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Abstract

Large unsupervised latent variable models
(LVMs) of text, such as Latent Dirichlet Al-
location models or Hidden Markov Models
(HMMs), are constructed using parallel train-
ing algorithms on computational clusters. The
memory required to hold LVM parameters
forms a bottleneck in training more powerful
models. In this paper, we show how the mem-
ory required for parallel LVM training can
be reduced by partitioning the training corpus
to minimize the number of unique words on
any computational node. We present a greedy
document partitioning technique for the task.
For large corpora, our approach reduces mem-
ory consumption by over 50%, and trains the
same models up to three times faster, when
compared with existing approaches for paral-
lel LVM training.

1 Introduction

Unsupervised latent variable models (LVMs) of text
are utilized extensively in natural language process-
ing (Griffiths and Steyvers, 2004; Ritter et al., 2010;
Downey et al., 2007; Huang and Yates, 2009; Li and
McCallum, 2005). LVM techniques include Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), Hid-
den Markov Models (HMMs) (Rabiner, 1989), and
Probabilistic Latent Semantic Analysis (Hofmann,
1999), among others.

LVMs become more predictive as they are trained
on more text. However, training LVMs on mas-
sive corpora introduces computational challenges, in
terms of both time and space complexity. The time
complexity of LVM training has been addressed

through parallel training algorithms (Wolfe et al.,
2008; Chu et al., 2006; Das et al., 2007; Newman
et al., 2009; Ahmed et al., 2012; Asuncion et al.,
2011), which reduce LVM training time through the
use of large computational clusters.

However, the memory cost for training LVMs re-
mains a bottleneck. While LVM training makes se-
quential scans of the corpus (which can be stored on
disk), it requires consistent random access to model
parameters. Thus, the model parameters must be
stored in memory on each node. Because LVMs in-
clude a multinomial distribution over words for each
latent variable value, the model parameter space in-
creases with the number of latent variable values
times the vocabulary size. For large models (i.e.,
with many latent variable values) and large cor-
pora (with large vocabularies), the memory required
for training can exceed the limits of the commod-
ity servers comprising modern computational clus-
ters. Because model accuracy tends to increase with
both corpus size and model size (Ahuja and Downey,
2010; Huang and Yates, 2010), training accurate lan-
guage models requires that we overcome the mem-
ory bottleneck.

We present a simple technique for mitigating the
memory bottleneck in parallel LVM training. Ex-
isting parallelization schemes begin by partitioning
the training corpus arbitrarily across computational
nodes. In this paper, we show how to reduce mem-
ory footprint by instead partitioning the corpus to
minimize the number of unique words on each node
(and thereby minimize the number of parameters the
node must store). Because corpus partitioning is
a pre-processing step in parallel LVM training, our
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technique can be applied to reduce the memory foot-
print of essentially any existing LVM or training ap-
proach. The accuracy of LVM training for a fixed
model size and corpus remains unchanged, but in-
telligent corpus partitioning allows us to train larger
and typically more accurate models using the same
memory capacity.

While the general minimization problem we en-
counter is NP-hard, we develop greedy approxima-
tions that work well. In experiments with both
HMM and LDA models, we show that our technique
offers large advantages over existing approaches in
terms of both memory footprint and execution time.
On a large corpus using 50 nodes in parallel, our best
partitioning method can reduce the memory required
per node to less than 1/10th that when training with-
out corpus partitioning, and to half that of a random
partitioning. Further, our approach reduces the train-
ing time of an existing parallel HMM codebase by
3x. Our work includes the release of our partitioning
codebase, and an associated codebase for the paral-
lel training of HMMs.1

2 Problem Formulation

In a distributed LVM system, a training corpus D =
{d1, d2, . . . , dN} of documents is distributed across
T computational nodes. We first formalize the mem-
ory footprint on each node nt, where t = {1, ..., T}.
Let Dt ⊂ D denote the document collection on node
nt, and Vt be the number of word types (i.e., the
number of unique words) in Dt. Let K be the num-
ber of latent variable values in the LVM.

With these quantities, we can express how many
parameters must be held in memory on each com-
putational node for training LVMs in a distributed
environment. In practice, the LVM parameter space
is dominated by an observation model: a condi-
tional distribution over words given the latent vari-
able value. Thus, the observation model includes
K(Vt− 1) parameters. Different LVMs include var-
ious other parameters to specify the complete model.
For example, a first-order HMM includes additional
distributions for the initial latent variable and latent
variable transitions, for a total of K(Vt − 1) + K2

parameters. LDA, on the other hand, includes just a

1https://code.google.com/p/
corpus-partition/

single multinomial over the latent variables, making
a total of K(Vt − 1) + K − 1 parameters.

The LVM parameters comprise almost all of the
memory footprint for LVM training. Further, as the
examples above illustrate, the number of parame-
ters on each node tends to vary almost linearly with
Vt (in practice, Vt is typically larger than K by an
order of magnitude or more). Thus, in this paper
we attempt to minimize memory footprint by lim-
iting Vt on each computational node. We assume
the typical case in a distributed environment where
nodes are homogeneous, and thus our goal is to par-
tition the corpus such that the maximum vocabulary
size Vmax = maxT

t=1Vt on any single node is mini-
mized. We define this task formally as follows.

Definition CORPUSPART : Given a corpus of
N documents D = {d1, d2, . . . , dN}, and T nodes,
partition D into T subsets D1, D2, . . . , DT , such
that Vmax is minimized.

For illustration, consider the following small ex-
ample. Let corpus C contain three short docu-
ments {c1=“I live in Chicago”, c2=“I am studying
physics”, c3=“Chicago is a city in Illinois”}, and
consider partitioning C into 2 non-empty subsets,
i.e., T = 2. There are a total of three possibilities:
• {{c1, c2}, {c3}}. Vmax = 7

• {{c1, c3}, {c2}}. Vmax = 8

• {{c2, c3}, {c1}}. Vmax = 10

The decision problem version of
CORPUSPART is NP-Complete, by a re-
duction from independent task scheduling (Zhu and
Ibarra, 1999). In this paper, we develop greedy
algorithms for the task that are effective in practice.

We note that CORPUSPART has a submodu-
lar problem structure, where greedy algorithms are
often effective. Specifically, let |S| denote the vo-
cabulary size of a set of documents S, and let S′ ⊆
S. Then for any document c the following inequality
holds.

|S′ ∪ c| − |S′| ≥ |S ∪ c| − |S|

That is, adding a document c to the subset S′ in-
creases vocabulary size at least as much as adding
c to S; the vocabulary size function is submodular.
The CORPUSPART task thus seeks a partition
of the data that minimizes the maximum of a set of
submodular functions. While formal approximation
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guarantees exist for similar problems, to our knowl-
edge none apply directly in our case. For example,
(Krause et al., 2007) considers maximizing the mini-
mum over a set of monotonic submodular functions,
which is the opposite of our problem. The distinct
task of minimizing a single submodular function has
been investigated in e.g. (Iwata et al., 2001).

It is important to emphasize that data partition-
ing is a pre-processing step, after which we can em-
ploy precisely the same Expectation-Maximization
(EM), sampling, or variational parameter learning
techniques as utilized in previous work. In fact,
for popular learning techniques including EM for
HMMs (Rabiner, 1989) and variational EM for LDA
(Wolfe et al., 2008), it can be shown that the param-
eter updates are independent of how the corpus is
partitioned. Thus, for those approaches our parti-
tioning is guaranteed to produce the same models as
any other partitioning method; i.e., model accuracy
is unchanged.

Lastly, we note that we target synchronized LVM
training, in which all nodes must finish each train-
ing iteration before any node can proceed to the
next iteration. Thus, we desire balanced partitions to
help ensure iterations have similar durations across
nodes. We achieve this in practice by constraining
each node to hold at most 3% more than Z/T to-
kens, where Z is the corpus size in tokens.

3 Corpus Partitioning Methods

Our high-level greedy partitioning framework is
given in Algorithm 1. The algorithm requires an-
swering two key questions: How do we select which
document to allocate next? And, given a document,
on which node should it be placed? We present al-
ternative approaches to each question below.

Algorithm 1 Greedy Partitioning Framework

INPUT: {D, T}
OUTPUT: {D1, . . . , DT }
Objective: Minimize Vmax

Initialize each subset Dt = ∅ for T nodes
repeat

document selection:Select document d from D
node selection: Select node nt, and add d to Dt

Remove d from D
until all documents are allocated

A baseline partitioning method commonly used
in practice simply distributes documents across
nodes randomly. As our experiments show, this
baseline approach can be improved significantly.

In the following, set operations are interpreted as
applying to the set of unique words in a document.
For example, |d∪Dt| indicates the number of unique
word types in node nt after document d is added to
its document collection Dt.

3.1 Document Selection
For document selection, previous work (Zhu and
Ibarra, 1999) proposed a heuristic DISSIMILARITY
method that selects the document d that is least sim-
ilar to any of the node document collections Dt,
where the similarity of d and Dt is calculated as:
Sim(d, DT ) = |d ∩ Dt|. The intuition behind the
heuristic is that dissimilar documents are more likely
to impact future node selection decisions. Assigning
the dissimilar documents earlier helps ensure that
more greedy node selections are informed by these
impactful assignments.

However, DISSIMILARITY has a prohibitive time
complexity of O(TN2), because we must compare
T nodes to an order of N documents for a total of
N iterations. To scale to large corpora, we propose
a novel BATCH DISSIMILARITY method. In BATCH

DISSIMILARITY, we select the top L most dissim-
ilar documents in each iteration, instead of just the
most dissimilar. Importantly, L is altered dynami-
cally: we begin with L = 1, and then increase L by
one for iteration i+1 iff using a batch size of L+1 in
iteration i would not have altered the algorithm’s ul-
timate selections (that is, if the most dissimilar doc-
ument in iteration i + 1 is in fact the L + 1st most
dissimilar in iteration i). In the ideal case where L
is incremented each iteration, BATCH DISSIMILAR

will have a reduced time complexity of O(TN3/2).
Our experiments revealed two key findings re-

garding document selection. First, BATCH DISSIM-
ILARITY provides a memory reduction within 0.1%
of that of DISSIMILARITY (on small corpora where
running DISSIMILARITY is tractable), but partitions
an estimated 2,600 times faster on our largest eval-
uation corpus. Second, we found that document se-
lection has relatively minor impact on memory foot-
print, providing a roughly 5% incremental benefit
over random document selection. Thus, although
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we utilize BATCH DISSIMILARITY in the final sys-
tem we evaluate, simple random document selection
may be preferable in some practical settings.

3.2 Node Selection

Given a selected document d, the MINIMUM
method proposed in previous work selects node nt

having the minimum number of word types after al-
location of d to nt (Zhu and Ibarra, 1999). That is,
MINIMUM minimizes |d ∪Dt|. Here, we introduce
an alternative node selection method JACCARD that
selects node nt maximizing the Jaccard index, de-
fined here as |d ∩Dt|/|d ∪Dt|.

Our experiments showed that our JACCARD node
selection method outperforms the MINIMUM selec-
tion method. In fact, for the largest corpora used
in our experiments, JACCARD offered an 12.9%
larger reduction in Vmax than MINIMUM. Our
proposed system, referred to as BJAC, utilizes
our best-performing strategies for document selec-
tion (BATCH DISSIMILARITY) and node selection
(JACCARD).

4 Evaluation of Partitioning Methods

We evaluate our partitioning method against the
baseline and Z&I, the best performing scalable
method from previous work, which uses random
document selection and MINIMUM node selection
(Zhu and Ibarra, 1999). We evaluate on three cor-
pora (Table 1): the Brown corpus of newswire text
(Kucera and Francis, 1967), the Reuters Corpus Vol-
ume1 (RCV1) (Lewis et al., 2004), and a larger Web-
Sent corpus of sentences gathered from the Web
(Downey et al., 2007).

Corpus N V Z
Brown 57339 56058 1161183
RCV1 804414 288062 99702278

Web-Sent 2747282 214588 58666983

Table 1: Characteristics of the three corpora. N = #
of documents, V = # of word types, Z = # of tokens.
We treat each sentence as a document in the Brown
and Web-Sent corpora.

Table 2 shows how the maximum word type size
Vmax varies for each method and corpus, for T = 50
nodes. BJAC significantly decreases Vmax over the

Corpus baseline Z&I BJAC

Brown 6368 5714 4369
RCV1 49344 32136 24923

Web-Sent 72626 45989 34754

Table 2: Maximum word type size Vmax for each
partitioning method, for each corpus. For the larger
corpora, BJAC reduces Vmax by over 50% compared
to the baseline, and by 23% compared to Z&I.

random partitioning baseline typically employed in
practice. Furthermore, the advantage of BJAC over
the baseline is maintained as more computational
nodes are utilized, as illustrated in Figure 1. BJac
reduces Vmax by a larger factor over the baseline as
more computational nodes are employed.
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Figure 1: Effects of partitioning as the number of
computational nodes increases (Web-Sent corpus).
With 100 nodes, BJac’s Vmax is half that of the base-
line, and 1/10th of the full corpus vocabulary size.

5 Evaluation in Parallel LVM Systems
We now turn to an evaluation of our corpus parti-
tioning within parallel LVM training systems.

Table 3 shows the memory footprint required for
HMM and LDA training for three different partition-
ing methods. We compare BJAC with the random
partitioning baseline, Zhu’s method, and with all-
words, the straightforward approach of simply stor-
ing parameters for the entire corpus vocabulary on
every node (Ahuja and Downey, 2010; Asuncion et
al., 2011). All-words has the same memory footprint
as when training on a single node.

For large corpora, BJAC reduces memory size
per node by approximately a factor of two over the
random baseline, and by a factor of 8-11 over all-
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LVM Corpus all-words baseline BJAC

HMM
Brown 435.3 56.2 40.9
RCV1 2205.4 384.1 197.8

Web-Sent 1644.8 561.7 269.7

LDA
Brown 427.7 48.6 33.3
RCV1 2197.7 376.5 190.1

Web-Sent 1637.2 554.1 262.1

Table 3: Memory footprint of computational nodes
in megabytes(MB), using 50 computational nodes.
Both models utilize 1000 latent variable values.

words. The results demonstrate that in addition to
the well-known savings in computation time offered
by parallel LVM training, distributed computation
also significantly reduces the memory footprint on
each node. In fact, for the RCV1 corpus, BJAC re-
duces memory footprint to less than 1/10th that of
training with all words on each computational node.

We next evaluate the execution time for an itera-
tion of model training. Here, we use a parallel im-
plementation of HMMs, and measure iteration time
for training on the Web-sent corpus with 50 hidden
states as the number of computational nodes varies.
We compare against the random baseline and against
the all-words approach utilized in an existing paral-
lel HMM codebase (Ahuja and Downey, 2010). The
results are shown in Table 4. Moving beyond the all-
words method to exploit corpus partitioning reduces
training iteration time, by a factor of two to three.
However, differences in partitioning methods have
only small effects in iteration time: BJAC has essen-
tially the same iteration time as the random baseline
in this experiment.

It is also important to consider the additional time
required to execute the partitioning methods them-
selves. However, in practice this additional time
is negligible. For example, BJAC can partition the
Web-sent corpus in 368 seconds, using a single com-
putational node. By contrast, training a 200-state
HMM on the same corpus requires over a hundred
CPU-days. Thus, BJAC’s time to partition has a neg-
ligible impact on total training time.

6 Related Work

The CORPUSPART task has some similarities
to the graph partitioning task investigated in other

T all-words baseline BJAC

25 4510 1295 1289
50 2248 740 735
100 1104 365 364
200 394 196 192

Table 4: Average iteration time(sec) for training an
HMM with 50 hidden states on Web-Sent. Partition-
ing with BJAC outperforms all-words, which stores
parameters for all word types on each node.

parallelization research (Hendrickson and Kolda,
2000). However, our LVM training task differs sig-
nificantly from those in which graph partitioning is
typically employed. Specifically, graph partitioning
tends to be used for scientific computing applica-
tions where communication is the bottleneck. The
graph algorithms focus on creating balanced parti-
tions that minimize the cut edge weight, because
edge weights represent communication costs to be
minimized. By contrast, in our LVM training task,
memory consumption is the bottleneck and commu-
nication costs are less significant.

Zhu & Ibarra (1999) present theoretical results
and propose techniques for the general partitioning
task we address. In contrast to that work, we fo-
cus on the case where the data to be partitioned is a
large corpus of text. In this setting, we show that our
heuristics partition faster and provide smaller mem-
ory footprint than those of (Zhu and Ibarra, 1999).

7 Conclusion

We presented a general corpus partitioning tech-
nique which can be exploited in LVM training to re-
duce memory footprint and training time. We eval-
uated the partitioning method’s performance, and
showed that for large corpora, our approach reduces
memory consumption by over 50% and learns mod-
els up to three times faster when compared with ex-
isting implementations for parallel LVM training.
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