Tuning asLinear Regression

Mar zieh Bazrafshan, Tagyoung Chung and Daniel Gildea
Department of Computer Science
University of Rochester
Rochester, NY 14627

Abstract results of MERT, scales better for high dimensional
feature spaces, and is simpler than MIRA.
We propose a tuning method for statistical ma- In this paper, we use the same idea for tuning, but,
chine translation, based on the pairwise rank-  jnstead of using a classifier, we use linear regression.

ing approach. Hopkins and May (2011) pre-

. L Linear regression is simpler than maximum entro
sented a method that uses a binary classifier. g P Py

In this work, we use linear regression and pased m_ethods. The mos_t complex compu_tation that
show that our approach is as effective as us- it needs is a matrix inversion, whereas maximum en-
ing a binary classifier and converges faster. tropy based classifiers use iterative numerical opti-
mization methods.
_ We implemented a parameter tuning program
1 Introduction with linear regression and compared the results to

Since its introduction, the minimum error rate train-PROS results. The results of our experiments are

ing (MERT) (Och, 2003) method has been the mosc[omparable to PRO, and in many cases (also on av-

popular method used for parameter tuning in maErag€e) we get a better maximum BLEU score. \We

chine translation. Although MERT has nice properf"ISO observed that on average, our method reaches

ties such as simplicity, effectiveness and speed, it [2& Maximum BLEU score in a smaller number of
known to not scale well for systems with large numlterations. _ _ _
dThe contributions of this paper include: First, we

bers of features. One alternative that has been use ) ; it )
for large numbers of features is the Margin Infusedn°W that linear regression tuning is an effective

Relaxed Algorithm (MIRA) (Chiang et al., 2008). m_ethod _for tuning_, and it is compara_b_le to tuning
MIRA works well with a large number of features,W'th a binary maximum entropy classifier. Second,

but the optimization problem is much more compli—We show linear regression is faster in terms of the

cated than MERT. MIRA also involves some modi-number of iterations it needs to reach the best re-
fications to the decoder itself to produce hypothesecéjlts'
with high scores against gold translations.
Hopkins and May (2011) introduced the metho
of pairwise ranking optimization (PRO), which castsThe parameter tuning problem in machine transla-
the problem of tuning as a ranking problem betion is finding the feature weights of a linear trans-
tween pairs of translation candidates. The probletation model that maximize the scores of the candi-
is solved by doing a binary classification betweemlate translations measured against reference transla-
“correctly ordered” and “incorrectly ordered” pairs.tions. Hopkins and May (2011) introduce a tuning
Hopkins and May (2011) use the maximum entropynethod based on ranking the candidate translation
classifier MegaM (Daumlll, 2004) to do the binary pairs, where the goal is to learn how to rank pairs of
classification. Their method compares well to theandidate translations using a gold scoring function.

OI2 Tuning as Ranking
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PRO casts the tuning problem as the problem antropy classifier which returns the weight vector
ranking pairs of sentences. This method iteratively as a linear classifier. Using this method, Hop-
generates lists ofk-best” candidate translations forkins and May (2011) tuned the weight vectors for
each sentence, and tunes the weight vector for thogarious translation systems. The results were close
candidates. MERT finds the weight vector that maxto MERT’s and MIRA’s results in terms of BLEU
imizes the score for the highest scored candidaszore, and the method was shown to scale well to
translations. In contrast, PRO finds the weight vediigh dimensional feature spaces.
tor which classifies pairs of candidate translations ) ] ]
into “correctly ordered” and “incorrectly ordered,” 3 Linear Regression Tuning
based on the gold scoring function. While MERT|j, this paper, we use the same idea as PRO for tun-
only considers the highest scored candidate to tuRgy put instead of using a maximum entropy clas-
the weights, PRO uses the entirest list to leamn  sifier, we use a simple linear regression to estimate
the ranking between the pairs, which can help prene vectorw in Equation 3. We use the least squares

vent overfitting. method to estimate the linear regression. For a ma-

Let g(e) be a scoring function that maps eachyix of data pointsX, and a target vectog, the
translation candidate to a number (score) using ayejght vector can be calculated as:

set of reference translations. The most commonly
used gold scoring function in machine translation w = (XTX)
is the BLEU score, which is calculated for the en- o )
tire corpus, rather than for individual sentences. T6dding L2 regularization with parametex has the
use BLEU as our gold scoring function, we need t£o!lowing closed form solution:
modify it to make it decomppsable for sing_le_sen- w— (XTX n )\I)_IXTg (5)
tences. One way to do this is to use a variation of
BLEU called BLEU+1 (Lin and Och, 2004), which  Following the sampling method used in PRO, the
is a smoothed version of the BLEU score. matricesX and vectorg are prepared as follows:

We assume that our machine translation system
scores translations by using a scoring function whicBor each sentence,
is a linear combination of the features:

“'XTg 4)

1. Generate a list containing the best transla-

h(e) = wTz(e) (1) tions of the sentence, with each translation
scored by the decoder using a function of the
wherew is the weight vector andis the feature vec- form h(e) = wrz(e).

tor. The goal of tuning as ranking is learning weights
such that for every two candidate translatiengnd
es, the following inequality holds:

2. Use the uniform distribution to sampteran-
dom pairs from the set of candidate transla-
tions.

g(er) > g(ez) & h(er) > hlez) (2) 3. calculate the gold scorggor the candidates in
each pair using BLEU+1. Keep a pair of can-
didates as a potential pair if the difference be-

3) tween theirg scores is bigger than a threshold
t.

Using Equation 1, we can rewrite Equation 2:
gler) > glea) & w' (x(e1) — x(e2)) > 0

This problem can be viewed as a binary classifica-
tion problem for learningv, where each data point is
the difference vector between the feature vectors of
a pair of translation candidates, and the target of the
point is the sign of the difference between their gold 5. For each pai¢; andes keptin step 4, make two
scores (BLEU+1). PRO uses the MegaM classifier  data pointgz(e;) — x(e2), g(e1) — g(e2)) and
to solve this problem. MegaM is a binary maximum (z(e2) — x(e1),g(e2) — gler)).

4. From the potential pairs kept in the previous
step, keep the pairs that have the highest dif-
ferences iry and discard the rest.
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The rows ofX consist of the inputs of the data points Average of max BLEU | Max BLEU
created in step 5, i.e., the difference vectofs; ) — dev | test dev | test
z(ep). Similarly, the corresponding rows i are | Regression 27.7 (0.91)| 26.4 (0.82)| 29.0| 27.6
the outputs of the data points, i.e., the gold scorePRO 26.9 (1.05)| 25.6 (0.84)| 28.0 | 27.2

d|ﬁerenpe5g(el) - 9_(62)' _ Table 1: Average of maximum BLEU scores of the ex-

One important difference between the linear reperiments and the maximum BLEU score from the ex-
gression method and PRO is that rather than usin@riments. Numbers in the parentheses indicate standard
the signs of the gold score differences and doing @t deviations of maximum BLEU scores.

binary classification, we use the differences of the

gold scores directly, which allows us to use the iNghe method explained in Section 3. Following Hop-
formation about the magnitude of the differences. |ins and May (2011), we used the following param-
eters for the sampling task: For each sentence, the
decoder generates the 1500 best candidate transla-
4.1 Setup tions ¢ = 1500), and the sampler sampl&800

airs (@ = 5000). Each pair is kept as a potential
ata point if their BLEU+1 score difference is big-

er than 0.05# = 0.05). Finally, for each sentence,

4 Experiments

We used a Chinese-English parallel corpus with th
English side parsed for our experiments. The cor-

pus consists of 250K sentence pairs, which is 6.3t e sampler keeps the 50 pairs with the highest dif-

words on the English side. The corpus derives fro .
newswire texts available from LDEWe used a 392- rpergnce n BLEU+.1£ = 50) and generates two data
oints for each pair.

sentence development set with four references 8
parameter tuning, and a 428-sentence test set Willp Results

four references for testing. They are drawn from th . : , _— :
g y $Ve ran eight experiments with random initial weight

newswire portion of NIST evaluations (2004, 2005 ectors and ran each experiment for 25 iterations
2006). The development set and the test set ong/. P '

; . Similar to what PRO does, in each iteration, we lin-
had sentences with less than 30 words for deCOd”Eega . :
speed. rly interpolate the weight vector learned by the re-

We extracted a general SCFG (GHKM) gramma:r::::l:g)r?g) W)'tzsti?]e g?;%?;rvsfcgorléf the previous
using standard methods (Galley et al., 2004; Wang =1 9 o
et al., 2010) from the parallel corpus with a mod- w =01 w409 w1 (6)

ification to preclude any unary rules (Chung et al.,

2011). All rules over scope 3 are pruned (Hopkingor the sake of comparison, we also implemented
and Langmead, 2010). A set of nine standard fesRO with exactly the same parameters, and ran it
tures was used for the experiments, which includegith the same initial weight vectors.
globally normalized count of rules, lexical weight-  For each initial weight vector, we selected the iter-
ing (Koehn et al., 2003), and length penalty. Ougtion at which the BLEU score on the development
in-house decoder was used for experiments with gt jg highest, and then decoded using this weight
trigram language model. The decoder is capablgsctor on the test set. The results of our experi-
of both CNF parsing and Earley-style parsing Wittments are presented in Table 1. In the first column,
cube-pruning (Chiang, 2007). we show the average over the eight initial weight
We implemented linear regression tuning usingectors of the BLEU score achieved, while in the
Wmly sampled our data from various differ-s_econq column We_ShOW the results from the ini-
ent sources (LDC2006E86, LDC2006E93, LDC2002E1gtial weight vector with the highest BLEU score on
LDC2002L27, LDC2003E07, LDC2003E14, LDC2004T08,the development set. Thus, while the second col-

::803005206' tB%OOSE% 'LDDC220°5TE34v '—LDDC22006|EEZ(;umn corresponds to a tuning process where the sin-
C2005E83, LDC2006E34, LDC2006E8S, LDC2006E92,0 st resylt is retained, the first column shows the

LDC2006E24, LDC2006E92, LDC2006E24) The language) _ : .
model is trained on the English side of entire data (1.65M serﬁ_XpeCt_ed behavior of the procedure.on a single ini-
tences, which is 39.3M words.) tial weight vector. The linear regression method has
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fewer number of iterations.

In comparison with MERT, PRO and linear re-
gression are different in the sense that the latter two
approaches take into account rankings of khaest
list, whereas MERT is only concerned with separat-
ing the top 1-best sentence from the rest of the
best list. PRO and linear regression are similar in
the sense that both are concerned with ranking the
k-best list. Their difference lies in the fact that PRO

BLEU

pro-avg only uses the information on the relative rankings
12 L L L L . . . .
0 5 10 15 20 25 and uses binary classification to rank the points; on

Iteration

the contrary, linear regression directly uses the infor-
mation on the magnitude of the differences. This dif-
ference between PRO and linear regression explains
why linear regression converges faster and also may

higher BLEU scores on both development and tegixplain the fact that linear regression achieves a
data for both the average over initial weights and theéomewhat higher BLEU score. In this sense, lin-
maximum over initial weights. ear regression is also similar to MIRA since MIRA's
Figure 1 shows the average of the BLEU scorel9ss function also uses the information on the magni-
on the development set of eight runs of the experpude of score difference. However, the optimization
ments. We observe that on average, the linear regré§oblem for linear regression is simpler, does not re-
sion experiments reach the maximum BLEU scor@luire any changes to the decoder, and therefore the
in a smaller number of iterations. On average, linedpmiliar MERT framework can be kept.
reg_ressipn reached the maximum BLEL_J score aft?{cknowledgments We thank the anonymous re-
14 iterations and PRO reached the maximum BLEWieers for their helpful comments. This work was
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