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Abstract

Typical statistical machine translation sys-
tems are trained with static parallel corpora.
Here we account for scenarios with a continu-
ous incoming stream of parallel training data.
Such scenarios include daily governmental
proceedings, sustained output from transla-
tion agencies, or crowd-sourced translations.
We show incorporating recent sentence pairs
from the stream improves performance com-
pared with a static baseline. Since frequent
batch retraining is computationally demand-
ing we introduce a fast incremental alternative
using an online version of the EM algorithm.
To bound our memory requirements we use
a novel data-structure and associated training
regime. When compared to frequent batch re-
training, our online time and space-bounded
model achieves the same performance with
significantly less computational overhead.

1 Introduction

There is more parallel training data available to-
day than there has ever been and it keeps increas-
ing. For example, the European Parliament1 releases
new parallel data in 22 languages on a regular basis.
Project Syndicate2 translates editorials into seven
languages (including Arabic, Chinese and Russian)
every day. Existing translation systems often get
‘crowd-sourced’ improvements such as the option
to contribute a better translation to GoogleTrans-
late3. In these and many other instances, the data can
be viewed as an incomingunbounded streamsince

1http://www.europarl.europa.eu
2http://www.project-syndicate.org
3http://www.translate.google.com

the corpus grows continually with time. Dealing
with such unbounded streams of parallel sentences
presents two challenges: making retraining efficient
and operating within a bounded amount of space.

Statistical Machine Translation (SMT) systems
are typically batch trained, often taking many CPU-
days of computation when using large volumes of
training material. Incorporating new data into these
models forces us to retrain from scratch. Clearly,
this makes rapidly adding newly translated sen-
tences into our models a daunting engineering chal-
lenge. We introduce an adaptive training regime us-
ing an online variant of EM that is capable of in-
crementally adding new parallel sentences without
incurring the burdens of full retraining.

For situations with large volumes of incoming
parallel sentences we are also forced to consider
placing space-bounds on our SMT system. We in-
troduce a dynamic suffix array which allows us to
add and delete parallel sentences, thereby maintain-
ing bounded space despite processing a potentially
high-rate input stream of unbounded length.

Taken as a whole we show that online translation
models operating within bounded space can perform
as well as systems which are batch-based and have
no space constraints thereby making our approach
suitable for stream-based translation.

2 Stepwise Online EM

The EM algorithm is a common way of inducing
latent structure from unlabeled data in an unsuper-
vised manner (Dempster et al., 1977). Given a set
of unlabeled examples and an initial, often uniform
guess at a probability distribution over the latent
variables, the EM algorithm maximizes the marginal

394



log-likelihood of the examples by repeatedly com-
puting the expectation of the conditional probability
of the latent data with respect to the current distri-
bution, and then maximizing the expectations over
the observations into a new distribution used in the
next iteration. EM (and related variants such as vari-
ational or sampling approaches) form the basis of
how SMT systems learn their translation models.

2.1 Batch vs. Online EM

Computing an expectation for the conditional prob-
abilities requires collecting thesufficient statisticsS
over the set ofn unlabeled examples. In the case
of a multinomial distribution,S is comprised of the
counts over each conditional observation occurring
in then examples. In traditionalbatchEM, we col-
lect the counts over the entire dataset ofn unlabeled
training examples via the current ‘best-guess’ proba-
bility model θ̂t at iterationt (E-step) before normal-
izing the counts into probabilities̄θ(S) (M-step)4.
After each iteration all the counts in the sufficient
statistics vectorS are cleared and the count collec-
tion begins anew using the new distributionθ̂t+1.

When we move to processing an incoming data
stream, however, the batch EM algorithm’s require-
ment that all data be available for each iteration be-
comes impractical since we do not have access to all
n examples at once. Instead we receive examples
from the input stream incrementally. For this reason
online EM algorithms have been developed to up-
date the probability model̂θ incrementally without
needing to store and iterate through all the unlabeled
training data repeatedly.

Various online EM algorithms have been investi-
gated (see Liang and Klein (2009) for an overview)
but our focus is on thestepwise onlineEM (sOEM)
algorithm (Cappe and Moulines, 2009). Instead
of iterating over the full set of training examples,
sOEM stochastically approximates the batch E-step
and incorporates the information from the newly
available streaming observations in steps. Each step
is called amini-batchand is comprised of one or
more new examples encountered in the stream.

Unlike in batch EM, in sOEM the expected counts
are retained between EM iterations and not cleared.

4As the M-step can be computed in closed form we desig-
nate it in this work as̄θ(S).

Algorithm 1 : Batch EM for Word Alignments

Input : {F (source),E (target)} sentence-pairs
Output : MLE θ̂T over alignmentsa
θ̂0 ←MLE initialization;
for iterationk = 0, . . . , T do

S ← 0; // reset counts

foreach (f, e) ∈ {F, E} do // E-step

S ← S +
∑

a′∈a

Pr(f, a′|e; θ̂t);

end
θ̂t+1 ← θ̄t(S) ; // M-step

end

That is, for each new example we interpolate its ex-
pected count with the existing set of sufficient statis-
tics. For each step we use astepsizeparameterγ
which mixes the information from the current ex-
ample with information gathered from all previous
examples. Over time the sOEM model probabilities
begin to stabilize and are guaranteed to converge to
a local maximum (Cappe and Moulines, 2009).

Note that the stepsizeγ has a dependence on the
current mini-batch. As we observe more incoming
data the model’s current probability distribution is
closer to the true distribution so the new observa-
tions receive less weight. From Liang and Klein
(2009), if we set the stepsize asγt = (t + 2)−α,
with 0.5 < α ≤ 1, we can guarantee convergence in
the limit asn → ∞. If we setα low, γ weighs the
newly observed statistics heavily whereas ifγ is low
new observations are down-weighted.

2.2 Batch EM for Word Alignments

Batch EM is used in statistical machine translation
to estimate word alignment probabilities between
parallel sentences. From these alignments, bilingual
rules or phrase pairs can be extracted. Given a set
of parallel sentence examples,{F,E}, with F the
set of source sentences andE the corresponding tar-
get sentences, we want to find the latent alignments
a for a sentence pair(f , e) ∈ {F,E} that defines
the most probable correspondence between wordsfj

andei such thataj = i. We can induce these align-
ments using anHMM-basedalignment model where
the probability of alignmentaj is dependent only on
the previous alignment ataj−1 (Vogel et al., 1996).
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We can write

Pr(f ,a | e) =
∑

a′∈a

|f |∏

j=1

p(aj | aj−1, |e|) · p(fj | eaj
)

where we assume a first-order dependence on previ-
ously aligned positions.

To find the most likely parameter weights for
the translation and alignment probabilities for the
HMM-based alignments, we employ the EM algo-
rithm via dynamic programming. Since HMMs have
multiple local minima, we seed the HMM-based
model probabilities with a better than random guess
using IBM Model 1 (Brown et al., 1993) as is stan-
dard. IBM Model 1 is of the same form as the
HMM-based model except it uses a uniform distri-
bution instead of a first-order dependency. Although
a series of more complex models are defined, IBM
Models 2 to Model 6 (Brown et al., 1993; Och and
Ney, 2003), researchers typically find that extract-
ing phrase pairs or translation grammar rules using
Model 1 and the HMM-based alignments results in
equivalently high translation quality. Nevertheless,
there is nothing in our approach which limits us to
using just Model 1 and the HMM model.

A high-level overview of the standard, batch EM
algorithm applied to HMM-based word alignment
model is shown in Algorithm 1.

2.3 Stepwise EM for Word Alignments

Application of sOEM to HMM and Model 1 based
word aligning is straightforward. The process of
collecting the counts over the expected conditional
probabilities inside each iteration loop remains the
same as in the batch case. However, instead of clear-
ing the sufficient statistics between the iterations we
retain them and interpolate them with the batch of
counts gathered in the next iteration.

Algorithm 2 shows high level pseudocode of our
sOEM framework as applied to HMM-based word
alignments. Here we have an unbounded input
stream of source and target sentences{F,E} which
we do not have access to in its entirety at once.
Instead we observe mini-batches{M} comprised
of chronologically ordered strict subsets of the full
stream. To word align the sentences for each mini-
batchm ∈ M, we use the probability assigned by
the current model parameters and then interpolate

Algorithm 2 : sOEM Algorithm for Word Align-
ments
Input : mini-batches of sentence pairs

{M : M ⊂ {F (source), E(target)}}
Input : stepsize weightα
Output : MLE θ̂T over alignmentsa
θ̂0 ←MLE initialization;
S ← 0; k = 0;
foreachmini-batch{m : m ∈M} do

for iteration t = 0, . . . , T do
foreach (f, e) ∈ {m} do // E-step

s̄←
∑

a′∈a

Pr(f, a′|e; θ̂t);

end
γ = (k + 2)−α; k = k + 1; // stepsize

S ← γs̄ + (1− γ)S; // interpolate

θ̂t+1 ← θ̄t(S) ; // M-step

end
end

the newest sufficient statistics̄s with our full count
vectorS using an interpolation parameterγ. The in-
terpolation parameterγ has a dependency on how
far along the input stream we are processing.

3 Dynamic Suffix Arrays

So far we have shown how to incrementally retrain
translation models. We now consider how we might
bound the space we use for them when processing
(potentially) unbounded streams of parallel data.

Suffix arraysare space-efficient data structures for
fast searching over large text strings (Manber and
Myers, 1990). Treating the entire corpus as a sin-
gle string, a suffix array holds in lexicographical or-
der (only) the starting index of each suffix of the
string. After construction, since the corpus is now
ordered, we can query the suffix array quickly us-
ing binary search to efficiently find all occurrences
of a particular token or sequence of tokens. Then we
can easily compute, on-the-fly, the statistics required
such as translation probabilities for a given source
phrase. Suffix arrays can also be compressed, which
make them highly attractive structures for represent-
ing massive translation models (Callison-Burch et
al., 2005; Lopez, 2008).

We need to delete items if we wish to maintain
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Figure 1: Streaming coverage conditions. In traditional
batch based modeling the coverage of a trained model
never changes. Unbounded coverage operates without
any memory constraints so the model is able to contin-
ually add data from the input stream. Bounded coverage
uses just a fixed window.

constant space when processing unbounded streams.
Standard suffix arrays are static, store a fixed corpus
and do not support deletions. Nevertheless, a dy-
namic variant of the suffix array does support dele-
tions as well as insertions and therefore can be used
in our stream-based approach (Salson et al., 2009).
Using a dynamic suffix array, we can compactly
represent the set of parallel sentences from which
we eventually extract grammar rules. Furthermore,
when incorporating new parallel sentences, we sim-
ply insert them into the array and, to maintain con-
stant space usage, we delete an equivalent number.

4 Experiments

In this section we describe the experiments con-
ducted comparing various batch trained translation
models (TMs) versus online incrementally retrained
TMs in a full SMT setting with different conditions
set on model coverage. We used publicly available
resources for all our tests. We start by showing that
recency motivates incremental retraining.

4.1 Effects of Recency on SMT

For language modeling, it is known that perfor-
mance can be improved using the criterion ofre-
cency where training data is drawn from times
chronologically closer to the test data (Rosenfeld,
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Figure 2: Recency effects to SMT performance. De-
picted are the differences in BLEU scores for multiple
test points decoded by a static baseline system and a sys-
tem batched retrained on a fixed sized window prior to
the test point in question. The results are accentuated at
the end of the timeline when more time has passed con-
firming that recent data impacts translation performance.

1995). Given an incoming stream of parallel text,
we gauged the extent to which incorporating recent
data into a TM affects translation quality.

We used the Europarl corpus5 with the Fr-En lan-
guage pair using French as source and English as tar-
get. Europarl is released in the format of a daily par-
liamentary session per time-stamped file. The actual
dates of the full corpus are interspersed unevenly
(they do not convene daily) over a continuous time-
line corresponding to the parliament sessions from
April,1996 through October, 2006, but for concep-
tual simplicity we treated the corpus as a continual
input stream over consecutive days.

As a baseline we aligned the first 500k sentence
pairs from the beginning of the corpus timeline. We
extracted a grammar for and translated 36 held out
test documents that were evenly spaced along the re-
mainder of the Europarl timeline. These test docu-
ments effectively divided the remaining training data
into epochsand we used asliding windowover the
timeline to build 36 distinct, overlapping training
sets of 500k sentences each.

We then translated all 36 test points again using
a new grammar for each document extracted from
only the sentences contained in the epoch that was
before it. To explicitly test the effect of recency

5Available athttp://www.statmt.org/europarl
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on the TM all other factors of the SMT pipeline re-
mained constant including the language model and
the feature weights. Hence, the only change from
the static baseline to the epochs performance was the
TM data which was based on recency. Note that at
this stage we did not use any incremental retraining.

Results are shown in Figure 2 as the differences
in BLEU score (Papineni et al., 2001) between the
baseline TM versus the translation models trained
on material chronologically closer to the given test
point. The consistently positive deltas in BLEU
scores between the model that is never retrained and
the models that are retrained show that we achieve a
higher translation performance when using more up-
to-date TMs that incorporate recent sentence pairs.
As the chronological distance between the initial,
static model and the retrained models increases, we
see ever-increasing differences in translation perfor-
mance. This underlines the need to retrain transla-
tion models with timely material.

4.2 Unbounded and Bounded Translation
Model Retraining

Here we consider how to process a stream along two
main axes: by bounding time (batch versus incre-
mental retraining) and by bounding space (either us-
ing all the stream seen so far, or only using a fixed
sized sample of it).

To ensure the recency results reported above were
not limited to French-English, this time our paral-
lel input stream was generated from the German-
English language pair of Europarl with German as
source and English again as target. For testing we
held out a total of 22k sentences from 10 evenly
spaced intervals in the input stream which divided
the input stream into 10 epochs. Stream statistics for
three example epochs are shown in Table 1. We held
out 4.5k sentence pairs as development data to opti-
mize the feature function weights using minimum
error rate training (Och, 2003) and these weights
were used by all models. We usedJoshua(Li et
al., 2009), a syntax-based decoder with a suffix array
implementation, and rule induction via the standard
Hiero grammar extraction heuristics (Chiang, 2007)
for the TMs. Note that nothing hinges on whether
we used a syntax or a phrase-based system.

We used a 5-gram, Kneser-Ney smoothed lan-
guage model (LM) trained on the initial segment of

Ep From–To Sent Pairs Source/Target
00 04/1996–12/2000 600k 15.0M/16.0M
03 02/2002–09/2002 70k 1.9M/2.0M
06 10/2003–03/2004 60k 1.6M/1.7M
10 03/2006–09/2006 73k 1.9M/2.0M

Table 1: Date ranges, total sentence pairs, and source and
target word counts encountered in the input stream for
example epochs. Epoch 00 is baseline data that is also
used as a seed corpus for the online models.

the target side parallel data used in the first base-
line as described further in the next subsection. As
our initial experiments aim to isolate the effect of
changes to the TM on overall translation system per-
formance, our in-domain LM remains static for ev-
ery decoding run reported below until indicated.

We used the open-source toolkit GIZA++ (Och
and Ney, 2003) for all word alignments. For the
online adaptation experiments we modified Model
1 and the HMM model in GIZA++ to use the sOEM
algorithm. Batch baselines were aligned using the
standard version of GIZA++. We ran the batch and
incremental versions of Model 1 and HMM for the
same number of iterations each in both directions.

4.3 Time and Space Bounds

For both batch and sOEM we ran a number of ex-
periments listed below corresponding to the differ-
ent training scenarios diagrammed in Figure 1.

1. Static: We used the first half of the in-
put stream, approximately 600k sentences and
15/16 million source/target words, as parallel
training data. We then translated each of the 10
test sets using the static model. This is the tradi-
tional approach and the coverage of the model
never changes.

2. Unbounded Space: Batch or incremental re-
training with no memory constraint. For each
epoch in the stream, we retrained the TM us-
ing all the data from the beginning of the in-
put stream until just before the present with re-
spect to a given test point. As more time passes
our training data set grows so eachbatch run
of GIZA++ takes more time. Overall this is the
most computationally expensive approach.
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Baseline Unbounded Bounded
Epoch Test Date Test Sent.Train Sent. Rules Train Sent. Rules Train Sent. Rules

03 09/23/2002 1.0k 580k 4.0M 800k 5.0M 580k 4.2M
06 03/29/2004 1.5k 580k 5.0M 1.0M 7.0M 580k 5.5M
10 09/26/2006 3.5k 580k 8.5M 1.3M 14.0M 580k 10.0M

Table 2: Translation model statistics for example epochs and the next test dates grouped by experimental condition.
TestandTrain Sent.is the number of sentence pairs in test and training data respectively.Rulesis the count of unique
Hiero grammar rules extracted for the corresponding test set.
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Figure 3: Static vs. online TM performance. Gains in
translation performance measured by BLEU are achieved
when recent German-English sentence pairs are auto-
matically incorporated into the TM. Shown are relative
BLEU improvements for the online models against the
static baseline.

3. Bounded Space: Batch and incremental re-
training with an enforced memory constraint.
Here we batch or incrementally retrain using
a sliding windowapproach where the training
set size (the number of sentence pairs) remains
constant. In particular, we ensured that we
used the same number of sentences as the base-
line. Each batch run of GIZA++ takes approxi-
mately the same time.

Thetimefor aligning in the sOEM model is unaf-
fected by the bounded/unbounded conditions since
we always only align the mini-batch of sentences
encountered in the last epoch. In contrast, for batch
EM we must realign all the sentences in our training
set from scratch to incorporate the new training data.

Similarly spaceusage for the batch training grows
with the training set size. For sOEM, in theory mem-
ory used is with respect to vocabulary size (which

grows slowly with the stream size) since we retain
count history for the entire stream. To make space
usage truly constant, we filter for just the needed
word pairs in the current epoch being aligned. This
effectively means that online EM is more mem-
ory efficient than the batch version. As our exper-
iments will show, the sufficient statistics kept be-
tween epochs by sOEM benefits performance com-
pared to the batch models which can only use infor-
mation present within the batch itself.

4.4 Incremental Retraining Procedure

Our incremental adaptation procedure was as fol-
lows: after the latest mini-batch of sentences had
been aligned using sOEM we added all newly
aligned sentence pairs to the dynamic suffix ar-
rays. For the experiments where our memory was
bounded, we alsodeletedan equal number of sen-
tences from the suffix arrays before extracting the
Hiero grammar for the next test point. For the un-
bounded coverage experiments we deleted nothing
prior to grammar extraction. Table 2 presents statis-
tics for the number of training sentence pairs and
grammar rules extracted for each coverage condition
for various test points.

4.5 Results

Figure 3 shows the results of the static baseline
against both the unbounded and bounded online EM
models. We can see that both the online models
outperform the static baseline. On average the un-
constrained model that contains more sentence pairs
for rule extraction slightly outperforms the bounded
condition which uses less data per epoch. However,
the static baseline and the bounded models both use
the same number of sentence-pairs for TM training.
We see there is a clear gain by incorporating recent
sentence-pairs made available by the stream.
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Static Baseline Retrained (Unbounded) Retrained (Bounded)
Test Date Batch Batch Online Batch Online
09/23/2002 26.10 26.60 26.43 26.19 26.40
03/29/2004 27.40 28.33 28.42 28.06 28.38
09/26/2006 28.56 29.74 29.75 29.73 29.80

Table 3: Sample BLEU results for all baseline and online EM model conditions. Thestatic baselineis a traditional
model that is never retrained. Thebatch unboundedandbatch boundedmodels incorporate new data from the stream
but retraining is slow and computationally expensive (bestresults are bolded). In contrast both unbounded and bounded
online models incrementally retrain only the mini-batch ofnew sentences collected from the incoming stream so
quickly adopt the new data (best results are italicized).

Table 3 gives results of the online models com-
pared to the batch retrained models. For presentation
clarity we show only a sample of the full set of ten
test points though all results follow the pattern that
using more aligned sentences to derive our gram-
mar set resulted in slightly better performance ver-
sus a restricted training set. However, for the same
coverage constraints not only do we achieve com-
parable performance to batch retrained models us-
ing the sOEM method of incremental adaptation, we
are able to align and adopt new data from the input
stream orders of magnitude quicker since we only
align the mini-batch of sentences collected from the
last epoch. In the bounded condition, not only do
we benefit from quicker adaptation, we also see that
sOEM models slightly outperform the batch based
models due to the online algorithm employing a
longer history of count-based evidence to draw on
when aligning new sentence pairs.

Figure 4 shows two example test sentences that
benefited from the online TM adaptation. Trans-
lations from the online model produce more and
longer matching phrases for both sentences (e.g.,
“creation of such a”, “of the occupying forces”)
leading to more fluent output as well as the improve-
ments achieved in BLEU scores.

We experimented with a variety of interpolation
parameters (see Algorithm 2) but found no signifi-
cant difference between them (the biggest improve-
ment gained over all test points for all parameter set-
tings was less than 0.1% BLEU).

4.6 Increasing LM Coverage

A natural and interesting extension to the experi-
ments above is to use the target side of the incoming
stream to extend the LM coverage alongside the TM.

Test Date Static Unbounded Bounded
09/23/2002 26.46 27.11 26.96
03/29/2004 28.11 29.53 29.20
09/26/2006 29.53 30.94 30.88

Table 4: Unbounded LM coverage improvements. Shown
are the BLEU scores for each experimental conditional
when we allow the LM coverage to increase.

It is well known that more LM coverage (via larger
training data sets) is beneficial to SMT performance
(Brants et al., 2007) so we investigated whether re-
cency gains for the TM were additive with recency
gains afforded by a LM.

To test this we added all the target side data from
the beginning of the stream to the most recent epoch
into the LM training set before each test point. We
then batch retrained6 and used the new LM with
greater coverage for the next decoding run. Experi-
ments were for the static baseline and online models.

Results are reported in Table 4. We can see that
increasing LM coverage is complimentary to adapt-
ing the TM with recent data. Comparing Tables
3 and 4, for the bounded condition, adapting only
the TM achieved an absolute improvement of +1.24
BLEU over the static baseline for the final test point.
We get another absolute gain of +1.08 BLEU by al-
lowing the LM coverage to adapt as well. Using an
online, adaptive model gives a total gain of +2.32
BLEU over a static baseline that does not adapt.

6Although we batch retrain the LMs we could use an online
LM that incorporates new vocabulary from the input stream as
in Levenberg and Osborne (2009).
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Static: The commission is prepared, in the creation of a legal framework, taking account of four fundamental principles them.

Online: The commission is prepared to participate in the creation of such a legal framework, based on four fundamental principles.

Reference: The commission is willing to cooperate in the creation of such a legal framework on the basis of four essential principles.

Source: Die Kommission ist bereit, an der Schaffung eines solchen Rechtsrahmens unter Zugrundelegung von vier wesentlichen 
              Prinzipien mitzuwirken.

Static:  Our position is clear and we all know: we are against the war and the occupation of Iraq by the United States and the United    
             Kingdom, and we are calling for the immediate withdrawal of the besatzungsmächte from this country.

Online: Our position is clear and well known: we are against the war and the occupation of Iraq by the United States and the United
             Kingdom, and we demand the immediate withdrawal of the occupying forces from this country .

Reference: Our position is clear and well known: we are against the war and the US-British occupation in Iraq and we demand the
                   immediate withdrawal of the occupying forces from that country.

Source: Unser Standpunkt ist klar und allseits bekannt: Wir sind gegen den Krieg und die Besetzung des Irak durch die USA und das   
              Vereinigte Königreich, und wir verlangen den unverzüglichen Abzug der Besatzungsmächte aus diesem Land.

Figure 4: Example sentences and improvements to their translation fluency by the adaptation of the TM with recent
sentences. In both examples we get longer matching phrases in the online translation compared to the static one.

5 Related Work

5.1 Translation Model Domain Adaptation

Our work is related to domain adaptation for transla-
tion models. See, for example, Koehn and Schroeder
(2007) or Bertoldi and Federico (2009). Most tech-
niques center around using mixtures of translation
models. Once trained, these models generally never
change. They therefore fall under thebatchtraining
regime. The focus of this work instead is on incre-
mental retraining and also on supporting bounded
memory consumption. Our experiments examine
updating model parameters in a single domain over
different periods in time. Naturally, we could also
use domain adaptation techniques to further improve
how we incorporate new samples.

5.2 Online EM for SMT

For stepwise online EM for SMT models, the only
prior work we are aware of is Liang and Klein
(2009), where variations of online EM were exper-
imented with on various NLP tasks including word
alignments. They showed application of sOEM can
produce quicker convergence compared to the batch
EM algorithm. However, the model presented does
not incorporate any unseen data, instead iterating
over a static data set multiple times using sOEM.
For Liang and Klein (2009) incremental retraining
is simply an alternative way to use a fixed training
set.

5.3 Streaming Language Models

Recent work in Levenberg and Osborne (2009) pre-
sented a streaming LM that was capable of adapt-
ing to an unbounded monolingual input stream in
constant space and time. The LM has the ability to
add or deleten-grams (and their counts) based on
feedback from the decoder after translation points.
The model was tested in an SMT setting and results
showed recent data benefited performance. How-
ever, adaptation was only to the LM and no tests
were conducted on the TM.

6 Conclusion and Future Work

We have presented an online EM approach for word
alignments. We have shown that, for a SMT system,
incorporating recent parallel data into a TM from an
input stream is beneficial to translation performance
compared to a traditional, static baseline.

Our strategy for populating the suffix array was
simply to use a first-in, first-out stack. For future
work we will investigate whether information pro-
vided by the incoming stream coupled with the feed-
back from the decoder allows for more sophisti-
cated adaptation strategies that reinforce useful word
alignments and delete bad or unused ones.

In the near future we also hope to test the online
EM setup in an application setting such as a com-
puter aided translation or crowdsourced generated
streams via Amazon’s Mechanical Turk.
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