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Abstract

We show how features can easily be added

to standard generative models for unsuper-

vised learning, without requiring complex

new training methods. In particular, each

component multinomial of a generative model

can be turned into a miniature logistic regres-

sion model if feature locality permits. The in-

tuitive EM algorithm still applies, but with a

gradient-based M-step familiar from discrim-

inative training of logistic regression mod-

els. We apply this technique to part-of-speech

induction, grammar induction, word align-

ment, and word segmentation, incorporating

a few linguistically-motivated features into

the standard generative model for each task.

These feature-enhanced models each outper-

form their basic counterparts by a substantial

margin, and even compete with and surpass

more complex state-of-the-art models.

1 Introduction

Unsupervised learning methods have been increas-

ingly successful in recent NLP research. The rea-

sons are varied: increased supplies of unlabeled

data, improved understanding of modeling methods,

additional choices of optimization algorithms, and,

perhaps most importantly for the present work, in-

corporation of richer domain knowledge into struc-

tured models. Unfortunately, that knowledge has

generally been encoded in the form of conditional

independence structure, which means that injecting

it is both tricky (because the connection between

independence and knowledge is subtle) and time-

consuming (because new structure often necessitates

new inference algorithms).

In this paper, we present a range of experiments

wherein we improve existing unsupervised models

by declaratively adding richer features. In particu-

lar, we parameterize the local multinomials of exist-

ing generative models using features, in a way which

does not require complex new machinery but which

still provides substantial flexibility. In the feature-

engineering paradigm, one can worry less about the

backbone structure and instead use hand-designed

features to declaratively inject domain knowledge

into a model. While feature engineering has his-

torically been associated with discriminative, super-

vised learning settings, we argue that it can and

should be applied more broadly to the unsupervised

setting.

The idea of using features in unsupervised learn-

ing is neither new nor even controversial. Many

top unsupervised results use feature-based mod-

els (Smith and Eisner, 2005; Haghighi and Klein,

2006). However, such approaches have presented

their own barriers, from challenging normalization

problems, to neighborhood design, to the need for

complex optimization procedures. As a result, most

work still focuses on the stable and intuitive ap-

proach of using the EM algorithm to optimize data

likelihood in locally normalized, generative models.

The primary contribution of this paper is to

demonstrate the clear empirical success of a sim-

ple and accessible approach to unsupervised learn-

ing with features, which can be optimized by us-

ing standard NLP building blocks. We consider

the same generative, locally-normalized models that

dominate past work on a range of tasks. However,

we follow Chen (2003), Bisani and Ney (2008), and

Bouchard-Côté et al. (2008), and allow each com-

ponent multinomial of the model to be a miniature

multi-class logistic regression model. In this case,

the EM algorithm still applies with the E-step un-

changed. The M-step involves gradient-based train-

ing familiar from standard supervised logistic re-

gression (i.e., maximum entropy models). By inte-

grating these two familiar learning techniques, we

add features to unsupervised models without any
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specialized learning or inference.

A second contribution of this work is to show that

further gains can be achieved by directly optimiz-

ing data likelihood with LBFGS (Liu et al., 1989).

This alternative optimization procedure requires no

additional machinery beyond what EM uses. This

approach is still very simple to implement, and we

found that it empirically outperforms EM.

This paper is largely empirical; the underlying op-

timization techniques are known, even if the overall

approach will be novel to many readers. As an em-

pirical demonstration, our results span an array of

unsupervised learning tasks: part-of-speech induc-

tion, grammar induction, word alignment, and word

segmentation. In each task, we show that declaring a

few linguistically motivated feature templates yields

state-of-the-art results.

2 Models

We start by explaining our feature-enhanced model

for part-of-speech (POS) induction. This particular

example illustrates our approach to adding features

to unsupervised models in a well-known NLP task.

We then explain how the technique applies more

generally.

2.1 Example: Part-of-Speech Induction

POS induction consists of labeling words in text

with POS tags. A hidden Markov model (HMM) is a

standard model for this task, used in both a frequen-

tist setting (Merialdo, 1994; Elworthy, 1994) and in

a Bayesian setting (Goldwater and Griffiths, 2007;

Johnson, 2007).

A POS HMM generates a sequence of words in

order. In each generation step, an observed word

emission yi and a hidden successor POS tag zi+1 are

generated independently, conditioned on the current

POS tag zi . This process continues until an absorb-

ing stop state is generated by the transition model.
There are two types of conditional distributions in

the model—emission and transition probabilities—
that are both multinomial probability distributions.
The joint likelihood factors into these distributions:

Pθ(Y = y,Z = z) = Pθ(Z1 = z1) ·

|z|
∏

i=1

Pθ(Yi = yi|Zi = zi) · Pθ(Zi+1 = zi+1|Zi = zi)

The emission distribution Pθ(Yi = yi|Zi = zi) is

parameterized by conditional probabilities θy,z,EMIT

for each word y given tag z. Alternatively, we can

express this emission distribution as the output of a

logistic regression model, replacing the explicit con-

ditional probability table by a logistic function pa-

rameterized by weights and features:

θy,z,EMIT(w) =
exp 〈w, f(y, z, EMIT)〉

∑

y′ exp 〈w, f(y′, z, EMIT)〉

This feature-based logistic expression is equivalent

to the flat multinomial in the case that the feature

function f(y, z, EMIT) consists of all indicator fea-

tures on tuples (y, z, EMIT), which we call BASIC

features. The equivalence follows by setting weight

wy,z,EMIT = log(θy,z,EMIT).
1 This formulation is

known as the natural parameterization of the multi-

nomial distribution.

In order to enhance this emission distribution, we

include coarse features in f(y, z, EMIT), in addi-

tion to the BASIC features. Crucially, these features

can be active across multiple (y, z) values. In this

way, the model can abstract general patterns, such

as a POS tag co-occurring with an inflectional mor-

pheme. We discuss specific POS features in Sec-

tion 4.

2.2 General Directed Models

Like the HMM, all of the models we propose are
based on locally normalized generative decisions
that condition on some context. In general, let X =
(Z,Y) denote the sequence of generation steps (ran-
dom variables) where Z contains all hidden random
variables and Y contains all observed random vari-
ables. The joint probability of this directed model
factors as:

Pw(X = x) =
∏

i∈I

Pw

(

Xi = xi

∣

∣Xπ(i) = xπ(i)

)

,

where Xπ(i) denotes the parents of Xi and I is the

index set of the variables in X.
In the models that we use, each factor in the above

expression is the output of a local logistic regression

1As long as no transition or emission probabilities are equal

to zero. When zeros are present, for instance to model that an

absorbing stop state can only transition to itself, it is often possi-

ble to absorb these zeros into a base measure. All the arguments

in this paper carry with a structured base measure; we drop it for

simplicity.
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model parameterized by w:

Pw

`

Xi = d
˛

˛Xπ(i) = c
´

=
exp〈w, f(d, c, t)〉

P

d′ exp〈w, f(d′, c, t)〉

Above, d is the generative decision value for Xi

picked by the model, c is the conditioning context

tuple of values for the parents of Xi, and t is the

type of decision being made. For instance, the POS

HMM has two types of decisions: transitions and

emissions. In the emission model, the type t is EMIT,

the decision d is a word and the context c is a tag.

The denominator normalizes the factor to be a prob-

ability distribution over decisions.
The objective function we derive from this model

is the marginal likelihood of the observations y,
along with a regularization term:

L(w) = log Pw(Y = y)− κ||w||22 (1)

This model has two advantages over the more preva-

lent form of a feature-rich unsupervised model, the

globally normalized Markov random field.2 First,

as we explain in Section 3, optimizing our objec-

tive does not require computing expectations over

the joint distribution. In the case of the POS HMM,

for example, we do not need to enumerate an in-

finite sum of products of potentials when optimiz-

ing, in contrast to Haghighi and Klein (2006). Sec-

ond, we found that locally normalized models em-

pirically outperform their globally normalized coun-

terparts, despite their efficiency and simplicity.

3 Optimization

3.1 Optimizing with Expectation Maximization

In this section, we describe the EM algorithm ap-
plied to our feature-rich, locally normalized models.
For models parameterized by standard multinomi-
als, EM optimizes L(θ) = log Pθ(Y = y) (Demp-
ster et al., 1977). The E-step computes expected
counts for each tuple of decision d, context c, and
multinomial type t:

ed,c,t←Eθ

[

∑

i∈I

 (Xi =d, Xπ(i) =c, t)

∣

∣

∣

∣

Y = y

]

(2)

2The locally normalized model class is actually equivalent

to its globally normalized counterpart when the former meets

the following three conditions: (1) The graphical model is a

directed tree. (2) The BASIC features are included in f . (3) We

do not include regularization in the model (κ = 0). This follows

from Smith and Johnson (2007).

These expected counts are then normalized in the

M-step to re-estimate θ:

θd,c,t ←
ed,c,t

∑

d′ ed′,c,t

Normalizing expected counts in this way maximizes

the expected complete log likelihood with respect to

the current model parameters.
EM can likewise optimize L(w) for our locally

normalized models with logistic parameterizations.
The E-step first precomputes multinomial parame-
ters from w for each decision, context, and type:

θd,c,t(w) ←
exp〈w, f(d, c, t)〉

∑

d′ exp〈w, f(d′, c, t)〉

Then, expected counts e are computed accord-

ing to Equation 2. In the case of POS induction,

expected counts are computed with the forward-

backward algorithm in both the standard and logistic

parameterizations. The only change is that the con-

ditional probabilities θ are now functions of w.

The M-step changes more substantially, but still

relies on canonical NLP learning methods. We wish

to choose w to optimize the regularized expected

complete log likelihood:

ℓ(w, e) =
∑

d,c,t

ed,c,t log θd,c,t(w)− κ||w||22 (3)

We optimize this objective via a gradient-based
search algorithm like LBFGS. The gradient with re-
spect to w takes the form

∇ℓ(w, e) =
∑

d,c,t

ed,c,t ·∆d,c,t(w)− 2κ ·w (4)

∆d,c,t(w) = f(d, c, t)−
∑

d′

θd′,c,t(w)f(d′, c, t)

This gradient matches that of regularized logis-

tic regression in a supervised model: the differ-

ence ∆ between the observed and expected features,

summed over every decision and context. In the su-

pervised case, we would observe the count of occur-

rences of (d, c, t), but in the unsupervised M-step,

we instead substitute expected counts ed,c,t.

This gradient-based M-step is an iterative proce-

dure. For each different value of w considered dur-

ing the search, we must recompute θ(w), which re-

quires computation in proportion to the size of the
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parameter space. However, e stays fixed throughout

the M-step. Algorithm 1 outlines EM in its entirety.

The subroutine climb(·, ·, ·) represents a generic op-

timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM

repeat

Compute expected counts e � Eq. 2

repeat

Compute ℓ(w, e) � Eq. 3

Compute∇ℓ(w, e) � Eq. 4
w ← climb(w, ℓ(w, e),∇ℓ(w, e))

until convergence

until convergence

3.2 Direct Marginal Likelihood Optimization

Another approach to optimizing Equation 1 is to

compute the gradient of the log marginal likelihood

directly (Salakhutdinov et al., 2003). The gradient

turns out to have the same form as Equation 4, with

the key difference that ed,c,t is recomputed for every

different value of w. Algorithm 2 outlines the proce-

dure. Justification for this algorithm appears in the

Appendix.

Algorithm 2 Feature-enhanced direct gradient

repeat

Compute expected counts e � Eq. 2

Compute L(w) � Eq. 1

Compute ∇ℓ(w, e) � Eq. 4
w ← climb(w, L(w),∇ℓ(w, e))

until convergence

In practice, we find that this optimization ap-

proach leads to higher task accuracy for several

models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the

effectiveness of locally normalized logistic models.

We first use the bigram HMM described in Sec-

tion 2.1 for POS induction, which has two types of

multinomials. For type EMIT, the decisions d are

words and contexts c are tags. For type TRANS, the

decisions and contexts are both tags.

4.1 POS Induction Features

We use the same set of features used by Haghighi

and Klein (2006) in their baseline globally normal-

ized Markov random field (MRF) model. These are

all coarse features on emission contexts that activate

for words with certain orthographic properties. We

use only the BASIC features for transitions. For

an emission with word y and tag z, we use the

following feature templates:

BASIC:  (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:

 (containsDigit(y) = ·, z = ·)
CONTAINS-HYPHEN:  (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized:  (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation

We train and test on the entire WSJ tag corpus (Mar-

cus et al., 1993). We attempt the most difficult ver-

sion of this task where the only information our sys-

tem can make use of is the unlabeled text itself. In

particular, we do not make use of a tagging dictio-

nary. We use 45 tag clusters, the number of POS tags

that appear in the WSJ corpus. There is an identifi-

ability issue when evaluating inferred tags. In or-

der to measure accuracy on the hand-labeled corpus,

we map each cluster to the tag that gives the highest

accuracy, the many-1 evaluation approach (Johnson,

2007). We run all POS induction models for 1000

iterations, with 10 random initializations. The mean

and standard deviation of many-1 accuracy appears

in Table 1.

4.3 POS Induction Results

We compare our model to the basic HMM and a bi-

gram version of the feature-enhanced MRF model of

Haghighi and Klein (2006). Using EM, we achieve

a many-1 accuracy of 68.1. This outperforms the

basic HMM baseline by a 5.0 margin. The same

model, trained using the direct gradient approach,

achieves a many-1 accuracy of 75.5, outperforming

the basic HMM baseline by a margin of 12.4. These

results show that the direct gradient approach can of-

fer additional boosts in performance when used with

a feature-enhanced model. We also outperform the
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globally normalized MRF, which uses the same set

of features and which we train using a direct gradi-

ent approach.

To the best of our knowledge, our system achieves

the best performance to date on the WSJ corpus for

totally unsupervised POS tagging.3

5 Grammar Induction

We next apply our technique to a grammar induction

task: the unsupervised learning of dependency parse

trees via the dependency model with valence (DMV)

(Klein and Manning, 2004). A dependency parse is

a directed tree over tokens in a sentence. Each edge

of the tree specifies a directed dependency from a

head token to a dependent, or argument token. Thus,

the number of dependencies in a parse is exactly the

number of tokens in the sentence, not counting the

artificial root token.

5.1 Dependency Model with Valence

The DMV defines a probability distribution over de-

pendency parse trees. In this head-outward attach-

ment model, a parse and the word tokens are derived

together through a recursive generative process. For

each token generated so far, starting with the root, a

set of left dependents is generated, followed by a set

of right dependents.

There are two types of multinomial distributions

in this model. The Bernoulli STOP probabilities

θd,c,STOP capture the valence of a particular head. For

this type, the decision d is whether or not to stop

generating arguments, and the context c contains the

current head h, direction δ and adjacency adj. If

a head’s stop probability is high, it will be encour-

aged to accept few arguments. The ATTACH multi-

nomial probability distributions θd,c,ATTACH capture

attachment preferences of heads. For this type, a de-

cision d is an argument token a, and the context c

consists of a head h and a direction δ.

We take the same approach as previous work

(Klein and Manning, 2004; Cohen and Smith, 2009)

and use gold POS tags in place of words.

3Haghighi and Klein (2006) achieve higher accuracies by

making use of labeled prototypes. We do not use any external

information.

5.2 Grammar Induction Features

One way to inject knowledge into a dependency

model is to encode the similarity between the vari-

ous morphological variants of nouns and verbs. We

encode this similarity by incorporating features into

both the STOP and the ATTACH probabilities. The

attachment features appear below; the stop feature

templates are similar and are therefore omitted.

BASIC:  (a = ·, h = ·, δ = ·)
NOUN: Generalize the morphological variants of

nouns by using isNoun(·):

 (a = ·, isNoun(h) = ·, δ = ·)
 (isNoun(a) = ·, h = ·, δ = ·)
 (isNoun(a) = ·, isNoun(h) = ·, δ = ·)

VERB: Same as above, generalizing verbs instead

of nouns by using isVerb(·)
NOUN-VERB: Same as above, generalizing with

isVerbOrNoun(·) = isVerb(·)∨ isNoun(·)
BACK-OFF: We add versions of all other features that

ignore direction or adjacency.

While the model has the expressive power to al-

low specific morphological variants to have their

own behaviors, the existence of coarse features en-

courages uniform analyses, which in turn gives bet-

ter accuracies.

Cohen and Smith’s (2009) method has similar

characteristics. They add a shared logistic-normal

prior (SLN) to the DMV in order to tie multinomial

parameters across related derivation events. They

achieve their best results by only tying parame-

ters between different multinomials when the cor-

responding contexts are headed by nouns and verbs.

This observation motivates the features we choose to

incorporate into the DMV.

5.3 Grammar Induction Data and Evaluation

For our English experiments we train and report di-

rected attachment accuracy on portions of the WSJ

corpus. We work with a standard, reduced version of

WSJ, WSJ10, that contains only sentences of length

10 or less after punctuation has been removed. We

train on sections 2-21, and use section 22 as a de-

velopment set. We report accuracy on section 23.

These are the same training, development, and test

sets used by Cohen and Smith (2009). The regular-

ization parameter (κ) is tuned on the development

set to maximize accuracy.

For our Chinese experiments, we use the same

corpus and training/test split as Cohen and Smith
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(2009). We train on sections 1-270 of the Penn Chi-

nese Treebank (Xue et al., 2002), similarly reduced

(CTB10). We test on sections 271-300 of CTB10,

and use sections 400-454 as a development set.

The DMV is known to be sensitive to initializa-

tion. We use the deterministic harmonic initializer

from Klein and Manning (2004). We ran each op-

timization procedure for 100 iterations. The results

are reported in Table 1.

5.4 Grammar Induction Results

We are able to outperform Cohen and Smith’s (2009)

best system, which requires a more complicated

variational inference method, on both English and

Chinese data sets. Their system achieves an accu-

racy of 61.3 for English and an accuracy of 51.9 for

Chinese.4 Our feature-enhanced model, trained us-

ing the direct gradient approach, achieves an accu-

racy of 63.0 for English, and an accuracy of 53.6 for

Chinese. To our knowledge, our method for feature-

based dependency parse induction outperforms all

existing methods that make the same set of condi-

tional independence assumptions as the DMV.

6 Word Alignment

Word alignment is a core machine learning com-

ponent of statistical machine translation systems,

and one of the few NLP tasks that is dominantly

solved using unsupervised techniques. The pur-

pose of word alignment models is to induce a cor-

respondence between the words of a sentence and

the words of its translation.

6.1 Word Alignment Models

We consider two classic generative alignment mod-

els that are both used heavily today, IBM Model 1

(Brown et al., 1994) and the HMM alignment model

(Ney and Vogel, 1996). These models generate a

hidden alignment vector z and an observed foreign

sentence y, all conditioned on an observed English

sentence e. The likelihood of both models takes the

form:

P (y, z|e) =
∏

j

p(zj = i|zj−1) · θyj ,ei,ALIGN

4Using additional bilingual data, Cohen and Smith (2009)

achieve an accuracy of 62.0 for English, and an accuracy of

52.0 for Chinese, still below our results.

Model Inference Reg Eval

POS Induction κ Many-1

W
S

J

Basic-HMM EM – 63.1 (1.3)

Feature-MRF LBFGS 0.1 59.6 (6.9)

Feature-HMM EM 1.0 68.1 (1.7)

LBFGS 1.0 75.5 (1.1)

Grammar Induction κ Dir

W
S

J1
0

Basic-DMV EM – 47.8

Feature-DMV EM 0.05 48.3

LBFGS 10.0 63.0

(Cohen and Smith, 2009) 61.3

C
T

B
1

0

Basic-DMV EM – 42.5

Feature-DMV EM 1.0 49.9

LBFGS 5.0 53.6

(Cohen and Smith, 2009) 51.9

Word Alignment κ AER

N
IS

T
C

h
E

n Basic-Model 1 EM – 38.0

Feature-Model 1 EM – 35.6

Basic-HMM EM – 33.8

Feature-HMM EM – 30.0

Word Segmentation κ F1

B
R

Basic-Unigram EM – 76.9 (0.1)

Feature-Unigram EM 0.2 84.5 (0.5)

LBFGS 0.2 88.0 (0.1)

(Johnson and Goldwater, 2009) 87

Table 1: Locally normalized feature-based models outperform

all proposed baselines for all four tasks. LBFGS outperformed

EM in all cases where the algorithm was sufficiently fast to run.

Details of each experiment appear in the main text.

The distortion term p(zj = i|zj−1) is uniform in

Model 1, and Markovian in the HMM. See Liang et

al. (2006) for details on the specific variant of the

distortion model of the HMM that we used. We use

these standard distortion models in both the baseline

and feature-enhanced word alignment systems.

The bilexical emission model θy,e,ALIGN differen-

tiates our feature-enhanced system from the base-

line system. In the former, the emission model is a

standard conditional multinomial that represents the

probability that decision word y is generated from

context word e, while in our system, the emission

model is re-parameterized as a logistic regression

model and feature-enhanced.

Many supervised feature-based alignment models

have been developed. In fact, this logistic parame-

terization of the HMM has been proposed before and

yielded alignment improvements, but was trained

using supervised estimation techniques (Varea et al.,

2002).5 However, most full translation systems to-

5Varea et al. (2002) describes unsupervised EM optimiza-

tion with logistic regression models at a high level—their dy-

namic training approach—but provides no experiments.
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day rely on unsupervised learning so that the models

may be applied easily to many language pairs. Our

approach provides efficient and consistent unsuper-

vised estimation for feature-rich alignment models.

6.2 Word Alignment Features

The BASIC features on pairs of lexical items

provide strong baseline performance. We add

coarse features to the model in order to inject

prior knowledge and tie together lexical items with

similar characteristics.

BASIC:  (e = ·, y = ·)
EDIT-DISTANCE:  (dist(y, e) = ·)
DICTIONARY:  ((y, e) ∈ D) for dictionary D.

STEM:  (stem(e) = ·, y = ·) for Porter stemmer.

PREFIX:  (prefix(e) = ·, y = ·) for prefixes of

length 4.

CHARACTER:  (e = ·, charAt(y, i) = ·) for index i in

the Chinese word.

These features correspond to several common

augmentations of word alignment models, such as

adding dictionary priors and truncating long words,

but here we integrate them all coherently into a sin-

gle model.

6.3 Word Alignment Data and Evaluation

We evaluate on the standard hand-aligned portion

of the NIST 2002 Chinese-English development set

(Ayan et al., 2005). The set is annotated with sure S

and possible P alignments. We measure alignment

quality using alignment error rate (AER) (Och and

Ney, 2000).

We train the models on 10,000 sentences of FBIS

Chinese-English newswire. This is not a large-scale

experiment, but large enough to be relevant for low-

resource languages. LBFGS experiments are not

provided because computing expectations in these

models is too computationally intensive to run for

many iterations. Hence, EM training is a more ap-

propriate optimization approach: computing the M-

step gradient requires only summing over word type

pairs, while the marginal likelihood gradient needed

for LBFGS requires summing over training sentence

alignments. The final alignments, in both the base-

line and the feature-enhanced models, are computed

by training the generative models in both directions,

combining the result with hard union competitive

thresholding (DeNero and Klein, 2007), and us-

ing agreement training for the HMM (Liang et al.,

2006). The combination of these techniques yields

a state-of-the-art unsupervised baseline for Chinese-

English.

6.4 Word Alignment Results

For both IBM Model 1 and the HMM alignment

model, EM training with feature-enhanced models

outperforms the standard multinomial models, by

2.4 and 3.8 AER respectively.6 As expected, large

positive weights are assigned to both the dictionary

and edit distance features. Stem and character fea-

tures also contribute to the performance gain.

7 Word Segmentation

Finally, we show that it is possible to improve upon

the simple and effective word segmentation model

presented in Liang and Klein (2009) by adding

phonological features. Unsupervised word segmen-

tation is the task of identifying word boundaries in

sentences where spaces have been removed. For a

sequence of characters y = (y1, ..., yn), a segmen-

tation is a sequence of segments z = (z1, ..., z|z|)
such that z is a partition of y and each zi is a con-

tiguous subsequence of y. Unsupervised models for

this task infer word boundaries from corpora of sen-

tences of characters without ever seeing examples of

well-formed words.

7.1 Unigram Double-Exponential Model

Liang and Klein’s (2009) unigram double-

exponential model corresponds to a simple

derivational process where sentences of characters

x are generated a word at a time, drawn from a

multinomial over all possible strings θz,SEGMENT.

For this type, there is no context and the decision is

the particular string generated. In order to avoid the

degenerate MLE that assigns mass only to single

segment sentences it is helpful to independently

generate a length for each segment from a fixed

distribution. Liang and Klein (2009) constrain in-

dividual segments to have maximum length 10 and

generate lengths from the following distribution:

θl,LENGTH = exp(−l1.6) when 1 ≤ l ≤ 10. Their

model is deficient since it is possible to generate

6The best published results for this dataset are supervised,

and trained on 17 times more data (Haghighi et al., 2009).
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lengths that are inconsistent with the actual lengths

of the generated segments. The likelihood equation

is given by:

P (Y = y,Z = z) =

θSTOP

|z|
∏

i=1

[

(1− θSTOP) θzi,SEGMENT exp(−|zi|
1.6)

]

7.2 Segmentation Data and Evaluation

We train and test on the phonetic version of the

Bernstein-Ratner corpus (1987). This is the same

set-up used by Liang and Klein (2009), Goldwater

et al. (2006), and Johnson and Goldwater (2009).

This corpus consists of 9790 child-directed utter-

ances transcribed using a phonetic representation.

We measure segment F1 score on the entire corpus.

We run all word segmentation models for 300 iter-

ations with 10 random initializations and report the

mean and standard deviation of F1 in Table 1.

7.3 Segmentation Features

The SEGMENT multinomial is the important distri-

bution in this model. We use the following features:

BASIC:  (z = ·)
LENGTH:  (length(z) = ·)
NUMBER-VOWELS:  (numVowels(z) = ·)
PHONO-CLASS-PREF:  (prefix(coarsePhonemes(z)) = ·)
PHONO-CLASS-PREF:  (suffix(coarsePhonemes(z)) = ·)

The phonological class prefix and suffix features

project each phoneme of a string to a coarser class

and then take prefix and suffix indicators on the

string of projected characters. We include two ver-

sions of these features that use projections with dif-

ferent levels of coarseness. The goal of these fea-

tures is to help the model learn general phonetic

shapes that correspond to well-formed word bound-

aries.

As is the case in general for our method, the

feature-enhanced unigram model still respects the

conditional independence assumptions that the stan-

dard unigram model makes, and inference is still

performed using a simple dynamic program to com-

pute expected sufficient statistics, which are just seg-

ment counts.

7.4 Segmentation Results

To our knowledge our system achieves the best per-

formance to date on the Bernstein-Ratner corpus,

with an F1 of 88.0. It is substantially simpler than

the non-parametric Bayesian models proposed by

Johnson et al. (2007), which require sampling pro-

cedures to perform inference and achieve an F1 of

87 (Johnson and Goldwater, 2009). Similar to our

other results, the direct gradient approach outper-

forms EM for feature-enhanced models, and both

approaches outperform the baseline, which achieves

an F1 of 76.9.

8 Conclusion

We have shown that simple, locally normalized

models can effectively incorporate features into un-

supervised models. These enriched models can

be easily optimized using standard NLP build-

ing blocks. Beyond the four tasks explored in

this paper—POS tagging, DMV grammar induc-

tion, word alignment, and word segmentation—the

method can be applied to many other tasks, for ex-

ample grounded semantics, unsupervised PCFG in-

duction, document clustering, and anaphora resolu-

tion.
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Appendix: Optimization

In this section, we derive the gradient of the log marginal likeli-

hood needed for the direct gradient approach. Let w0 be the cur-

rent weights in Algorithm 2 and e = e(w0) be the expectations

under these weights as computed in Equation 2. In order to jus-

tify Algorithm 2, we need to prove that ∇L(w0) = ∇ℓ(w0, e).

We use the following simple lemma: if φ, ψ are real-valued

functions such that: (1) φ(w0) = ψ(w0) for some w0; (2)

φ(w) ≤ ψ(w) on an open set containing w0; and (3), φ and ψ

are differentiable at w0; then ∇ψ(w0) = ∇φ(w0).

We set ψ(w) = L(w) and φ(w) = ℓ(w, e)−
P

z
Pw0

(Z =
z|Y = y) log Pw0

(Z = z|Y = y). If we can show that ψ, φ

satisfy the conditions of the lemma we are done since the second

term of φ depends on w0, but not on w.

Property (3) can be easily checked, and property (2) follows

from Jensen’s inequality. Finally, property (1) follows from

Lemma 2 of Neal and Hinton (1998).

589



References

N. F. Ayan, B. Dorr, and C. Monz. 2005. Combining

word alignments using neural networks. In Empirical

Methods in Natural Language Processing.

N. Bernstein-Ratner. 1987. The phonology of parent-

child speech. K. Nelson and A. van Kleeck.

M. Bisani and H. Ney. 2008. Joint-sequence models for

grapheme-to-phoneme conversion.
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