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Abstract

We investigate two systems for automatic dis-
fluency detection on English and Mandarin
conversational speech data. The first system
combines various lexical and prosodic fea-
tures in a Conditional Random Field model for
detecting edit disfluencies. The second system
combines acoustic and language model scores
for detecting filled pauses through constrained
speech recognition. We compare the contri-
butions of different knowledge sources to de-
tection performance between these two lan-
guages.

1 Introduction

Speech disfluencies are common phenomena in
spontaneous speech. They consist of spoken words
and phrases that represent self-correction, hesitation,
and floor-grabbing behaviors, but do not add seman-
tic information; removing them yields the intended,
fluent utterance. The presence of disfluencies in
conversational speech data can cause problems for
both downstream processing (parsing and other nat-
ural language processing tasks) and human readabil-
ity of speech transcripts. There has been much re-
search effort on automatic disfluency detection in
recent years (Shriberg and Stolcke, 1997; Snover
et al., 2004; Liu et al., 2006; Lin and Lee, 2009;
Schuler et al., 2010; Georgila et al., 2010; Zwarts
and Johnson, 2011), particularly from the DARPA
EARS (Effective, Affordable, Reusable Speech-to-
Text) MDE (MetaData Extraction) (DARPA Infor-
mation Processing Technology Office, 2003) pro-
gram, which focused on the automatic transcription

of sizable amounts of speech data and rendering
such transcripts in readable form, for both conversa-
tional telephone speech (CTS) and broadcast news
(BN).

However, the EARS MDE effort was focused on
English only, and there hasn’t been much research
on the effectiveness of similar automatic disfluency
detection approaches for multiple languages. This
paper presents three main innovations. First, we
extend the EARS MDE-style disfluency detection
approach combining lexical and prosodic features
using a Conditional Random Field (CRF) model,
which was employed for detecting disfluency on En-
glish conversational speech data (Liu et al., 2005),
to Mandarin conversational speech, as presented in
Section 2. Second, we implement an automatic
filled pause detection approach through constrained
speech recognition, as presented in Section 3. Third,
for both disfluency detection systems, we compare
side-by-side contributions of different knowledge
sources to detection performance for two languages,
English and Mandarin, as presented in Section 4.
Conclusions appear in Section 5.

2 EARS MDE Style Automatic Disfluency
Detection

We focus on two types of disfluencies,Fillers and
Edit disfluencies, following the EARS MDE disflu-
ency types modeled in (Liu et al., 2006). Fillers in-
clude filled pauses (FP), discourse markers (DM),
and explicit editing terms (ET). FPs are words used
by the speakers as floor holders to maintain con-
trol of a conversation. They can also indicate hes-
itations of the speaker. In this work, English FPs
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compriseuh and um, based on English CTS cor-
pora. For Mandarin, Zhao and Jurafsky found that
Mandarin speakers intensively used both demonstra-
tiveszhege (literally ‘this’)andnage (literally ‘that’)
anduh/mmas FPs based on a large speech corpus of
Mandarin telephone conversation (Zhao and Juraf-
sky, 2005). We study the same set of Chinese FPs in
this study. DMs are words or phrases related to the
structure of the discourse and help taking or keeping
a turn, or serving as acknowledgment, for example,
I mean, you know. An explicit ET is an editing term
in an edit disfluency that is not an FP or a DM. For
example,we have two action items� sorry three ac-
tion items from the meeting, wheresorry is an ex-
plicit ET.

Edit disfluencies involve syntactically relevant
content that is either repeated, revised, or aban-
doned. The basic pattern for edit disfluencies has
the form(reparandum) � <editing term> correc-
tion. The reparandum is the portion of the utterance
that is corrected or abandoned entirely (in the case
of restarts). An interruption point (IP), marked with
‘�’ in the pattern, is the point at which the speaker
breaks off the original utterance and then repeats,
revises, or restarts the utterance. The editing term
is optional and consists of one or more filler words.
The correction is the portion of the utterance that
corrects the original reparandum. Revisions denote
the cases when a speaker modifies the original utter-
ance with a similar syntactic structure, e.g.,we have
two action items� sorry three action items from the
meeting. Restarts denote the cases when a speaker
abandons an utterance or a constituent and restarts
all over again, e.g.,He� I like this idea.

We used a CRF model to combine lexical features,
shallow syntactic features, and prosodic features for
joint detection of edit words and IP words. A CRF
defines a global log-linear distribution of the state
(or label) sequenceE conditioned on an observation
sequence, in our case including the word sequenceW and the featuresF , and optimized globally over
the entire sequence considering the context event in-
formation for making decisions at each point. We
used the Mallet package (McCallum, 2002) to im-
plement the CRF model. We used a first-order model
that includes only two sequential events in the fea-
ture set. The CRF model is trained to maximize
the conditional log-likelihood of a given training

setP (EjW;F ). During testing, the most likely se-
quenceE is found using the Viterbi algorithm. To
avoid over-fitting, a zero-mean Gaussian prior (Mc-
Callum and Li, 2003) was applied to the parame-
ters, where the variance of the prior was optimized
on the development test set. Each word is associ-
ated with a class label, representing whether it is
an edit word or not. We included IP in the target
classes and used five states, asoutside edit(O), be-
gin edit with an IP(B-E+IP), begin edit(B-E), in-
side edit with an IP(I-E+IP), and inside edit (I-
E) (Liu et al., 2006). State transitions are also the
same as in (Liu et al., 2006). We built a Hidden
Markov Model (HMM) based part-of-speech (POS)
taggers for English conversational speech and Man-
darin broadcast conversation data. After employing
the co-training approach described in (Wang et al.,
2007), we achieved 94% POS tagging accuracy for
both data sets. The features for CRF modeling in-
clude: n-grams from words and automatically gen-
erated POS tags, speaker turns, whether there is a
repeated word sequence ending at a word bound-
ary, whether a word is a fragment, whether there
is a predefined filler phrase after the word bound-
ary, and the prosody model posterior probabilities
from a decision tree model (Shriberg and Stolcke,
1997) and discretized by cumulative binning (Liu et
al., 2006). The prosodic features were computed
for each interword boundary from words and pho-
netic alignments of the manual transcriptions. We
extracted the same set of prosodic features for En-
glish and Mandarin data, based on duration, funda-
mental frequency (f0), energy, and pause informa-
tion, and nonprosodic information such as speaker
gender and speaker change, for training and apply-
ing the decision-tree-based prosody model (Liu et
al., 2006).

We implemented a rule-based system for filler
word detection. We defined a list of possible Chi-
nese and English filler words, including filled pauses
and discourse markers. The rules also explore POS
tags assigned by our Chinese and English POS tag-
gers.
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3 Constrained Speech Recognition for
Filled Pause Detection

We also propose an alternative approach for auto-
matic detection of FPs given speech transcripts that
omit FPs but are otherwise accurate. This approach
is motivated by situations where only an edited,
“cleaned-up” transcript is available, but where an
accurate verbatim transcript is to be recovered au-
tomatically. We treat this task as a constrained
speech recognition problem, and investigate how ef-
fectively it is solved by a state-of-the-art large vo-
cabulary continuous speech recognition (LVCSR)
system. Hence, this approach can be considered as
combining LVCSR acoustic model (AM) and lan-
guage model (LM) knowledge sources in a search
framework for FP detection. Compared to the FP
detection component in the disfluency detection sys-
tems described in Section 2, this alternative ap-
proach explores different knowledge sources. In
particular, the AMs explore different front-end fea-
tures compared to the lexical and prosodic features
explored in those disfluency detection systems pre-
sented in Section 2. Details of the front-end features
are illustrated below.

We evaluated this approach on both English and
Mandarin conversational speech. For detecting FPs
in English conversational speech, we used a mod-
ified and simplified form of the recognition sys-
tem developed for the 2004 NIST Rich Transcrip-
tion Conversational Telephone Speech (CTS) eval-
uations, described in (Stolcke et al., 2006). The
first pass of the recognizer uses a within-word
MFCC+MLP model (i.e, trained on Mel-frequency
cepstral coefficient (MFCC) features augmented
with Multi-Layer Perceptron (MLP) based phone-
posterior features), while the second pass uses a
cross-word model trained on Perceptual Linear Pre-
diction (PLP) features adapted (by speaker) to the
output of the first pass. For purposes of FP detec-
tion, the recognition is constrained to a word lat-
tice formed by the manually transcribed non-FP ref-
erence words, with optional FP words inserted be-
tween any two words and at the beginning and end
of each utterance. Both first and second pass de-
coding was constrained by the optional-FP lattices.
In the second pass, HTK lattices were generated
with bigram LM probabilities and rescored with a

4-gram LM. The consensus decoding output from
the rescored lattices was used for scoring FP detec-
tion. The system thus evaluates the posterior prob-
ability of an FP at every word boundary using both
acoustic model (AM) and language model (LM) ev-
idence. The acoustic model for the English recog-
nition system was trained on about 2300 hours of
CTS data. The language models (which models FP
like any other word) are bigram and 4-gram statisti-
cal word n-gram LMs estimated from the same data
plus additional non-CTS data and web data.

For detecting FPs in Mandarin broadcast con-
versation speech, we used a modified form of
the recognition system developed for the 2008
DARPA GALE (Global Autonomous Language Ex-
ploitation) Speech-to-Text evaluation, described in
(Lei et al., 2009). The system conducted a con-
strained decoding on the optional-FP lattices, using
a speaker-independent within-word triphone MPE-
trained MFCC+pitch+MLP model and a pruned
trigram LM. For the Mandarin ASR system, the
MFCC+MLP front-end features were augmented
with 3-dimension smoothed pitch features (Lei et al.,
2006). HTK lattices were generated with probabil-
ities from the pruned trigram LM and rescored by
the full trigram LM. The consensus decoding output
from the rescored lattices was used for scoring FP
detection. The AMs for this system were trained on
1642 hours of Mandarin broadcast news and conver-
sation speech data and the LMs were trained on 1.4
billion words comprising a variety of resources. De-
tails of training data and system development were
illustrated in (Lei et al., 2009).

This procedure is similar to forced aligning the
word lattices to the audio data (Finke and Waibel,
1997). Both Finke et al.’s approach (Finke and
Waibel, 1997) and our approach built a lattice from
each transcription sentence (in our approach, op-
tional filled pauses are inserted between any two
words and at the beginning and end of each utter-
ance). Then Finke et al. force-aligned the lattice
with utterance; whereas, we used multi-pass con-
strained decoding with within-word and cross-word
models, MLLR adaptation of the acoustic models,
and rescoring with a higher-order n-gram LM, so the
performance will be better than just flexible align-
ment to the lattices. Note that when constructing
the word lattices with optional FP words, for En-
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glish, the optional FP words are a choice between
uh and um. For Mandarin, the optional FP words
are a choice betweenuh, mm, zhege, andnage. We
assigned equal weights to FP words.

4 Experimental Results

Scoring of EARS MDE-style automatic disfluency
detection output is done using the NIST tools1,
computing the error rate as the average number of
misclassified words per reference event word. For
English, the training and evaluation data were from
the 40 hours CTS data in the NIST RT-04F MDE
training data including speech, their transcriptions
and disfluency annotations by LDC. We randomly
held out two 3-hour subsets from this training data
set for evaluation and parameter tuning respectively,
and used the remaining data for training. Note
that for Mandarin, there is no LDC released Man-
darin MDE training data. We adapted the English
MDE annotation guidelines for Mandarin and man-
ually annotated the manual transcripts of 92 Man-
darin broadcast conversation (BC) shows released
by LDC under the DARPA GALE program, for edit
disfluencies and filler words. We randomly held out
two 3-hour subsets from the 92 shows for evalu-
ation and parameter tuning respectively, and man-
ually corrected disfluency annotation errors on the
evaluation set.

Table 1 shows the results in NIST error rate (%)
for edit word, IP, and filler word detection. We ob-
serve that adding POS features improves edit word,
edit IP, and filler word detection for both languages,
and adding a prosody model produced further im-
provement (note that filler word detection systems
did not employ prosodic features). The gains from
combining the word, POS, and prosody model over
the word n-gram baseline are statistically significant
for both languages (confidence levelp < 0:05 using
matched pair test). Also, adding the prosody model
over word+POS yielded a larger relative gain in edit
word+IP detection performance for Mandarin than
for English data. A preliminary study of these re-
sults has shown that the prosody model contributes
differently for different types of disfluencies for En-
glish and Mandarin conversational speech and we
will continue this study in future work. We also plan

1www.itl.nist.gov/iad/mig/tests/rt/2004-fall/index.html

to investigate the prosodic features considering the
special characteristics of edited disfluencies in Man-
darin studied in (Lin and Lee, 2009).

Table 1: NIST error rate (%) for edit word, IP, and filler
word detection on the English and Mandarin test set,
using word n-gram features, POS n-gram features, and
prosody model.

Feature NIST Error Rate (%)
Edit Word Edit IP Filler Word

English
Word 53.0 38.7 31.2
+POS 52.6 38.2 29.8
++Prosody 52.3 38.0 29.8

Mandarin
Word 58.5 42.8 33.4
+POS 57.7 42.1 32.9
++Prosody 56.9 41.5 32.9

For evaluating constrained speech recognition for
FP detection, the English test set of conversational
speech data and word transcripts is derived from
the CTS subset of the NIST 2002 Rich Transcrip-
tion evaluation. The waveforms were segmented ac-
cording to utterance boundaries given by the human-
generated transcripts, resulting in 6554 utterance
segments with a total duration of 6.8 hours. We then
excluded turns that have fewer than five tokens or
have two or more FPs in a row (such as ‘uh um’ and
‘uh, uh’), resulting in 3359 segments. This yields
the test set from which we computed English FP de-
tection scores. The transcripts of this test set con-
tain 54511 non-FP words and 1394 FPs, transcribed
as eitheruh or um. When evaluating FP detection
performance, these two orthographical forms were
mapped to a single token type, so recognizing one
form as the other is not penalized. The Mandarin
test set is the DARPA GALE 2008 Mandarin speech-
to-text development test set of 1 hour duration. The
transcripts of this test set contain 9820 non-FP words
and 370 FP words, transcribed asuh, mm, zhege,
andnage. We collapsed them to a single token type
for FP scoring. We evaluated FP detection perfor-
mance in terms of both false alarm (incorrect detec-
tion) and miss (failed detection) rates, shown in Ta-
ble 2. We observed that adding pronunciation scores
didn’t change thePfa andPmiss. On the English
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test set, adding LM scores degradedPmiss but im-
provedPfa. However, on the Mandarin test set, in-
creasing LM weight improved bothPmiss andPfa,
suggesting that for the Mandarin LVCSR system in
this study, the LM could provide complementary in-
formation to the AM to discriminate FP and non-FP
words.

Table 2: Probabilities of false alarms (FAs) and misses in
FP detection on the English and Mandarin test set w.r.t.
acoustic model weightwa, language model weightwg,
and pronunciation score weightwp.fwa; wg; wpg FAs (%) Misses (%)

Englishf1,0,8g 1.76 3.23f1,8,8g 1.18 4.73
Mandarinf1,0,8g 1.19 19.68f1,8,8g 0.76 16.76

5 Conclusion

In conclusion, we have presented two automatic dis-
fluency detection systems, one combining various
lexical and prosodic features, and the other com-
bining LVCSR acoustic and language model knowl-
edge sources. We observed significant improve-
ments in combining lexical and prosodic features
over just employing word n-gram features, for both
languages. When combining AM and LM knowl-
edge sources for FP detection in constrained speech
recognition, we found increasing LM weight im-
proved both false alarm and miss rates for Mandarin
but degraded the miss rate for English.
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