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Abstract

When people describe a scene, they often in-
clude information that is not visually apparent;
sometimes based on background knowledge,
sometimes to tell a story. We aim to sepa-
rate visual text—descriptions of what is being
seen—from non-visual text in natural images
and their descriptions. To do so, we first con-
cretely define what it means to be visual, an-
notate visual text and then develop algorithms
to automatically classify noun phrases as vi-
sual or non-visual. We find that using text
alone, we are able to achieve high accuracies
at this task, and that incorporating features
derived from computer vision algorithms im-
proves performance. Finally, we show that we
can reliably mine visual nouns and adjectives
from large corpora and that we can use these
effectively in the classification task.

1 Introduction

People use language to describe the visual world.
Our goal is to: formalize what “visual text” is (Sec-
tion 2.2); analyze naturally occurring written lan-
guage for occurrences of visual text (Section 2); and
build models that can detect visual descriptions from
raw text or from image/text pairs (Section 3). This
is a challenging problem. One challenge is demon-
strated in Figure 1, which contains two images that
contain the noun “car” in their human-written cap-
tions. In one case (the top image), there actually is a
car in the image; in the other case, there is not: the
car refers to the state of the speaker.

The ability to automatically identify visual text is
practically useful in a number of scenarios. One can

Another dream car to
add to the list, this one
spotted in Hanbury St.

Shot out my car win-
dow while stuck in traf-
fic because people in
Cincinnati can’t drive in
the rain.

Figure 1: Two image/caption pairs, both containing the
noun “car” but only the top one in a visual context.

imagine automatically mining image/caption data
(like that in Figure 1) to train object recognition sys-
tems. However, in order to do so reliably, one must
know whether the “car” actually appears or not.
When building image search engines, it is common
to use text near an image as features; this is more
useful when this text is actually visual. Or when
training systems to automatically generate captions
of images (e.g., for visually impaired users), we
need good language models for visual text.

One of our goals is to define what it means for a
bit of text to be visual. As inspiration, we consider
image/description pairs automatically crawled from
Flickr (Ordonez et al., 2011). A first pass attempt
might be to say “a phrase in the description of an
image is visual if you can see it in the corresponding
image.” Unfortunately, this is too vague to be useful;
the biggest issues are discussed in Section 2.2.
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Based on our analysis, we settled on the follow-
ing definition: A piece of text is visual (with re-
spect to a corresponding image) if you can cut out
a part of that image, paste it into any other image,
and a third party could describe that cut-out part in
the same way. In the car example, the claim is that I
could cut out the car, put it in the middle of any other
image, and someone else might still refer to that car
as “dream car.” The car in the bottom image in Fig-
ure 1 is not visual because there’s nothing you could
cut out that would retain car-ness.

2 Data Analysis

Before embarking on the road to building models of
visual text, it is useful to obtain a better understand-
ing of what visual text is like, and how it compares to
the more standard corpora that we are used to work-
ing with. We describe the two large data sets that we
use (one visual, one non-visual), then describe the
quantitative differences between them, and finally
discuss our annotation effort for labeling visual text.

2.1 Data sets

We use the SBU Captioned Photo Dataset (Ordonez
et al., 2011) as our primary source of image/caption
data. This dataset contains 1 million images with
user associated captions, collected in the wild by in-
telligent filtering of a huge number of Flickr pho-
tos. Past work has made use of this dataset to re-
trieve whole captions for association with a query
image (Ordonez et al., 2011). Their method first
used global image descriptors to retrieve an initial
matched set, and then applied more local estimates
of content to re-rank this (relatively small) set (Or-
donez et al., 2011). This means that content based
matching was relatively constrained by the bottle-
neck of global descriptors, and local content (e.g.,
objects) had relatively small effect on accuracy.

As an auxiliary source of information for (largely)
non-visual text, we consider a large corpus of text
obtained by concatenating ukWaC1 and the New
York Times Newswire Service (NYT) section of the
Gigaword (Graff, 2003) Corpus. The Web-derived
ukWaC is already tokenized and POS-tagged with
the TreeTagger (Schmid, 1995). NYT is tokenized,

1ukWaC is a freely available Wikipedia-derived corpus from
2009; see http://wacky.sslmit.unibo.it/doku.php.

and POS-tagged using TagChunk (Daumé III and
Marcu, 2005). This consists of 171 million sen-
tences (4 billion words). We refer to this generic
text corpus as Large-Data.

2.2 Formalizing visual text

We begin our analysis by revisiting the definition
of visual text from the introduction, and justifying
this particular definition. In order to arrive at a suf-
ficiently specific definition of “visual text,” we fo-
cused on the applications of visual text that we care
about. As discussed in the introduction, these are:
training object detectors, building image search en-
gines and automatically generating captions for im-
ages. Our definition is based on access to image/text
pairs, but later we discuss how to talk about it purely
based on text. To make things concrete, consider an
image/text pair like that in the top of Figure 1. And
then consider a phrase in the text, like “dream car.”
The question is: is “dream car” visual or not?

One of the challenges in arriving at such a defi-
nition is that the description of an image in Flickr
is almost always written by the photographer of that
image. This means the descriptions often contain in-
formation that is not actually pictured in the image,
or contain references that are only relevant to the
photographer (referring to a person/pet by name).

One might think that this is an artifact of this par-
ticular dataset, but it appears to be generic to all cap-
tions, even those written by a viewer (rather than the
photographer). Figure 2 shows an image from the
Pascal dataset (Everingham et al., 2010), together
with captions written by random people collected
via crowd-sourcing (Rashtchian et al., 2010). There
is much in this caption that is clearly made-up by the
author, presumably to make the caption more inter-
esting (e.g., meta-references like “the camera” or “A
photo” as well as “guesses” about the image, such as
“garage” and “venison”).

Second, there is a question of how much inference
you are allowed to do when you say that you “see”
something. For example, in the top image in Fig-
ure 1, the street is pictured, but does that mean that
“Hanbury St.” is visual? What if there were a street
sign that clearly read “Hanbury St.” in the image?
This problem comes up all the time, when people
say things like “in London” or “in France” in their
captions. If it’s just a portrait of people “in France,”
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1. A distorted photo of a man cutting up a large cut of meat in a garage.

2. A man smiling at the camera while carving up meat.

3. A man smiling while he cuts up a piece of meat.

4. A smiling man is standing next to a table dressing a piece of venison.

5. The man is smiling into the camera as he cuts meat.

Figure 2: An image from the Pascal data with five captions collected via crowd-sourcing. Measurements on the
SMALL and LARGE dataset show that approximately 70% of noun phrases are visual (bolded), while the rest are
non-visual (underlined). See Section 2.4 for details.

it’s hard to say that this is visual. If you see the Eif-
fel tower in the background, this is perhaps better
(though it could be Las Vegas!), but how does this
compare to a photo taken out of an airplane window
in which you actually do see France-the-country?

This problem becomes even more challenging
when you consider things other than nouns. For in-
stance, when is a verb visual? For instance, the most
common non-copula verb in our data is “sitting,”
which appears in roughly two usages: (1) “Took this
shot, sitting in a bar and enjoying a Portugese beer.”
and (2) “Lexy sitting in a basket on top of her cat
tree.” The first one is clearly not visual; the second
probably is. A more nuanced case is for “playing,”
as in: “Girls playing in a boat on the river bank”
(probably visual) versus “Tuckered out from play-
ing in Nannie’s yard.” The corresponding image for
the latter description shows a sleeping cat.

Our final definition, based on cutting out the po-
tentially visual part of the image, allows us to say
that: (1) “venison” is not visual (because you cannot
actually tell); (2) “Hanbury St.” and “Lexy” are not
visual (you can infer them, in the first case because
there is only one street and in the second case be-
cause there is only one cat); (3) that seeing the real
Eiffel tower in the background does not mean that
“France” is visual (but again, may be inferred); etc.

2.3 Most Pronounced Differences

To get an intuitive sense of how Flickr captions (ex-
pected to be predominantly visual) and generic text
(expected not to be so) differ, we computed some
simple statistics on sentences from these. In gen-
eral, the generic text had twice as many main verbs
as the Flickr data, four times as many auxiliaries or
light verbs, and about 50% more prepositions.

Flickr captions tended to have far more references
to physical objects (versus abstract objects) than the
generic text, according to the WordNet hierarchy.
Approximately 64% of the objects in Flickr were
physical (about 22% abstract and 14% unknown).
Whereas in the generic text, only 30% of the objects
were physical, 53% were abstract (17% unknown).

A third major difference between the corpora is
in terms of noun modifiers. In both corpora, nouns
tend not to have any modifiers, but modifiers are still
more prevalent in Flickr than in generic text. In par-
ticular, 60% of nouns in Flickr have zero modifiers,
but 70% of nouns in generic text have zero modi-
fiers. In Flickr, 30% of nouns have exactly one mod-
ifier, as compared to only 22% for generic text.

The breakdown of what those modifiers look like
is even more pronounced, even when restricted just
to physical objects (modifier types are obtained
through the bootstrapping process discussed in Sec-
tion 3.1). Almost 50% of nominal modifiers in the
Flickr data are color modifiers, whereas color ac-
counts for less than 5% of nominal modifiers in
generic text. In Flickr, 10% of modifiers talk about
beauty, in comparison to less than 5% in generic
text. On the other hand, less than 3% of modifiers
in Flickr reference ethnicity, as compared to almost
20% in generic text; and 20% of Flickr modifiers
reference size, versus 50% in generic text.

2.4 Annotating Visual Text

In order to obtain ground truth data, we rely on
crowdsourcing (via Amazon’s Mechanical Turk).
Each instance is an image, a paired caption, and a
highlighted noun phrase in that caption. The anno-
tation for this instance is a label of “visual,” “non-
visual” or “error,” where the error category is re-
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served for cases where the noun phrase segmenta-
tion was erroneous. Each worker is given five in-
stances to label and paid one cent per annotation.2

For a small amount of data (803 images contain-
ing 2339 instances), we obtained annotations from
three separate workers per instance to obtain higher
quality data. For a large amount of data (48k im-
ages), we obtained annotations from only a sin-
gle worker. Subsequently, we will refer to these
two data sets as the SMALL and LARGE data sets.
In both data sets, approximately 70% of the noun
phrases were visual, 28% were non-visual and 2%
were erroneous. For simplicity, we group erroneous
and non-visual for all learning and evaluation.

In the SMALL data set, the rate of disagreement
between annotators was relatively low. In 74% of the
annotations, there was no disagreement at all. We
reconciled the annotations using the quality manage-
ment technique of Ipeirotis et al. (2010); only 14%
of the annotations need to be changed in order to ob-
tain a gold standard.

One immediate question raised in this process is
whether one needs to actually see the image to per-
form the annotation. In particular, if we expect an
NLP system to be able to classify noun phrases as
visual or non-visual, we need to know whether peo-
ple can do this task sans image. We therefore per-
formed the same annotation on the SMALL data set,
but where the workers were not shown the image.
Their task was to imagine an image for this caption
and then annotate the noun phrase based on whether
they thought it would be pictured or not. We ob-
tained three annotations as before and reconciled
them (Ipeirotis et al., 2010). The accuracy of this
reconciled version against the gold standard (pro-
duced by people who did see the image) was 91%.
This suggests that while people are able to do this
task with some reliability, seeing the image is very
important (recall that always guessing “visual” leads
to an accuracy of 70%).

3 Visual Features from Raw Text

Our first goal is to attempt to obtain relatively large
knowledge bases of terms that are (predominantly)
visual. This is potentially useful in its own right

2Data available at http://hal3.name/dvt/, with direct links
back to the SBU Captioned Photo Dataset.

(for instance, in the context of search, to determine
which query terms are likely to be pictured). We
have explored two techniques for performing this
task, the first based on bootstrapping (Section 3.1)
and the second based on label propagation (Sec-
tion 3.2). We then use these lists to generate features
for a classifier that predicts whether a noun phrase—
in context—is visual or not (Section 4).

In addition, we consider the task of separating ad-
jectives into different visual categories (Section 3.3).
We have already used the results of this in Sec-
tion 2.3 to understand the differences between our
two corpora. It is also potentially useful for the
purpose of building new object detection systems or
even attribute detection systems, to get a vocabulary
of target detections.

3.1 Bootstrapping for Visual Text
In this section, we learn visual and non-visual nouns
and adjectives automatically based on bootstrapping
techniques. First, we construct a graph between ad-
jectives by computing distributional similarity (Tur-
ney and Pantel, 2010) between them. For comput-
ing distributional similarity between adjectives, each
target adjective is defined as a vector of nouns which
are modified by the target adjective. To be exact, we
use only those adjectives as modifiers which appear
adjacent to a noun (that is, in a JJ NN construction).
For example, in “small red apple,” we consider only
red as a modifier for noun. We use Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1989)
to weight the contexts, and select the top 1000 PMI
contexts for each adjective.3

Next, we apply cosine similarity to find the top
10 distributionally similar adjectives with respect to
each target adjective based on our large generic cor-
pus (Large-Data from Section 2.1). This creates a
graph with adjectives as nodes and cosine similarity
as weight on the edges. Analogously, we construct a
graph with nouns as nodes (here, adjectives are used
as contexts for nouns).

We then apply bootstrapping (Kozareva et al.,
2008) on the noun and adjective graphs by select-
ing 10 seeds for visual and non-visual nouns and
adjectives (see Table 1). We use in-degree (sum of
weights of incoming edges) to compute the score for

3We are interested in descriptive adjectives, which “typi-
cally ascribe to a noun a value of an attribute” (Miller, 1998).
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Visual car house tree horse animal
nouns man table bottle
seeds woman computer

Non-visual idea bravery deceit trust
nouns dedication anger humour luck
seeds inflation honesty
Visual brown green wooden striped

adjectives orange rectangular furry
seeds shiny rusty feathered

Non-visual public original whole righteous
adjectives political personal intrinsic

seeds individual initial total

Table 1: Example seeds for bootstrapping.

each node that has connections with known (seeds)
or automatically labeled nodes, previously exploited
to learn hyponymy relations from the web (Kozareva
et al., 2008). Intuitively, in-degree captures the pop-
ularity of new instances among instances that have
already been identified as good instances. We learn
visual and non-visual words together (known as the
mutual exclusion principle in bootstrapping (The-
len and Riloff, 2002; McIntosh and Curran, 2008)):
each word (node) is assigned to only one class.
Moreover, after each iteration, we harmonically de-
crease the weight of the in-degree associated with
instances learned in later iterations. We added 25
new instances at each iteration and ran 500 iterations
of bootstrapping, yielding 11955 visual and 11978
non-visual nouns, and 7746 visual and 7464 non-
visual adjectives.

Based on manual inspection, the learned visual
and non-visual lists look great. In the future, we
would like to do a Mechanical Turk evaluation to
directly evaluate the visual and non-visual nouns
and adjectives. For now, we show the coverage of
these classes in the Flickr data-set: Visual nouns:
53.71%; Non-visual nouns: 14.25%; Visual ad-
jectives: 51.79%; Non-visual adjectives: 14.40%.
Overall, we find more visual nouns and adjectives
are covered in the Flickr data-set, which makes
sense, since the Flickr data-set is largely visual.

Second, we show the coverage of these classes
on the large text corpora (Large-Data from Sec-
tion 2.1): Visual nouns: 26.05%; Non-visual nouns:
41.16%; Visual adjectives: 20.02%; Non-visual ad-

Visual: attend, buy, clean, comb, cook, drink, eat,
fry, pack, paint, photograph, smash, spill, steal,
taste, tie, touch, watch, wear, wipe
Non-visual: achieve, admire, admit, advocate, al-
leviate, appreciate, arrange, criticize, eradicate,
induce, investigate, minimize, overcome, pro-
mote, protest, relieve, resolve, review, support,
tolerate

Table 2: Predicates that are visual and non-visual.

Visual: water, cotton, food, pumpkin, chicken,
ring, hair, mouth, meeting, kind, filter, game, oil,
show, tear, online, face, class, car
Non-visual: problem, poverty, pain, issue, use,
symptom, goal, effect, thought, government,
share, stress, work, risk, impact, concern, obsta-
cle, change, disease, dispute

Table 3: Learned visual/non-visual nouns.

jectives: 40.00%. Overall, more non-visual nouns
and adjectives cover text data, since Large-Data is
a non-visual data-set.

3.2 Label Propagation for Visual Text
To propagate visual labels, we construct a bipartite
graph between visually descriptive predicates and
their arguments. Let VP be the set of nodes that cor-
responds to predicates, and let VA be the set of nodes
that corresponds to arguments. To learn the visually
descriptive words, we set VP to 20 visually descrip-
tive predicates shown in the top of Table 2, and VA

to all nouns that appear in the object argument posi-
tion with respect to the seed predicates. We approx-
imate this by taking nouns on the right hand side
of the predicates within a window of 4 words using
the Web 1T Google N-gram data (Brants and Franz.,
2006). For edge weights, we use conditional prob-
abilities between predicates and arguments so that
w(p→ a) := pr(a|p) and w(a→ p) := pr(p|a).

In order to collectively induce the visually de-
scriptive words from this graph, we apply the graph
propagation algorithm of Velikovich et al. (2010),
a variant of label propagation algorithms (Zhu and
Ghahramani, 2002) that has been shown to be ef-
fective for inducing a web-scale polarity lexicon
based on word co-occurrence statistics. This algo-
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Color purple blue maroon beige green
Material plastic cotton wooden metallic silver

Shape circular square round rectangular triangular
Size small big tiny tall huge

Surface coarse smooth furry fluffy rough
Direction sideways north upward left down
Pattern striped dotted checked plaid quilted
Quality shiny rusty dirty burned glittery
Beauty beautiful cute pretty gorgeous lovely

Age young mature immature older senior
Ethnicity french asian american greek hispanic

Table 4: Attribute Classes with their seed values

rithm iteratively updates the semantic distance be-
tween each pair of nodes in the graph, then produces
a score for each node that represents how visually
descriptive each word is. To learn the words that
are not visually descriptive, we use the predicates
shown in the bottom of Table 2 as VP instead. Ta-
ble 3 shows the top ranked nouns that are visually
descriptive and not visually descriptive.

3.3 Bootstrapping Visual Adjectives

Our goal in this section is to automatically gener-
ate comprehensive lists of adjectives for different at-
tributes, such as color, material, shape, etc. To our
knowledge, this is the first significant effort of this
type for adjectives: most bootstrapping techniques
focus exclusively on nouns, although Almuhareb
and Poesio (2005) populated lists of attributes us-
ing web-based similarity measures. We found that
in some ways adjectives are easier than nouns, but
require slightly different representations.

One might conjecture that listing attributes by
hand is difficult. Colors names are well known to
be quite varied. For instance, our bootstrapping
approach is able to discover colors like “grayish,”
“chestnut,” “emerald,” and “rufous” that would be
hard to list manually (the last is a reddish-brown
color, somewhat like rust). Although perhaps not
easy to create, the Wikipedia list of colors (http:

//en.wikipedia.org/wiki/List of colors) includes all of these
except “grayish”. On the other hand, it includes
color terms that might be difficult to make use of as
colors, such as “bisque,” “bone” and “bubbles” (the
last is a very light cyan), which might over-generate
hits. For shape, we find “oblong,” “hemispherical,”
“quadrangular” and, our favorite, “convex”.

We use essentially the same bootstrapping process
as described earlier in Section 3.1, but on a slightly

different data representation. The only difference is
that instead of linking adjectives to their 10 most
similar neighbors, we link them only to 25 neigh-
bors to attempt to improve recall.

We begin with seeds for each attribute class from
Table 4. We conduct a manual evaluation to di-
rectly measure the quality of attribute classes. We
recruited 3 annotators and developed annotation
guidelines that instructed each recruiter to judge
whether a learned value belongs to an attribute class
or not. The annotators assigned “1” if a learned
value belongs to a class, otherwise “0”.

We conduct an Information Retrieval (IR) Style
human evaluation. Analogous to an IR evaluation,
here the total number of relevant values for attribute
classes can not be computed. Therefore, we assume
the correct output of several systems as the total re-
call which can be produced by any system. Now,
with the help of our 3 manual annotators, we obtain
the correct output of several systems from the total
output produced by these systems.

First, we measured the agreement on whether
each learned value belongs to a semantic class or
not. We computed κ to measure inter-annotator
agreement for each pair of annotators. We focus
our evaluation on 4 classes: age, beauty, color, and
direction; between Human 2 and Human 3 and be-
tween Human 1 and Human 3, the κ value was 0.48;
between Human 1 and Human 2 it was 0.45. These
numbers are somewhat lower than we would like,
but not terrible. If we evaluate the classes individu-
ally, we find that age has the lowest κ. If we remove
“age,” the pairwise κs rise to 0.59, 0.57 and 0.55.

Second, we compute Precision (Pr), Recall (Rec)
and F-measure (F1) for different bootstrapping sys-
tems (based on the number of iterations and the
number of new words added in each iteration).
Two parameter settings performed consistently bet-
ter than others (10 iterations with 25 items, and 5 it-
erations with 50 items). The former system achieves
a precision/recall/F1 of 0.53, 0.71, 0.60 against Hu-
man 2; the latter achieves scores of 0.54, 0.72, 0.62.

4 Recognizing Visual Text

We train a logistic regression (aka maximum en-
tropy) model (Daumé III, 2004) to classify text as
visual or non-visual. The features we use fall into
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the following categories: WORDS (the actual lexi-
cal items and stems); BIGRAMS (lexical bigrams);
SPELL (lexical features such as capitalization pat-
tern, and word prefixes and suffixes); WORDNET

(set of hypernyms according to WordNet); and
BOOTSTRAP (features derived from bootstrapping
or label propagation).

For each of these feature categories, we compute
features inside the phrase being categorized (e.g.,
“the car”), before the phrase (two words to the left)
and after the phrase (two words to the right). We
additionally add a feature that computes the num-
ber of words in a phrase, and a feature that com-
putes the position of the phrase in the caption (first
fifth through last fifth of the description). This leads
to seventeen feature templates that are computed for
each example. In the SMALL data set, there are 25k
features (10k non-singletons); in the LARGE data
set, there are 191k features (79k non-singletons).

To train models on the SMALL data set, we use
1500 instances as training, 200 as development and
the remaining 639 as test data. To train models on
the LARGE data set, we use 45000 instances as train-
ing and the remaining 4401 as development. We
always test on the 639 instances from the SMALL

data, since it has been redundantly annotated. The
development data is used only to choose the regular-
ization parameter for a Gaussian prior on the logis-
tic regression model; this parameter is chosen in the
range {0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 32, 64}.

Because of the imbalanced data problem, evalu-
ating according to accuracy is not appropriate for
this task. Even evaluating by precision/recall is not
appropriate, because a baseline system that guesses
that everything is visual obtains 100% recall and
70% precision. Due to these issues, we instead
evaluate according to the area under the ROC curve
(AUC). To check statistical significance, we com-
pute standard deviations using bootstrap resampling,
and consider there to be a significant difference if a
result falls outside of two standard deviations of the
baseline (95% confidence).

Figure 3 shows learning curves for the two data
sets. The SMALL data achieves an AUC score of
71.3 in the full data setting (1700 examples); the
LARGE data needs 12k examples to achieve similar
accuracy due to noise. However, with 49k examples,
we are able to achieve a AUC score of 75.3 using the
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Figure 3: Learning curves for training on SMALL data
(blue solid) and LARGE data (black dashed). X-axis (in
log-scale) is number of training examples; Y-axis is AUC.

large data set. By pooling the data (and weighting
the small data), this boosts results to 76.1. The con-
fidence range on these data is approximately ±1.9,
meaning that this boost is likely not significant.

4.1 Using Image Features

As discussed previously, humans are only able to
achieve 90% accuracy on the visual/non-visual task
when they are not allowed to view the image.
This potentially upper-bounds the performance of a
learned system that can only look at text. In order to
attempt to overcome this, we augment our basic sys-
tem with a number of features computed from the
corresponding images. These features are derived
from the output of state of the art vision algorithms
to detect 121 different objects, stuff and scenes.

As our object detectors, we use standard state
of the art deformable part-based models (Felzen-
szwalb et al., 2010) for 89 common object cate-
gories, including: the original 20 objects from Pas-
cal, 49 objects from Object Bank (Li-Jia Li and Fei-
Fei, 2010), and 20 from Im2Text (Ordonez et al.,
2011). We additionally use coarse image parsing
to estimate background elements in each database
image. Six possible background (stuff) categories
are considered: sky, water, grass, road, tree, and
building. For this we use detectors (Ordonez et
al., 2011) which compute color, texton, HoG (Dalal
and Triggs, 2005) and Geometric Context (Hoiem
et al., 2005) as input features to a sliding win-
dow based SVM classifier. These detectors are run
on all database images, creating a large pool of
background elements for retrieval. Finally, we ob-
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Figure 4: (Left) Highest confidence flower detected in an
image; (Right) All detections in the same image.

tain scene descriptors for each image by comput-
ing scene classification scores for 26 common scene
categories, using the features, methods and training
data from the SUN dataset (Xiao et al., 2010).

Figure 4 shows an example image on which sev-
eral detectors have been run. From each image, we
extract the following features: which object detec-
tors fired; how many times they fired; the confidence
of the most-likely firing; the percentage of the image
(in pixels) that the bounding box corresponding to
this object occupies; and the percentage of the width
(and height) of the image that it occupies.

Unfortunately, object detection is a highly noisy
process. The right image in Figure 4 shows all de-
tections for that image, which includes, for instance,
a chair detection that spans nearly the entire image,
and a person detection in the bottom-right corner.
For an average image, if a single detector (e.g., the
flower detector) fires once, it actually fires 40 times
(±σ = 1.8). Moreover, of the 120 detectors, on
an average image over 22 (±σ = 5.6) of them fire
at least once (though certainly in an average image
only a few objects are actually present). Exacerbat-
ing this problem, although the confidence scores for
a single detector can be compared, the scores be-
tween different detectors are not at all comparable.
In order to attenuate this problem, we include dupli-
cate copies of all the above features restricted to the
most confident object for each object type.

On the SMALL data set, this adds 400 new fea-

CATEGORY POSITION AUC
Bootstrap Phrase 65.2

+ Spell Phrase 68.6
+ Image - 69.2
+ Words Phrase 70.0
+ Length - 69.8
+ Wordnet Phrase 70.4
+ Wordnet Before 70.6
+ Spell Before 71.8
+ Words Before 72.2
+ Bootstrap Before 72.4
+ Spell After 71.5

Table 5: Results of feature ablation on SMALL data set.
Best result is in bold; results that are not statistically sig-
nificantly worse are italicized.

tures (300 of which are non-singletons4); on the
LARGE data set, this adds 500 new features (480
non-singletons). Overall, the AUC scores trained on
the small data set increase from 71.3 to 73.9 (a sig-
nificant improvement). On the large data set, the in-
crease is only from 76.1 to 76.8, which is not likely
to be significant. In general, the improvement ob-
tained by adding image features is most pronounced
in the setting of small training data, perhaps because
these features are more generic than the highly lexi-
calized features used in the textual model. But once
there is a substantial amount of text data, the noisy
image features become less useful.

4.2 Feature Ablations
In order to ascertain the degree to which each feature
template is useful, we perform an ablation study. We
first perform feature selection at the template level
using the information gain criteria, and then train
models using the corresponding subset of features.

The results on the SMALL data set are shown in
Table 5. Here, the bootstrapping features computed
on words within the phrase to be classified were
judged as the most useful, followed by spelling fea-
tures. Image features were judged third most use-
ful. In general, features in the phrase were most use-
ful (not surprisingly), and then features before the
phrase (presumably to give context, for instance as
in “out of the window”). Features from after the
phrase were not useful.

4Non-singleton features appear more than once in the data.
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CATEGORY POSITION AUC
Words Phrase 74.7

+ Image - 74.4
+ Bootstrap Phrase 74.3
+ Spell Phrase 75.3
+ Length - 74.7
+ Words Before 76.2
+ Wordnet Phrase 76.1
+ Spell After 76.0
+ Spell Before 76.8
+ Wordnet Before 77.0
+ Wordnet After 75.6

Table 6: Results of feature ablation on LARGE data set.

Corresponding results on the LARGE data set are
shown in Table 6. Note that the order of features
selected is different because the training data is dif-
ferent. Here, the most useful features are simply the
words in the phrase to be classified, which alone al-
ready gives an AUC score of 74.7, only a few points
off from the best performance of 77.0 once image
features, bootstrap features and spelling features are
added. As before, these features are rated as very
useful for classification performance.

Finally, we consider the effect of using Bootstrap-
based features or label-propagation-based features.
In all the above experiments, the features used
are based on the union of word lists created by
these two techniques. We perform three experi-
ments. Beginning with the system that contains all
features (SMALL=73.9, LARGE=76.8), we first re-
move the bootstrap-based features (SMALL→71.8,
LARGE→75.5) or remove the label-propagation-
based features (SMALL→71.2, LARGE→74.9) or
remove both (SMALL→70.7, LARGE→74.2). From
these results, we can see that these techniques are
useful, but somewhat redundant: if you had to
choose one, you should choose label-propagation.

5 Discussion

As connections between language and vision be-
come stronger, for instance in the contexts of ob-
ject detection (Hou and Zhang, 2007; Kim and Tor-
ralba, 2009; Sivic et al., 2008; Alexe et al., 2010;
Gu et al., 2009), attribute detection (Ferrari and Zis-
serman, 2007; Farhadi et al., 2009; Kumar et al.,
2009; Berg et al., 2010), visual phrases (Farhadi and

Sadeghi, 2011), and automatic caption generation
(Farhadi et al., 2010; Feng and Lapata, 2010; Or-
donez et al., 2011; Kulkarni et al., 2011; Yang et
al., 2011; Li et al., 2011; Mitchell et al., 2012), it
becomes increasingly important to understand, and
to be able to detect, text that actually refers to ob-
served phenomena. Our results suggest that while
this is a hard problem, it is possible to leverage large
text resources and state-of-the-art computer vision
algorithms to address it with high accuracy.
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