER
systems trained on well-written documents perform
very poorly on short, noisy text, such as tweets (Rit-
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ter et al., 2011). There have been a few recent stud-
ies proposing Twitter-specific NER systems (Li et
al., 2012; Ritter et al., 2011).

3 Preliminaries

For performing entity linking on Twitter, we choose
Wikipedia as our external knowledge base of enti-
ties.

Entity We define an entity as a nonambiguous, ter-
minal page (e.g., The Town (the film)) in Wikipedia
(i.e., a Wikipedia page that is not a category, dis-
ambiguation, list, or redirect page). We define an
anchor phrase (surface form) as the textual phrase
(e.g., the town) which can potentially link to some
entities. We define an entity mention as an anchor
phrase and the context (“the town” in the exam-
ple tweet in Section 1), where its semantic meaning
umambiguously represents a specific entity. Note
that an entity may be represented by multiple sur-
face forms.

Wikipedia Lexicon Construction Following the
assumptions used in most prior entity linking re-
search, we assume that surface forms of entities can
be found as anchor phrases in Wikipedia. In or-
der to construct a Wikipedia lexicon, we first collect
all anchors phases in Wikipedia. For each anchor
phrase (surface form) s, we construct a lexicon en-
try by gathering the set of entities {e1, e2, . . . eK}
that can be linked from s. We also collect the num-
ber of times anchor a links to the entity ei, d(s, ei).
We define P (ei|s) = d(s, ei)/d(s), where d(s) rep-
resents the number of times s appears in Wikipedia.
We refer e′ as the most linked entity for anchor s if
e′ = arg maxe P (ei|s).

Candidate Generation Given a tweet t, we ex-
tract all k-grams of size ≤ k. For each k-gram,
we find all entities where this k-gram is an anchor
phrase. If a k-gram is an anchor phrase for at least
one entity, then the k-gram is a candidate entity
mention. In general, we identify many candidate
phrase per tweet; let U(t) = {c1, c2, . . .} denote
the set of candidates in tweet t. We refer to s(c)
as the surface form (e.g., the anchor phrase) of c.
Compared to the anchor phrase, the candidate also
carries the context and position information. Let
E(ci) = {e1, e2, . . . ,NIL} denote the set of entities

which candidate i may be linked to, plus the addi-
tional special token NIL. Note that the size of E(ci)
is always at least 2.

Task Definition First, our system generates candi-
date entity mentions, textual phrases which can pos-
sibly be entity mentions. Our system then performs
filtering and optimization to process the list of can-
didates. For each candidate, our system links the
candidate to a special NIL token or links the candi-
date to its corresponding entity in Wikipedia. More
formally, given a tweet t and its candidate set U(t),
the goal of the system is to predict yi ∈ E(ci),∀ci ∈
U(t).

Comparison to the TAC KBP Competition It is
important to state that our definition of the entity
linking problem differs significantly from the entity
linking problem as defined by the TAC KBP com-
petition (Ji et al., 2010; Ji et al., 2011). In the TAC,
there is no true mention detection problem; every
candidate in the TAC is an entity mention that rep-
resents an entity. Another difference is that the TAC
allows for an entity mention to map to an entity not
in the external knowledge base (Wikipedia); our sys-
tem does not provide special handling of this case.

Comparison to Named Entity Recognition
There are also important differences between our
task and the canonical NER task. For example,
NER systems identify common names, such as
“Robert,” as entities. In our task, we only consider a
prediction as a success if the system can determine
which person in Wikipedia “Robert” is referring to.
In other words, our definition of entities depends
on the given knowledge base, rather than human
judgment. Hence, it is difficult to make a fair system
comparison of our system to NER systems.

4 Entity Linking as Structural Learning

In our framework, we use structural learning as a
tool to capture the relationship between entities. We
define yi as the output for ci, where yi ∈ E(ci). Let
T = |U(t)| and y = {y1, y2, . . . , yT }. The fea-
ture function for the whole assignment can be writ-
ten as Φ(t, U(t),y). The score for the assignment
y can be obtained as the linear product between the
weight vector w and the feature vector. For an input
example, the prediction can be found by solving the
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inference problem:

y′ = arg max
y

wT Φ(t, U(t),y) (1)

We use a Structural SVM (SSVM) (Taskar et
al., 2004; Tsochantaridis et al., 2005; Chang et al.,
2010) as our learning algorithm. To train the weight
vector w, we minimize the objective function of the
SSVM

min
w

‖w‖2

2
+ C

l∑
i=1

ξ2i (2)

where l is the number of labeled examples and

wT Φ(ti, c(ti),yi)

≥∆(yi,y) + wT Φ(ti, c(ti),y)− ξi, ∀i,y

We denote yi as the gold assignment for xi and de-
fine ∆(yi,y) as the Hamming distance between two
assignments yi and y.

4.1 Features

Feature definitions are very important as they define
the shapes of the structures. Our feature vector is
defined as

Φ(t, U(t),y) =
∑

i

φ(t, ci, yi)+
∑
i<j

φ(t, ci, yi, cj , yj)

where ci and cj is the i-th and j-th candidates in
U(t), respectively.

First, we assign Φ(t, ci,NIL) to be a special bias
feature. The corresponding weight value behaves as
a threshold to cut-off mentions. Recall in our defini-
tion that yi = NIL represents that the candidate ci is
not a mention.

The first order features for Φ(t, ci, e) are de-
scribed as follows. In general, we can classify our
features into two types: mention-specific features
and entity-specific features. For a given candidate
ci, mention-specific features only consider the sur-
face form of ci and the tweet t. Entity-specific fea-
tures also consider the knowledge base content of
the entity e. Prior work in the entity linking liter-
ature has primarily focused on entity-specific fea-
tures, as most prior work solves entity disambigua-
tion with given mentions.

Base and Capitalization Rate Our base features
are from two resources. Let s(c) denote the sur-
face form of candidate c. The link probability
Pl(s(c)) and P (e|s(c)) features are extracted from
Wikipedia. We explained P (e|s(c)) in Section 3.
Link probability Pl(s(c)) is the probability that a
phrase is used as an anchor in Wikipedia. We also
add a third feature that captures normalized link
count. Besides these three features, we also have
a feature to indicate if a is a stop word, and a fea-
ture indicating the number of tokens in a. The view
count and P (e|s) features are entity-specific, while
the other three features are mention-specific.

For each phrase s(c), we also collect statistics
about the probability that a phrase is capitalized in
Wikipedia. We refer to this feature as the capitaliza-
tion rate feature, Pc(s(c)).

Popularity Feature We have access to 300GBs
of Wikipedia page view counts, representing one
months worth of page view information, we use
this as popularity data.3 As mentioned in Sec-
tion 3, we find that the most often linked Wikipedia
articles might not be the most popular ones on
Twitter. Using page view statistics helps our sys-
tem correct this bias. We define another prob-
ability based on page view statistics Pv(ei|c) =
v(ei)/(

∑
e∈E(c)/{NIL} v(e)), where v(e) represents

the view count for the page e.

Context Capitalization Our context capitaliza-
tion features indicate if the current candidate, the
word before, and the word after the candidate are
capitalized.

Entity Type and Tf-idf We use the procedure pro-
posed in (Ratinov et al., 2011) to extract keyword
phrases from categories for each Wikipedia page,
and then build a rule-based system using keyword
phrases to classify if each entity page belongs to one
of the following entity types: Person, Location, Or-
ganization, TV Show, Book/Magazine and Movie.4

For a given candidate c and an entity e, the associ-
ated binary feature becomes active if the entity be-
longs to a specific entity type. There are six entity
type features in our system.

3http://dammit.lt/wikistats
4The entity type prediction accuracy of our rule-based sys-

tem on the development set is around 95%.
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Features Descriptions
Base Pl(si), P (e|s), normalized link counts, stop

word, # tokens
Cap. Rate Pc(si)
Popularity Pv(e|s), normalized page view count,

Pv(e|s)P (e|s)
Context Cap. Three features indicating if the current candi-

date and the words before and after are capi-
talized

Entity Type Six binary features for each entity type
Tf-idf Two features for the similarity between the

word vectors of the entity and the tweet
Second-Order Jac(ei, ej), P (ei|si)P (ej |sj), Pc(si)Pc(sj),

Pl(si)Pl(sj)

Table 1: Summary of the features used in our structural
learning systems.

We also include tf-idf features in our system. For
each Wikipedia page, we collect the top 100 tf-idf
words. We add one feature that is the dot product
between the tf-idf word vector of e and the words of
tweet t. We include a second feature that represents
the average tf-idf score of all words that appear in
both e and t.

Second-order features We include four very sim-
ple second-order features φ(t, ci, ei, cj , ej) to cap-
ture more complex relations between entities and
candidates. The first feature is the Jaccard distance
between two Wikipedia pages ei and ej . Let Γ(ei)
denote the set of Wikipedia pages that contain a hy-
perlink to ei. We define the Jaccard distance be-
tween ei and ej as:

Jac(ei, ej) =
|Γ(ei) ∩ Γ(ej)|
|Γ(ei) ∪ Γ(ej)|

This feature has a similar effect as the normal-
ized Google distance (Cilibrasi and Vitanyi, 2007),
which has been used for many entity linking sys-
tems. Let us use the following shorthand: si = s(ci)
and sj = s(cj). We have also included three features
P (ei|si)P (ej |sj), Pc(si)Pc(sj) and Pl(si)Pl(sj) to
increase the expressivity of our model.

4.2 Mining Additional Contextual Words
Unlike mention detection systems used in other NLP
tasks, there are no lexical features in our system.
Lexical features are important as they can capture
semantic meaning precisely. However, given that
we do not have many labeled examples, lexical fea-
tures can lead to overfitting. The diverse language

in tweets also make it more difficult to use lexical
features.

Our solution for this problem is to use a very sim-
ple method to mine context words for different enti-
ties from a large, unlabeled tweet corpus. The algo-
rithm works as follows:

1. Train an end-to-end entity linking system and
then apply it to a large, unlabeled tweet corpus

2. Extract contextual words for each entity type
based on the pseudo-labeled data.

3. Train the entity linking system again with new
contextual features.

In this paper, we only use the word before and the
word after as our contextual word for a candidate.
Note that while there are ambiguous phrases on the
surface (e.g., “friends” can be a TV show or just
a regular phrase), certain phrases are unambiguous
(e.g., “CSI : Miami”). As contextual words are often
shared within the same entity type (e.g. “watching”
is likely to appear before a tv show), those words can
potentially improve our final system.

Let wi denote the i-th word in the tweet and ti
denote the entity type for the i-th word.5 We use a
very simple rule to select a set of left context words
Q(R) for entity type R.

Q(R) = {wi | P (ti+1 = R|wi) > r, d(wi) > z}

where d(wi) represent the number of times the word
wi appears in the unlabeled set. The first rule is to
simply find a word which is more likely to be fol-
lowed by an entity. The second rule filter outs noisy
words (e.g., Twitter handles) in the unlabeled set.
The right context words are also extracted in a simi-
lar way.

To train the second end-to-end entity linking sys-
tem, we add one additional feature for the contextual
words. For the feature vector Φ(t, ci, e), the context
feature is active if the candidate ci is capitalized6 and
the context words around ci belongs to Q(R), given
R is the entity type for the entity e.

5The tag ti belongs to the entity type R if our system links a
candidate c to an entity with type R and c covers the word wi.

6The word “watching” can be a TV show while most of the
time it is not. These common makes this contextual feature
noisy. We found that the context feature can only be reliably
applied when the candidate is capitalized.
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4.3 Cohesiveness Score
There are several ways to consider entity-entity co-
hesiveness besides using the second-order features
directly. In our model, we also consider a modi-
fied cohesiveness score proposed in (Ferragina and
Scaiella, 2010). The idea behind the cohesiveness
score is to estimate the correlations between differ-
ent entities by using weighted Jaccard scores.7

There are two rounds in the procedure of com-
puting the cohesiveness score. We first estimate ap-
proximately the most probable entity for each candi-
date given all the other candidates in the same tweet.
In the second round, the cohesiveness score is then
produced with respect to the most probable entity
computed in the first round.

More formally, in the first round, we compute the
relevance score for each candidate and entity pair:

Rel(e, c|t) =

∑
c′ 6=c

∑
e′∈E(c′) P (e′|c′)Jac(e, e′)

|U(t)|
.

Then, the cohesiveness score is computed by

Scoh(e, c|t) =

∑
c′ 6=c Jac(e, ē(c

′))P (ē(c′)|c′)
|U(t)|

,

where the ē(c′) = arg maxe∈E(c′)Rel(e, c
′|t). We

then put the cohesiveness score as a feature for each
(e, c) pair. In practice, we found that the cohesive-
ness score in the model can significantly increase the
disambiguation ability of the model without using
the second-order information.

4.4 Inference
In order to train and test the SSVM model, one needs
to solve both the inference problem Eq. (3) and the
loss-augmented inference problem. Without second-
order features, the inference and loss-augmented in-
ference problems can be easily solved, given that
each component can be solved independently by

y′i = arg max
y∈E(ci)

wT Φ(t, ci, y) (3)

While the inference problem can be solved inde-
pendently, the training algorithm still considers the
whole assignment together in the training procedure.

7In our experiments, we only apply the cohesiveness score
technique on candidates which pass the filtering procedure. See
section 5 for more details for our filtering process.

Data #Tweets #Cand #Men. P@1
Train 473 8212 218 85.3%
Test 1 500 8950 249 87.7%
Test 2 488 7781 332 89.6%

Table 2: Labeled example statistics. “#Cand” represents
the total number of candidates we found in this dataset.
“#Men.” is the total number of mentions that disam-
biguate to an entity. The top-1 rate (P@1) represents the
proportion of the mentions that disambiguate to the most
linked entity in Wikipedia.

With the second-order features, the inference
problem becomes NP-hard. While one can resort to
using integer linear programming to find the optimal
solution, we choose not to do so. We instead use the
beam search algorithm. Our beam search algorithm
first arranges the candidates from left to right, and
then solve the inference problems approximately.

5 Experiments

We collected unlabeled Twitter data from two re-
sources and then asked human annotators to label
each tweet with a set of entities present. Our anno-
tators ignored the following: duplicate entities per
tweet, ambiguous entity mentions, and entities not
present in Wikipedia. We next describe the two sets
of Twitter data used as our training data and test-
ing data. In addition to these two datasets, we also
randomly sampled another 200 tweets as our devel-
opment set.

Ritter We sampled 473 and 500 tweets8 from the
data used in (Ritter et al., 2011) to be our training
data and test data, respectively. We did not use any
labels generated by (Ritter et al., 2011); our annota-
tors completely re-annotated each tweets with its set
of entities. We refer to the first set as Train and the
second set as Test 1.

Entertainment To check if our system has the
ability to generalize across different domains, we
sampled another 488 tweets related to entertain-
ment entities. Our main focus was to extract
tweets that contained TV shows, Movies, and

8We originally labeled 1000 tweets but then found 27 re-
peated tweets in the dataset. Therefore, we remove those 27
tweets in the training set.
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Books/Magazines. Identifying tweets from a spe-
cific domain is a research topic on its own, so we
followed (Dalvi et al., 2012), and used a keyword
matching method.9 After sampling this set of tweets,
we asked our annotators to label the data in the same
way as before (all entities are labeled, not just en-
tertainment entities). We refer to this tweet set as
Test 2.

After sampling, all tweets were then normalized
in the following way. First, we removed all retweet
symbols (RT) and special symbols, as these are to-
kens that may easily confuse NER systems. We
treated punctuation as separate tokens. Hashtags (#)
play a very important role in tweets as they often
carry critical information. We used the following
web service10 to break the hashtags into tokens (e.g.,
the service will break “#TheCloneWars” into “the
clone wars”) (Wang et al., 2011).

The statistics of our labeled examples are pre-
sented in Table 2. First, note that the average number
of mentions per tweet is well below 1. In fact, many
tweets are personal conversations and do not carry
any entities that can be linked to Wikipedia. Still,
many candidates are generated (such as “really”) for
those tweets, given that those candidates can still po-
tentially link to an entity (“really” could be a TV
channel). Therefore, it is very important to include
tweets without entities in the training set because we
do not want our system to create unnecessary links
to entities.

Another interesting thing to note is the percent-
age of entity mentions that disambiguate directly to
their most often linked entities in Wikipedia. If we
simply disambiguate each entity mention to its most
linked entity in Wikipedia, we can already achieve
85% to 90% accuracy, if mention detection is per-
fectly accurate. However, mention detection is a dif-
ficult problem as only about 3% of candidates are
valid entity mentions.

It is worthwhile to mention that, as per (Ferragina
and Scaiella, 2010), for computational efficiency,

9We use the following word list :“movie”, “tv”, “episode”,
“film”, “actor”, “actors”, “actress”, “director”, “directors”,
“movies”, “episodes”, “book”, “novel”, “reading”, “read”,
“watch”, “watching”, “show”, “books”, “novels”, “movies”,
“author” and “authors”.

10http://web-ngram.research.microsoft.
com/info/break.html

we apply several preprocessing steps before running
our entity linking system. First, for each anchor in
Wikipedia, we gather all entities it can disambiguate
to and remove from that anchor’s entity set all enti-
ties that are linked less than 2% of the time. Second,
we apply a modified filtering procedure similar to
that proposed in (Ferragina and Scaiella, 2010) to
filter the set of candidates per tweet.

Evaluation Our annotated datasets contain enti-
ties from many Wikipedia categories. For eval-
uation, we primarily focus on entities belonging
to a set of six core categories (Person, Location,
Organization, TV Show, Book/Magazine, Movie).
We believe it is necessary to focus upon core en-
tities, rather than considering all possible entities
in Wikipedia. Most common words in the English
language have their own Wikpedia page, but most
words are not important enough to be considered en-
tities. In general, there is a large degree of subjectiv-
ity when comparing different entity linking datasets;
different researchers have their own interpretation of
what constitutes an entity. For example, we exam-
ined the annotation used in (Meij et al., 2012) and
found it to be extremely lenient, when compared to
our own beliefs of what is an entity. Therefore, we
believe evaluating performance on restricted entity
types is the only fair way to compare different end-
to-end entity linking systems.

We evaluate the performance of our system on
a per-tweet basis, by comparing the set of anno-
tated “gold” entities with the set of entities predicted
by our system, and computing performance metrics
(precision, recall, F1). We choose to evaluate our
system on a per-tweet basis, as opposed to a per-
entity basis, because we wish to avoid the issue of
matching segmentations. For example, it is quite
common to observe multiple overlapping phrases in
a tweet that should be linked to the same entity (e.g.,
“President Obama” and “Obama”). When evaluat-
ing our system, we compute performance metrics for
both all entities and core entities.11

Parameters In our implementation, we fixed the
regularization parameter C = 10. When beam-

11To decide if an entity is a core entity or not, we use the
following procedure. For the gold entities, the annotators also
annotate type of the entity. We decide the entity type of the
predicted entities using the procedure described in Section 4.1.

1026



Model
Test 1 Test 2

P R F1 P R F1

Cucerzan 64.8 42.2 51.1 64.9 39.7 49.5
TagMe 38.8 69.0 49.7 34.9 70.3 46.7
SSVM 78.8 59.9 68.0 75.0 57.7 65.2

Table 3: Comparisons between different end-to-end en-
tity linking systems. We evaluate performance on core
entities, as it is the only fair way to compare different
systems.

search is used, the beam size is set to be 50, and
we only consider the top 10 candidates for each can-
didate to speed the inference process. In the context
word mining algorithm, r = 0.5% and z = 1000.

5.1 Results

In the following, we analyze the contributions of
each component in our system and compare our final
systems to other existing end-to-end entity linking
systems.

System Comparison We compare our final sys-
tem to other state-of-the-art systems in Table 3.
CUCERZAN represents a modified implementation
of the system in (Cucerzan, 2007). TagMe is an end-
to-end linking system that focuses on short texts,
including tweets. Our system significantly outper-
forms these two systems in both precision and re-
call. Note that CUCERZAN’s system is a state-of-
the-art system on well-written documents with pro-
vided entity mentions. The system (Cucerzan, 2007)
has been extended by the authors and won the TAC
KBP competition in 2010 (Ji et al., 2010).

There are two possible reasons to explain why our
system outperforms CUCERZAN. First, their men-
tion detection is a carefully designed system targeted
toward documents, not tweets. Their system has seg-
mentation issues when applied to Twitter, as it relies
heavily upon capitalization when identifying candi-
date entity mentions. Second, their system heav-
ily depends on the fact that related entities should
appear together within documents. However, given
that tweets are very short, some of their most impor-
tant features are not suitable for the Twitter domain.
Our system outperforms TagMe because we use a
more sophisticated machine learning approach, as
compared to their system. TagMe links too many

Structural SVM
Test 1 Test 2

All Core All Core
Base 35.9 42.9 47.7 52.5
+Cap. Rate 38.4 45.6 49.9 53.7
+Popularity 41.3 47.9 50.3 55.1
+Context Cap 43.7 52.0 50.7 54.8
+Entity Type 47.9 57.0 53.5 59.0
+Tfidf 53.2 63.1 56.8 61.9

Table 4: Feature Study: F1 for entity linking perfor-
mance. “All” means evaluation on all annotated entities.
“Core” means evaluation only on our six entity types.
Each row contains all additional features of the row above
it.

spurious entity mentions for common words. This is
a result of their algorithm’s over-emphasis on entity-
entity co-occurrence features.

Feature Study We study the contributions of each
feature group in our system in Table 4. We summa-
rize our discoveries as follows:

First, we find collecting statistics from a large cor-
pus helps the system significantly. In addition to
P (e|s), we find that capitalization rate features of-
fer around 3% to 4% F1 improvement in Test 1.
Similarly, popularity features are also important, as
it corrects bias existing in Wikipedia link statistics.
Compared to lexical features, using statistical fea-
tures offers a great advantage of reducing the need
for large amounts of labeled data.

We also find entity related features (Popularity,
Entity Type, Tf-idf) are crucial. Given that between
85% to 90% of our mentions should directly disam-
biguate to the most often linked entities, one might
think entity-specific features are not important in
our task. Interestingly, entity-specific features are
among the most important features. The discovery
confirms our hypothesis: it is critical to consider
mention detection and entity disambiguation as a
single problem, rather than as separate problems in
a two staged approach used by many other entity
linking systems. Note that capitalization rate and
context capitalization features are mention-specific.
Additionally, we find that mixing mention-specific
features and entity-specific features results in a bet-
ter model.
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Entity Type Words appearing before
the mention

Words appearing after the
mention

Person wr, dominating, rip, quar-
terback, singer, featuring,
defender, rb, minister, ac-
tress, twitition, secretary

tarde, format, noite, suf-
fers, dire, admits, sen-
ators, urges, performs,
joins

TV Show sbs, assistir, assistindo,
otm, watching, nw,
watchn, viagra, watchin,
ver

skit, performances,
premieres, finale, par-
ody, marathon, season,
episodes, spoilers, sketch

Table 5: An example of context words that are automati-
cally extracted from 20 million unlabeled tweets. For the
sake of brevity, we only display context words for two
categories. Note that there are misspelled words (such
as “watchn”) and abbreviations (such as nw) that do not
appear in well-written documents.

Advance Models
Test 1 Test 2

All Core All Core
SSVM (Table 4) 53.2 63.1 56.8 61.9
+Context 53.9 64.6 58.6 63.4
+Cohesiveness 55.6 66.5 59.7 65.1
+2nd order 58.1 68.0 60.6 65.2

Table 6: Evaluation results (F1) of the advanced models.
“+ Context” is the model that uses additional context fea-
tures extracted from 20 millions unlabeled tweets. “+ Co-
hesiveness” is the model with both additional context and
cohesiveness features. “+2nd order” is our final model
(which incorporates context, cohesiveness, and second-
order features).

Mining Context Words We verify the effective-
ness of adding contextual features that are extracted
automatically from large unlabeled data. We apply
our system (with all first-order features) on a set of
20 million unlabeled tweets we collected. Context
words are then extracted using the simple rules de-
scribed in Section 4. We list the top 10 words we
extracted in Table 5. Due to space limitations, we
only list the words for the Person and TV Show cat-
egories. The results are interesting as we are able
to find common misspelled words and abbreviations
used in Twitter. For example, we find that “watchn”
means “watching” and “nw” means “now watching,”
and they are usually words found before TV shows.
We also find tweeters frequently use abbreviations
for people’s jobs. For example, “wr” means “wide
receiver” and “rb” means “running back.” When
mined context is added into our system, the perfor-
mance improves significantly (Table 6). We note

that extending context mining algorithms in a large-
scale, principled approach is an important next re-
search topic.

Capturing Entity-Entity Relationships In this
paper, we use two methods to capture the relation-
ship between entities: adding the cohesiveness score
and using second order information. Until now, we
only considered features that can be extracted from
only one entity. Past research has shown that consid-
ering features that involve multiple entities can im-
prove entity linking performance, given that related
entities are more likely to appear together in a doc-
ument. When these type of features are added, we
need to perform beamsearch, as the exact inference
procedure can be prohibitively expensive.

As displayed in Table 6, we find that either adding
the cohesiveness score or using second order infor-
mation can improve prediction. Using both methods
improves the model even more. Comparing compu-
tation overhead, computing cohesiveness is signifi-
cantly more cost-effective than using second-order
information.

6 Conclusion

In this paper, we propose a structural SVM method
to address the problem of end-to-end entity linking
on Twitter. By considering mention detection and
entity disambiguation together, we build a end-to-
end entity linking system that outperforms current
state-of-the-art systems.

There are plenty of research problems left to be
addressed. Developing a better algorithm for min-
ing contextual words is an important research topic.
It would also be interesting to design a method that
jointly learns NER models and entity linking mod-
els.
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