
Proceedings of NAACL-HLT 2013, pages 445–449,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Better Twitter Summaries?

Joel Judd & Jugal Kalita
Department of Computer Science

University of Colorado
Colorado Springs, Colorado

Email: {jjudd2,jkalita}@uccs.edu

Abstract

This paper describes an approach to improve
summaries for a collection of Twitter posts cre-
ated using the Phrase Reinforcement (PR) Al-
gorithm (Sharifi et al., 2010a). The PR algo-
rithm often generates summaries with excess
text and noisy speech. We parse these sum-
maries using a dependency parser and use the
dependencies to eliminate some of the excess
text and build better-formed summaries. We
compare the results to those obtained using the
PR Algorithm.

1 Introduction

Millions of people use the Web to express themselves
and share ideas. Twitter is a very popular micro
blogging site. According to a recent study approxi-
mately 340 million Tweets are sent out every day1.
People mostly upload daily routines, fun activities
and other words of wisdom for readers. There is also
plenty of serious information beyond the personal;
according to a study approximately 4% of posts on
Twitter have relevant news data2. Topics that may
be covered by reputable new sources like CNN (Ca-
ble News Network) were considered relevant. A topic
is simply a keyword or key phrase that one may use
to search for Twitter posts containing it. It is pos-
sible to gather large amounts of posts from Twitter
on many different topics in short amounts of time.
Obviously, processing all this information by human
hands is impossible. One way to extract information
from Twitter posts on a certain topic is to automat-
ically summarize them. (Sharifi et al., 2010a; Sharifi
et al., 2010b; Sharifi et al., 2010c) present an al-
gorithm called the Phrase Reinforcement Algorithm
to produces summaries of a set of Twitter posts on

1http://blog.twitter.com/2012/03/

twitter-turns-six.htm
2http://www.pearanalytics.com/blog/wp-content/

uploads/2010/05/Twitter-Study-August-2009.pdf

a certain topic. The PR algorithm produces good
summaries for many topics, but for sets of posts on
certain topics, the summaries become syntactically
malformed or too wordy. This is because the PR
Algorithm does not pay much attention to syntactic
well-formedness as it constructs a summary sentence
from phrases that occur frequently in the posts it
summarizes. In this paper, we attempt to improve
Twitter summaries produced by the PR algorithm.

2 The PR Algorithm Revisited

Given a number of Twitter posts on a certain topic,
the PR algorithm starts construction of what is
called a word graph with a root node containing the
topic phrase. It builds a graph showing how words
occur before and after the phrase in the root node,
considering all the posts on the topic. It builds a
subgraph to the left of the topic phrase and another
subgraph to its right in a similar manner. To con-
struct the left graph, the algorithm starts with the
root node and obtains the set of words that occur
immediately before the current node’s phrase. For
each of these unique words, the algorithm adds them
to the graph as nodes with their associated counts
to the left of the current node. The algorithm con-
tinues this process recursively for each node added
to the graph until all the potential words have been
added to the left-hand side of the graph. The al-
gorithm repeats these steps symmetrically to con-
struct the right subgraph. Once the full graph is
there, the algorithm weights individual nodes. The
weights are initialized to the same values as their
frequency counts. Then, to account for the fact that
some phrases are naturally longer than others, they
penalize nodes that occur farther from the root node
by an amount that is proportional to their distance.
To generate a summary, the algorithm looks for the
most overlapping phrases within the graph. Since
the nodes’ weights are proportional to their overlap,
the algorithm searches for the path within the graph

445



with the highest cumulative weight. The sequence of
words in this path becomes the summary.

3 Problem Description

We start by making some observations on the phrase-
reinforcement algorithm. Certain topics do not pro-
duce well-formed summaries, while others yield very
good summaries. For the posts that have a well-
centered topic without a huge amount of variation
among the posts, the algorithm works well and cre-
ates good summaries. Here is an example summary
produced by the PR algorithm.

Phillies defeat Dodgers to take the National
League Championship series.

(Sharifi et al., 2010a; Sharifi et al., 2010b; Sharifi
et al., 2010c) provide additional examples. The PR
algorithm limits the length of the summary to ap-
proximately 140 characters, the maximum length of
a Twitter post. However, often the summary sen-
tence produced has extraneous parts that appear due
to the fact that they appear frequently in the posts
being summarized, but these parts make the sum-
mary malformed or too wordy. An example with
some wordiness is given below.

today is day for vote obama this election day

Some “raw” PR summaries are a lot more wordy
than the one above. The goal we address in this
paper is to create grammatically better formed sum-
maries by processing the “raw” summaries formed by
the PR Algorithm. We drop this excess text and the
phrases or extract pieces of text which make sense
grammatically to form the final summary. This usu-
ally produces a summary with more grammatical ac-
curacy and less noise in between the words. This gets
the main point of the summary across better.

4 Approach

The idea behind creating the desired summary is
to parse the “raw” summary and build dependen-
cies between the dependent and governor words in
each summary. We perform parts of speech tagging
and obtain lists of governing and dependent words.
This data forms the basis for creating a valid sum-
mary. For example given the Twitter post, today
is day for vote obama this election day, a depen-
dency parser produces the governor-dependent rela-
tionships as given in Table 1. Figure 1 also shows
the same grammatical dependencies between words
in the phrases.

We believe that a word which governs many words
is key to the phrase as a whole, and dependent words

Table 1: Governor and Dependent Words for today is
day1 for vote obama this election day2

Governor Dependent
day1 today

is
for
day2

obama vote
for obama
day2 this

election

Algorithm 1 Algorithm to Fix “Raw” PRA Sum-
maries

I. For each word, check grammatical compatibil-
ity with words before and after the word being
checked.
II. If a word has no dependencies immediately be-
fore or after it, drop the word.
III. After each word has been checked, check for
the words that form a grammatical phrase.
IV. Write out the summary without the dropped
words and without phrases with only two words.
V. If needed, go back to step III, because there
shouldn’t be any more single words with no de-
pendencies to check, and repeat as many times as
necessary.

which are closely related, or in other words, lay close
to each other in the phrase should be left in the or-
der they appear. Conceptually, our approach works
as follows: look at every word and see if it makes
sense with the word before and after it. This builds
dependencies between the word in question with the
words around it. If a word before or after the word
being analyzed does not make sense grammatically,
it can be removed from that grammatically correct
phrase. Dependent words that are not close to each
other may not be as important as words that lay
close to each other and have more dependencies, and
thus may be thrown out of the summaries. Through
this process grammatically correct phrases can be
formed.

The dependencies are built by tagging each word
as a part of speech and seeing if it relates to other
words. For example, it checks whether or not the
conjunction “and” is serving its purpose of combin-
ing a set of words or ideas, in other words, if those
dependencies exist. If dependencies exist with the
nearby words, that given collection of words can be
set aside as a grammatically correct phrase until it
reaches words with no dependencies, and the process

446



Figure 1: Dependency Parse for today is day1 for vote obama this election day2

today is day for vote obama this election day

dep

c o p

p r e p

nsubj

pobj

n n

det
n n

can continue. The phrases with few words can be
dropped, as well as single words. These new phrases
can be checked for grammatical accuracy in the same
way as the previous phrases, and if they pass, can
remain combined forming a longer summary that
should be grammatically correct. The main steps
are given in Algorithm 1.

Now, take the example summary produced by the
PR Algorithm for the election Twitter posts. Look-
ing at this summary, we, as humans, may make
changes and make the summary grammatically cor-
rect. Two potential ideal summaries would be the
following.

today is the day to vote for obama

vote for obama this election day

The actual process used in the making of the gram-
matical summaries is as follows. Two main lists are
created from lists of governor and dependent words,
one with the governor words and another with the
dependent words. The governor words are checked
to see how many dependent words are linked to them.
The governing words with the highest number of de-
pendent words are kept for later. For example using
the above phrase about the elections, the word “day”
was the governing word with the highest amount of
dependent words and was thus kept for the final sum-
mary. The superscripts on the word “day” differen-
tiate its two occurrences. The dependent words are
kept in groups of closely linked dependent words.
Using the same example about the election, an in-
termediate list of closely related dependent words is
“today,” “is,” “for,” “vote,” “obama,” “this,” “elec-
tion,” and “day.” And the final list of closely related
dependent words is “for,” “vote,” “obama,” “this,”
“election” and “day.” After these two lists are in the
final stages the lists are merged placing the words in
proper order.

5 Experiments and Results

To begin, the Twitter posts were collected manu-
ally and stored in text files. The topics we chose to

Table 2: ROUGE-L without Stopwords, Before

Task Recall Precision F-score
Task 1 0.667 0.343 0.453
Task 2 1.000 0.227 0.370
Task 3 0.353 0.240 0.286
Task 4 0.800 0.154 0.258
Task 5 1.000 0.185 0.313
Task 6 0.667 0.150 0.245
Task 7 0.889 0.125 0.219
Task 8 0.636 0.125 0.209
Task 9 0.500 0.300 0.375
Task 10 0.455 0.100 0.164
Average 0.696 0.195 0.289

focus on important current events and some pop cul-
ture. Approximately 100 posts were collected on ten
different topics. These topics are “The Avengers,”
“Avril Lavigne,” “Christmas,” “the election,” “Elec-
tion Day,” “Iron Man 3,” “president 2012,” “Hurri-
cane Sandy,” “Thanksgiving,” and “vote.”

The collections of posts were passed on to three
volunteers to produce short accurate summaries that
capture the main idea from the posts. The collections
of posts were also first run through the PR Algorithm
and then through the process described in this paper
to try and refine the summaries output by the PR
Algorithm. The Stanford CoreNLP parser3 was used
to build the lists of governor and dependent words.

We use ROUGE evaluation metrics (Lin 2004)
just like (Sharifi et al., 2010a; Sharifi et al., 2010b;
Sharifi et al., 2010c), who evaluated summaries ob-
tained with the PR Algorithm. Specifically, we use
ROUGE-L, which uses the longest common subse-
quence (LCS) to compare summaries. As the LCS of
the two summaries in comparison increases in length,
so does the similarity of the two summaries.

We now discuss results using ROUGE-L on the
summaries we produce. Tables 2 through 5 show
the results of four different ROUGE-L evaluations,
comparing them to the results found using the PR

3http://nlp.stanford.edu/software/corenlp.shtml

447



Table 3: ROUGE-L without Stopwords, After

Task Recall Precision F-score
Task 1 0.667 0.480 0.558
Task 2 0.400 0.500 0.444
Task 3 0.000 0.000 0.000
Task 4 0.400 0.333 0.363
Task 5 0.900 0.600 0.720
Task 6 0.389 0.350 0.368
Task 7 0.556 0.250 0.345
Task 8 0.545 0.500 0.522
Task 9 0.417 0.417 0.417
Task 10 0.363 0.200 0.258
Average 0.464 0.363 0.400

Algorithm, and Table 6 shows the comparisons of the
averaged scores to the scores (Sharifi et al., 2010a)
obtained using the PR Algorithm. Table 2 shows the
regular ROUGE-L scores, meaning the recall, pre-
cision and F-scores for each task and the average
overall scores, for the collection of posts before using
the dependency parser to refine the summaries. Ta-
ble 3 displays the results after using the dependency
parser on the summaries formed by the PR Algo-
rithm. One of the options in ROUGE is to show the
“best” result, for each task. Table 4 has this result
for the PR Algorithm results. Table 5 shows the re-
sults of the “best” scores, after running it through
the dependency parser. Table 6 shows the averages
from Tables 3 and 5, using the dependency parser,
compared to Sharifi et al.’s results using the PR Al-
gorithm. Stopwords were not removed in our exper-
iments.

Table 4: ROUGE-L Best without Stopwords, Before

Recall Precision F-score
Task 1 1.000 0.429 0.600
Task 2 1.000 0.227 0.370
Task 3 0.500 0.200 0.286
Task 4 1.000 0.154 0.267
Task 5 1.000 0.167 0.286
Task 6 1.000 0.200 0.333
Task 7 1.000 0.125 0.222
Task 8 1.000 0.071 0.133
Task 9 1.000 0.400 0.571
Task 10 1.000 0.100 0.182
Average 0.950 0.207 0.325

As one can see, the use of our algorithm on the
summaries produced by the PR Algorithm improves
the F-score values, at least in the example cases we
tried. In almost every case, there is substantial rise
in the F-score. As previously mentioned, some col-

Table 5: ROUGE-L Best without Stopwords, After

Recall Precision F-score
Task 1 1.000 0.600 0.750
Task 2 0.400 0.500 0.444
Task 3 0.000 0.000 0.000
Task 4 0.500 0.333 0.400
Task 5 1.000 0.600 0.750
Task 6 0.600 0.600 0.600
Task 7 0.667 0.400 0.500
Task 8 1.000 0.333 0.500
Task 9 1.000 0.667 0.800
Task 10 1.000 0.250 0.400
Average 0.718 0.428 0.515

Table 6: ROUGE-L Averages after applying our algo-
rithm vs. Sharifi et al.

Recall Precision F-score
Sharifi (PRA) 0.31 0.34 0.33
Rouge-L after re-
construction

0.46 0.36 0.40

Rouge-L best after
reconstruction

0.72 0.43 0.52

lections of Tweets do not produce good summaries.
Task 3 had some poor scores in all cases, so one can
deduce that the posts on that topic (Christmas) were
widely spread, or they did not have a central theme.

6 Conclusion

The PR Algorithm is not a pure extractive algo-
rithm. It creates summaries of Twitter posts by piec-
ing together the most commonly occurring words and
phrases in the entire set of tweets, but keeping the
order of constituents as close to the order in which
they occur in the posts, collectively speaking. As
we noted in this paper, the heuristic method using
which the PR Algorithm composes a summary sen-
tence out of the phrases sometimes leads to ungram-
matical sentences or wordy sentences. This paper
shows that the “raw” summaries produced by the
PR Algorithm can be improved by taking into ac-
count governor-dependency relationships among the
constituents. There is nothing in this clean-up algo-
rithm that says that it works only with summaries of
tweets. The same approach can potentially be used
to improve grammaticality of sentences written by
humans in a sloppy manner. In addition, given sev-
eral sentences with overlapping content (from mul-
tiple sources), the same process can potentially be
used to construct a grammatical sentence out of all
the input sentences. This problem often arises in
general multi-document summarization. We believe

448



that a corrective approach like ours can be used to-
gether with a sentence compression approach, such
as (Knight and Marcu 2002), to produce even bet-
ter summaries in conjunction with the PR or other
summarization algorithms that work with socially-
generated texts which are often malformed and short.

We have shown in this paper that simply focusing
on grammatical dependency tends to make the fi-
nal summaries more grammatical and readable com-
pared to the raw summaries. However, we believe
that more complex restructuring of the words and
constituents would be necessary to improve the qual-
ity of the raw summaries, in general.

References

Knight, K. and Marcu, D. 2004. Summarization beyond
sentence extraction: A probabilistic approach to sen-

tence compression, Artificial Intelligence, Vol. 139, No.
1, pp. 91–107.

Lin, C.Y. 2004. Rouge: A package for automatic evalua-
tion of summaries, Text Summarization Branches Out:
Proceedings of the ACL-04 Workshop, pp. 74–81.

Sharifi, Beaux, Mark-Anthony Hutton, and Jugal Kalita.
2010. Summarizing Microblogs Automatically, Annual
Conference of the National Association for Advance-
ment of Computational Linguistics-Human Language
Technology (NAACL-HLT), pp. 685-688, Los Angeles.

Sharifi, Beaux, Mark-Anthony Hutton, and Jugal Kalita.
2010. Experiments in Microblog Summarization, Sec-
ond IEEE International Conference on Social Comput-
ing (SocialCom 2010), pp. 49-56, Minneapolis.

Sharifi, Beaux, Mark-Anthony Hutton and Jugal Kalita.
2010. Automatic Summarization of Twitter Topics,
National Workshop on Design and Analysis of Algo-
rithms, NWDAA 10, Tezpur University, Assam, India.

449


