A Treebank Query System Based on an Extracted Tree Grammar

Seth Kulick and Ann Bies
Linguistic Data Consortium
University of Pennsylvania
3600 Market St., Suite 810
Philadelphia, PA 19104
{skulick,bies}@ldc.upenn.edu

Abstract

Recent work has proposed the use of an ex-
tracted tree grammar as the basis for treebank
analysis and search queries, in which queries
are stated over the elementary trees, which are
small chunks of syntactic structure. However,
this work was lacking in two crucial ways.
First, it did not allow for including lexical
properties of tokens in the search. Second,
it did not allow for using the derivation tree
in the search, describing how the elementary
trees are connected together. In this work we
describe an implementation that overcomes
these problems.

1 Introduction

(Kulick and Bies, 2009) describe the need for tree-
bank search that compares two sets of trees over the
same tokens. Their motivation is the problem of
comparing different annotations of the same data,
such as with inter-annotator agreement evaluation
during corpus construction. The typical need is to
recognize which annotation decisions the annotators
are disagreeing on. This is similar to the problem of
determining where the gold trees and parser output
differ, which can also be viewed as two annotations
of the same data.

As they point out, for this purpose it would be use-
ful to be able to state queries in a way that relates to
the decisions that annotators actually make, or that
a parser mimics. They provide examples suggesting
that (parent, head, sister) relations as in e.g. (Collins,
2003) are not sufficient, and that what is needed is

661

the ability to state queries in terms of small chunks
of syntactic structure.

Their solution is to use an extracted tree gram-
mar, inspired by Tree Adjoining Grammar (Joshi
and Schabes, 1997). The “elementary trees” of the
TAG-like grammar become the objects on which
queries can be stated. They demonstrate how the
“lexicalization” property of the grammar, in which
each elementary tree is associated with one or more
token, allows for the the queries to be carried out in
parallel across the two sets of trees.

However, the work was lacking in two crucial
ways. First, it did not allow for including lexical
properties of a token, such as its Part-of-Speech tag,
together with the elementary tree search. This made
it impossible to formulate such queries as “find all
ADVP elementary trees for which the head of the
tree is a NOUN_NUM”. Even more seriously, there
was no way to search over the ‘“derivation tree”,
which encodes how the extracted elementary trees
combine together to create the original tree. This
made it impossible to carry out searches such as
“find all verb frames with a PP~LOC modifying it”,
and in general to search for the crucial question of
where annotators disagree on attachment decisions.

In this paper we describe how we have solved
these two problems.

2 Tree Extraction

Following (Kulick and Bies, 2009), we draw our ex-
amples from the Arabic Treebank' For our gram-

"Part 3, v3.1 - Linguistic Data Consortium LDC2008E22.
Also, we use the Buckwalter Arabic transliteration scheme
http://www.gamus.org/transliteration.htm.

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 661-664,
Los Angeles, California, June 2010. (©)2010 Association for Computational Linguistics

VP
PV NP-SBJ PP-LOC
‘ /\
tHTmt PREP NP
crashed NP AD‘JP ﬁ‘ —_—
g y
=eBL NoUN NP ADJ in
| | | U
TA}p NOUN Eskryp
airplane | mllftary
sji 7 tdryb .q (o
training -
“":’.J‘\;
Figure 1: Sample tree
#1 #
? NP< 1 >
vP NOUN NP
\ \
PV NP[t]-SBJ"<1.1.2> TA}rp NOUN
\ airplane \
tHTmt td.r}fb
crashed training
#3 ADJP #4 PP[b]-LOC
\ PN
ADJ PREP NP®
\ \
Eskryp fiy
military in

Figure 2: Extracted trees from Figure 1

mar we use a TAG variant with tree-substitution,
sister-adjunction, and Chomsky-adjunction (Chiang,
2003), using head rules to decompose the full trees
and extract the elementary trees. Sister adjunction
attaches a tree (or single node) as a sister to an-
other node, and Chomsky-adjunction forms a recur-
sive structure as well, duplicating a node. As one
example, the full tree is shown in Figure 1, and the
extracted elementary trees” are shown in Figure 2.
We briefly mention two unusual features of this ex-
traction, and refer the reader to (Kulick and Bies,
2009) for detail and justification.

(1)The function tags are included in the tree ex-
traction, with the syntactic tags such as SBJ treated

>We will use “etree” as shorthand for “elementary tree”.

662

#1

#2,5,<1.1.2> #4,A,<1.1.2>

\
#3M,<1>

Figure 3: Derivation Tree for Figures 1 and 2

as a top feature value, and semantic tags such as LOC
treated as a bottom feature value, extending the tra-
ditional TAG feature system to handle function tags.

(2) Etree #2 consists of two anchors, rather than
splitting up the tree decomposition further. This is
because this is an instance of the “construct state”
construction in Arabic, in which two or more words
are grouped tightly together.

The nodes in the elementary trees are numbered
with their Gorn address, and we make two such ad-
dresses explicit, in trees #1 and #2. These addresses
appear in the derivation tree in Figure 3. Each node
in the derivation tree refers to one etree in Figure 2,
and each node (except the root) is labelled with the
address in the parent etree to which it attaches, and
the attachment type (M for Chomsky-adjunction, A
for sister-adjunction, and S for substitution).? The
symbol at the node NP [t] -SBJ in tree #1 indicates
that it is a substitution node. Etree #3 Chomsky-
adjoins at the root of etree #2, thus forming a a new
NP node. Etree #4 sister-adjoins at the NP [t] ~SBJ
node in etree #1, thus becoming a sister to that node.

It is often the case that the same elementary tree
structure will be repeated in different elementary
trees extracted from a corpus. We call each such
structure an “etree template”, and a particular in-
stance of that template, together with the “anchors”
(tokens) used in that instance of the template, is
called an “etree instance”.

The extracted tokens, etree templates, etree in-
stances, and derivation trees are stored in a MySQL
database for later search. The derivation tree is im-
plemented with a simple “adjacency list” represen-
tation as is often done in database representations of
hierarchical structure. The database schema is orga-
nized with appropriate indexing so that a full tree is
represented by a derivation tree, with integers point-

3This derivation tree is slightly simplified, since with sister-
adjunction it includes more information to indicate the direction
and order of attachment.

LEX : (L1) text="fiy"
ETREE: (E1l) (S (VP AS
NP [t]-SBJ" {dta:1}))
(E2) (PP AS${lex:L1} NP")
DTREE: (D1) E2
(D2) (E1 E2{dta:1})

Figure 4: Examples of one lexical restriction, two etree
queries, and two dtree queries

ing to the etree instances, which in turn use integers
to represent the etree template in that etree instance
and also point to the anchors of that etree instance.
The section of ATB we are working with has
402,246 tokens, resulting in 319,981 etree instances
and only 2804 etree templates, which gives an indi-
cation of the huge amount of duplication of structure
in a typical treebank representation. From the per-
spective of database organization, the representation
of the etree templates can be perhaps be viewed as a
type of database “normalization”, in which duplicate
information is placed in a separate table.

3 Query Processing

We now describe the algorithm used for searching
on the database with the extracted tree grammar, fo-
cusing on how the algorithm now allows searching
based on the derivation tree and lexical information.

Queries are specified as “etree queries” and
“dtree queries”. Sample queries are shown in Figure
4. The query processing is as follows:

Step 1:
The etree templates are searched to determine which
match a given etree query.* This is a simple tree
matching between each template and query, all of
which are small small trees. It is within this tree
matching that several of the typical relations can be
specified, such as precedence and dominance. A ta-
ble stores the information on which templates match
which queries.

In addition, the Etree queries can now include two
new properties. First, they can include a specifica-

*Each etree query has a "distinguished” anchor marked A$
that indicates the anchor (word) of an etree template that is as-
sociated with that query. The reason for that is that if an etree
template has more than one anchor, we only want one to trigger
that query, so that the etree is not counted twice.

663

tion for a lexical restriction, such as lex:L1 in E2
in Figure 4. However, step 1 of the query processing
does not actually check this, since it is simply go-
ing through each template, without examining any
anchors, to determine which have the appropriate
structure to match a query. Therefore, we store in
another table the information that for a (template,
query) to match it must be the case that an anchor
at a particular address in that template satisfies a
particular lexical restriction. It in effect produces
specialized information for the given template as to
what additional restrictions apply for that (template,
query) pair to succeed as a match, in each etree in-
stance that uses that etree template. For example,
in this case the stored information specifies that an
etree instance with template (PP A NP ") matches
the query E2 if the instance has an anchor with the
text £iy at address 1.1 (the anchor 2).

Similarly, the etree query can include a specifica-
tion dta (as in E1), for ”derivation tree address”,
indicating that the corresponding address in each
matching template needs to be stored for later ref-
erence in derivation tree searching. In this case, the
template for etree instance #1 will match etree query
E1, with the additional information stored that the

address 1. 1.2 will be used for later processing.

An important point here is that this additional in-
formation is not necessarily the same for the differ-
ent templates that otherwise match a query. For ex-
ample, the two templates

(1) (s
(2) (SBAR (S

(VP A NP[t]-SBJ<1.1.2>)
(VP A NP[t]-SBJ<1.1.1.2>))

both match query E1, but for (1) the stored
address dta:1 is 1.1 .2, while for (2) the stored
address is is 1.1.1.2. The same point holds for
the address of the anchor with a lexical restriction.

Step 2:

For a given query, the matching etree instances are
found. First it finds all etree instances such that the
(template, query) is a match for the instance’s etree
template. It then filters this list by checking the lexi-
cal restriction, if any, for the anchor at the appropri-
ate address in the etree instance, using the informa-
tion stored from step 1. In the above example, this
will select etree instance #4 as satisfying query E2,
since the template for instance #4 was determined in
step 1 to match E2, and the particular instance #4

also satisfies the lexical restriction in query E2.
Step 3:

The final results are reported using the dtree queries.
Some dtree queries are singletons naming an etree
query, such as D1, indicating that the dtree query is
simply that etree query. In this example, any etree
instance that satisfies the etree query E2 is reported
as satisfying the dtree query D1.

The dtree query can also specify nodes in a deriva-
tion tree that must satisfy specified etree queries and
also be in a certain relationship in the derivation tree.
For example, dtree query D2 in Figure 4 specifies
that the query is for two nodes in a parent-child re-
lationship in the derivation tree, such that the parent
node is for an etree instance that satisfies etree query
E1, and the child is an instance that satisfies etree
query E2. Furthermore, the address in the deriva-
tion tree is the same as the address dta: 1 that was
identified during Step 1. Note that the address is lo-
cated on the parent tree during Step 1, but appears in
the derivation tree on the child node.

Steps 1 and 2 identify etree instance #1 as satis-
fiying etree query E1, with dta: 1 stored as address
<1.1.2> for the template used by instance #1.
These steps also identifed etree instance #4 as sat-
isfying etree query E2. Step 3 now determines that
etree instances #1 and #4 are in a derivation tree re-
lationship that satisfies dtree query D2, by checking
for a parent-child relationship between them with
the address <1.1.2>.> So dtree query D1 is finding
all PP etrees headed by fiy”, and dtree query D2 is
finding all clauses with a subject after the verb, with
a PP attaching next to the subject, where the PP is
headed by "fiy”.

We consider the distinguished anchor (see foot-
note 4) for a dtree query to be the distinguished an-
chor of the parent node. The earlier work on com-
paring two sets of trees (Kulick and Bies, 2009) can
then use this to report such searches as “’the annota-
tors agree on the same verbal structure, but one has
a PP modification and the other does not”.

4 Conclusion and Future Work

Our immediate concern for future work is to work
closely with the ATB team to ensure that the de-
sired queries are possible and are integrated into the

It is also possible to specify the nature of that relationship
by the attachment type, substitution or modification.

664

work on comparing two sets of trees. We expect that
this will involve further specification of how queries
select etree templates (Step 1), in interesting ways
that can take advantage of the localized search space,
such as searching for valency of verbs.

We are also working on an evaluation of the speed
of this system, in comparison to systems such as
(Ghodke and Bird, 2008) and Corpus Search®. The
search algorithm described above for derivation tree
searches can be made more efficient by only looking
for relevant etree instances in the context of walking
down the derivation tree. In general, while searching
for etree instances is very efficient, even with lex-
ical restrictions, complex searches over the deriva-
tion tree will be less so. However, our hope, and ex-
pectation, is that the vast majority of real-life dtree
queries will be local (parent,child,sister) searches on
the derivation tree, since each node of the derivation
tree already encodes small chunks of structure.

Acknowledgements

We thank Aravind Joshi, Anthony Kroch, Mitch
Marcus, and Mohamed Maamouri for useful discus-
sions. This work was supported in part by the De-
fense Advanced Research Projects Agency, GALE
Program Grant No. HRO0011-06-1-0003 (both au-
thors) and by the GALE program, DARPA/CMO
Contract No. HR0011-06-C-0022 (first author). The
content of this paper does not necessarily reflect the
position or the policy of the Government, and no of-
ficial endorsement should be inferred.

References

David Chiang. 2003. Statistical parsing with an automat-
ically extracted tree adjoining gramar. In Data Ori-
ented Parsing. CSLI.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29:589-637.

Sumukh Ghodke and Steven Bird. 2008. Querying lin-
guistic annotations. In Proceedings of the Thirteenth
Australasian Document Computing Symposium.

A K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3.

Seth Kulick and Ann Bies. 2009. Treebank analysis and
search using an extracted tree grammar. In Proceed-
ings of The Eigth International Workshiop on Tree-
banks and Linguistic Theories.

®http://corpussearch.sourceforge.net.

