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Abstract

An annotation project typically has an abun-

dant supply of unlabeled data that can be 
drawn from some corpus, but because the 

labeling process is expensive, it is helpful to 

pre-screen the pool of the candidate instances 

based on some criterion of future usefulness. 

In many cases, that criterion is to improve the 

presence of the rare classes in the data to be 
annotated. We propose a novel method for 

solving this problem and show that it com-

pares favorably to a random sampling baseline 

and a clustering algorithm. 

1 Introduction

A data set is imbalanced when the distribution 

of classes in it is dominated by a single class. In 

Word Sense Disambiguation (WSD), the classes 

are word senses. The problem of imbalanced data 

is painfully familiar to WSD researchers: word 

senses are particularly well known for their skewed 

distributions that are also highly domain and cor-

pus dependent. Most polysemous words have a 

sense that occurs in a disproportionately high 

number of cases and another sense that is seen very 

infrequently. For example, the OntoNotes (Hovy et 

al., 2006) sense inventory defines two senses for 

the verb to add.  Of all the instances of this verb in 

the OntoNotes sense-tagged corpus, 93% are the 

instances of the predominant sense (not the arith-

metic sense!). Another fact: there are 4,554 total 

senses in the OntoNotes sense inventory for 1,713 

recently released verbs. Only 3,498 of them are 

present in the actual annotated data. More than 

1,000 senses (23%) are so rare that they are miss-

ing from the corpus altogether. More than a third 

of the released verbs are missing representative 

instances of at least one sense. In fact many of the 

verbs are pseudo-monosemous: even though the 

sense inventory defines multiple senses, only the 

most frequent sense is present in the actual anno-

tated data. For example, only 1 out of 8 senses of 

to rip is present in the data. 

The skewed nature of sense distributions is a 

fact of life. At the same time, a large-scale annota-

tion project like OntoNotes, whose goal is the crea-

tion of a comprehensive linguistic resource, cannot 

simply ignore it. That a sense is rare in a corpus 

does not mean that it is less important to annotate a 

sufficient number of instances of that sense: in a 

different domain it can be more common and not 

having enough annotated instances of that sense 

could jeopardize the success of an automatic cross-

domain WSD system. For example, sense 8 of to

rip ("to import an audio file directly from CD") is 

extremely popular on the web but it does not exist 

at all in the OntoNotes data. Only the traditional 

sense of to swap exists in the data but not the com-

puter science sense ("to move a piece of program 

into memory"), while the latter can conceivably be 

significantly more popular in technical domains.  

In general, class imbalance complicates super-

vised learning. This contention certainly holds for 

WSD. As an illustration, consider the verb to call, 

for which the OntoNotes sense inventory defines 

11 senses. Senses 3 and 5 are the most frequent: 

together they constitute 84% of the data. To inves-

tigate which classes are problematic for a classifi-
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er, we conducted 50 supervised learning experi-

ments. In each experiment one instance of this verb 

was selected at random and used for testing while 

the rest was used for training a maximum entropy 

model. The resulting confusion matrix shows that 

the model correctly classified most of the instances 

of the two predominant senses while misclassify-

ing the other classes. The vast majority of the er-

rors came from confusing other senses with sense 5 

which is the most frequent sense of to call. Clearly, 

the data imbalance problem has a significant nega-

tive effect on performance. 

Let us now envision the following realistic sce-

nario: An annotation project receives funds to 

sense-tag a set of verbs in a corpus. It may be the 

case that some annotated data is already available 

for these verbs and the goal is to improve sense 

coverage, or no annotated data is available at all.  

But it turns out there are only enough funds to an-

notate a portion (e.g. half) of the total instances. 

The question arises how to pre-select the instances 

from the corpus in a way that would ensure that all 

the senses are as well represented as possible. Be-

cause some senses of these verbs are very rare, the 

pool of instances pre-selected for the annotation 

should include as many as possible instances of the 

rare senses. Random sampling – the simplest ap-

proach – will clearly not work: the pre-selected 

data will contain roughly the same proportion of 

the rare sense instances as the original set.  

If random sampling is not the answer, the data 

must be selected in some non-uniform way, i.e. 

using selective sampling. Active learning (e.g. 

Chen et al., 2006) is one approach to this problem. 

Some evidence is available (Zhu and Hovy, 2007) 

that active learning outperforms random sampling 

in finding the instances of rare senses. However, 

active learning has several shortcomings: (1) it re-

quires some annotated data to start the process; (2) 

it is problematic when the initial training set only 

contains the data for a single class (e.g. the pseudo-

monosemous verbs); (3) it is not always efficient in 

practice: In the OntoNotes project, the data is an-

notated by two human taggers and the disagree-

ments are adjudicated by the third. In classic active 

learning a single instance is labeled on each itera-

tion  This means the human taggers would have to 

wait on each other to tag the instance, on the adju-

dicator for the resolution of a possible disagree-

ment, and finally on the system which still needs to 

be-retrained to select the next instance to be la-

beled, a time sink much greater than tagging addi-

tional instances; (4) finally, active learning may 

not be an option if the data selected needs to be 

manually pre-processed (e.g. sentence segmented, 

tokenized, and treebanked – as was the case with 

some of the OntoNotes data). In this setting, on 

each iteration of the algorithm, the taggers have to 

also wait for the selected instance to be manually 

pre-processed before they can label it. 

Thus, it would be significantly more convenient 

if all the data to be annotated could be pre-selected 

in advance. In this paper we turn to two unsuper-

vised methods which have the potential to achieve 

that goal. We propose a simple language modeling-

based sampling method (abbreviated as LMS) that 

increases the likelihood of seeing rare senses in the 

pre-selected data. The basic approach is as follow: 

using language modeling we can rank the instances 

of the ambiguous verb according to their probabili-

ty of occurrence in the corpus. Because the in-

stances of the rare senses are less frequent than the 

instances of the predominant sense, we can expect 

that there will be a higher than usual concentration 

of the rare sense instances among the instances that 

have low probabilities. The method is completely 

unsupervised and the only resource that it requires 

is a Language Modeling toolkit such as SRILM 

(Stolcke, 2002), which we used in our experiments. 

We compare this method with a random sampling 

baseline and semi-supervised clustering, which can 

serve the same purpose. We show that our method 

outperforms both of the competing approaches. We 

review the relevant literature in section 2, explain 

the details of LMS in section 3, evaluate LMS in 

section 4, discuss the results in section 5, and de-

scribe our plans for future work in section 6. 

2 Relevant Work

The problem of imbalanced data has recently re-

ceived much attention in the machine learning 

community. Rare classes can be of higher impor-

tance than frequent classes, as in medical diagnosis 

when one is interested in correctly identifying a 

rare disease. Network intrusion detection faces a 

similar problem: a malicious activity, although of 

crucial importance, is a very rare event compared 

to the large volumes of routine network traffic. At 

the same time, imbalanced data poses difficulties 

for an automatic learner in that rare classes have a 

much higher misclassification rate than common 
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ones (Weiss, 1995; Japkowicz, 2001). Learning 

from imbalanced sets can also be problematic if the 

data is noisy: given a sufficiently high level of 

background noise, a learner may not distinguish 

between true exceptions (i.e. rare cases) and noise 

(Kubat and Matwin, 1997; Weiss, 2004). 

In the realm of supervised learning, cost-

sensitive learning has been recommended as a so-

lution to the problem of learning from imbalanced 

data (e.g. Weiss, 2004). However, the costs of mis-

classifying the senses are highly domain specific 

and hard to estimate. Several studies recently ap-

peared that attempted to apply active learning prin-

ciples to rare category detection (Pelleg and 

Moore, 2004; He and Carbonell, 2007). In addition 

to the issues with active learning outlined in the 

introduction, the algorithm described in (He and 

Carbonell, 2007) requires the knowledge of the 

priors, which is hard to obtain for word senses.  

WSD has a long history of experiments with 

unsupervised learning (e.g. Schutze, 1998; Puran-

dare and Peterson, 2004). McCarthy et al. (2004) 

propose a method for automatically identifying the 

predominant sense in a given domain. Erk (2006) 

describes an application of an outlier detection al-

gorithm to the task of identifying the instances of 

unknown senses. Our task differs from the latter 

two works in that it is aimed at finding the in-

stances of the rare senses. 

Finally, the idea of LMS is similar to the tech-

niques for sentence selection based on rare n-gram 

co-occurrences used in machine translation (Eck et 

al., 2005) and syntactic parsing (Hwa, 2004). 

3 Language Modeling for Data Selection

Our method is outlined in Figure 1: 

 
Input 
A large corpus that contains T candidate instances 
from which S instances are to be selected for anno-

tation 

Basic Steps 
1. Compute the language model for the corpus 
2. Compute the probability distribution over the T 

candidate instances of the target verb  

3. Rank the T candidate instances by their proba-

bilities 

4. Form a cluster by selecting S instances with the 

lowest probability 

 
Figure 1. Basic steps of LMS 

 

Let us now clarify a few practical points. Al-

though an instance of the target verb can be 

represented as the entire sentence containing the 

verb, from the experiments with automatic WSD 

(e.g. Dligach and Palmer, 2008), it is known that 

having access to just a few words in the neighbor-

hood of the target verb is sufficient in many cases 

to predict the sense. For the purpose of LMS we 

represent an instance as the chunk of text centered 

upon the target verb plus the surrounding words on 

both sides within a three-word window. Although 

the size of the window around the target verb is 

fixed, the actual number of words in each chunk 

may vary when the target verb is close to the be-

ginning or the end of sentence. Therefore, we need 

some form of length normalization. We normalize 

the log probability of each chunk by the actual 

number of words to make sure we do not favor 

shorter chunks (SRILM operates in log space). The 

resulting metric is related to perplexity: for a se-

quence of words W = w1w2 … wN  the perplexity is 

N
NwwwPWPP

1

21 )...()(
−

=  

The log of perplexity is 
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Thus, the quantity we use for ranking is nega-

tive perplexity. 

4 Evaluation

For the evaluation, we selected two-sense verbs 

from the OntoNotes data that have at least 100 in-

stances and where the share of the rare sense is less 

than 20%. There were 11 such verbs (2,230 in-

stances total) with the average share of the rare 

sense 11%.  

Our task consists of clustering the instances of a 

verb into two clusters, one of which is expected to 

have a higher concentration of the rare senses than 

the other. Since the rare sense cluster is of primary 

interest to us, we report two metrics: (1) precision: 

the ratio of the number of instances of the rare 

sense in the cluster and the total number of in-

stances in the cluster; (2) recall: the ratio of the 

number of instances of the rare sense in the cluster 

and the total number of the rare sense instances in 

both clusters. Note that precision is not of primary 

importance for this task because the goal is not to 

reliably identify the instances of the rare sense but 
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rather to group them into a cluster where the rare 

senses will have a higher concentration than in the 

original set of the candidate instances. At the same 

time achieving high recall is important since we 

want to ensure that most, if not all, of the rare 

senses that were present among the candidate in-

stances are captured in the rare sense cluster.  

4.1 Plausibility of LMS

The goal of our first set of experiments is to illu-

strate the plausibility of LMS. Due to space con-

straints, we examine only two verbs: compare and 

add. The remaining experiments will focus on a 

more comprehensive evaluation that will involve 

all 11 verbs. We computed the normalized log 

probability for each instance of a verb. We then 

ordered these candidate instances by their norma-

lized log probability and computed the recall of the 

rare sense at various levels of the size of the rare 

sense cluster. We express the size of the rare sense 

cluster as a share of the total number of instances. 

We depict recall vs. cluster size with a dotted 

curve. The graphs are in Figures 2 and 3.  

 
Figure 2. Rare sense recall for compare 

 
Figure 3. Rare sense recall for add 

The diagonal line on these figures corresponds 

to the random sampling baseline. A successful 

LMS would correspond to the dotted curve lying 

above the random sampling baseline, which hap-

pens to be the case for both of these verbs. For 

compare we can capture all of the rare sense in-

stances in a cluster containing less than half of the 

candidate instances. While verbs like compare re-

flect the best-case scenario, the technique we pro-

posed still works for the other verbs although not 

always as well. For example, for add we can recall 

more than 70% of the rare sense instances in a 

cluster that contains only half of all instances. This 

is more than 20 percentage points better than the 

random sampling baseline where the recall of the 

rare sense instances would be approximately 50%. 

4.2 LMS vs. Random Sampling Baseline

In this experiment we evaluated the performance 

of LMS for all 11 verbs. For each verb, we ranked 

the instances by their normalized log probability 

and placed the bottom half in the rare sense cluster. 

The results are in Table 2. The second column 

shows the share of the rare sense instances in the 

entire corpus for each verb. Thus, it represents the 

precision that would be obtained by random sam-

pling. The recall for random sampling in this set-

ting would be 0.5.   

Ten verbs outperformed the random sampling 

baseline both with respect to precision and recall 

(although recall is much more important for this 

task) and one verb performed as well. On average 

these verbs showed a recall figure that was 22 per-

centage points better than random sampling. Two 

of the 11 verbs (compare and point) were able to 

recall all of the rare sense instances. 

 

Verb Rare Inst Precision Recall 

account 0.12 0.21 0.93 

add 0.07 0.10 0.73 

admit 0.18 0.18 0.50 

allow 0.06 0.07 0.62 

compare 0.08 0.16 1.00 

explain 0.10 0.12 0.60 

maintain 0.11 0.11 0.53 

point 0.15 0.29 1.00 

receive 0.07 0.08 0.60 

remain 0.15 0.20 0.65 

worry 0.15 0.22 0.73 

average 0.11 0.16 0.72 

 
Table 2. LMS results for 11 verbs 
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4.3 LMS vs. K-means Clustering

Since LMS is a form of clustering one way to eva-

luate its performance is by comparing it with an 

established clustering algorithm such as K-means 

(Hastie et al., 2001). There are several issues re-

lated to this evaluation. First, K-means produces 

clusters and which cluster represents which class is 

a moot question. Since for the purpose of the eval-

uation we need to know which cluster is most 

closely associated with a rare sense, we turn K-

means into a semi-supervised algorithm by seeding 

the clusters. This puts LMS at a slight disadvan-

tage since LMS is a completely unsupervised algo-

rithm, while the new version of K-means will 

require an annotated instance of each sense. How-

ever, this disadvantage is not very significant: in a 

real-world application, the examples from a dictio-

nary can be used to seed the clusters. For the pur-

pose of this experiment, we simulated the 

examples from a dictionary by simply taking the 

seeds from the pool of the annotated instances we 

identified for the evaluation. K-means is known to 

be highly sensitive to the choice of the initial 

seeds. Therefore, to make the comparison fair, we 

perform the clustering ten times and pick the seeds 

at random for each iteration. The results are aver-

aged. 

Second, K-means generates clusters of a fixed 

size while the size of the LMS-produced clusters 

can be easily varied. This advantage of the LMS 

method has to be sacrificed to compare its perfor-

mance to K-means. We compare LMS to K-means 

by counting the number of instances that K-means 

placed in the cluster that represents the rare sense 

and selecting the same number of instances that 

have the lowest normalized probability. Thus, we 

end up with the two methods producing clusters of 

the same size (with k-means dictating the cluster 

size).  

Third, K-means operates on vectors and there-

fore the instances of the target verb need to be 

represented as vectors. We replicate lexical, syn-

tactic, and semantic features from a verb sense dis-

ambiguation system that showed state-of-the-art 

performance on the OntoNotes data (Dligach and 

Palmer, 2008).  

The results of the performance comparison are 

shown in Table 3. The fourth column shows the 

relative size of the K-means cluster that was 

seeded with the rare sense. Therefore it also de-

fines the share of the instances with the lowest 

normalized log probability that are to be included 

in the LMS-produced rare sense clusters. On aver-

age, LMS showed 3% better recall than K-means 

clustering.  

 

K-means LMS

verb precision recall size precision recall

account 0.21 1.00 0.58 0.20 1.00

add 0.06 0.54 0.50 0.10 0.73

admit 0.21 0.31 0.29 0.09 0.15

allow 0.08 0.36 0.31 0.06 0.31

compare 0.22 0.42 0.18 0.19 0.43

explain 0.16 0.61 0.44 0.14 0.60

maintain 0.13 0.91 0.80 0.11 0.82

point 0.27 0.66 0.42 0.31 0.89

receive 0.11 0.68 0.72 0.08 0.80

remain 0.10 0.41 0.44 0.21 0.61

worry 0.81 0.51 0.13 0.38 0.33

average 0.21 0.58 0.44 0.17 0.61

 

Table 3. LMS vs. K-means 

5 Discussion and Conclusion

In this paper we proposed a novel method we 

termed LMS for pre-selecting instances for annota-

tion. This method is based on computing the prob-

ability distribution over the instances and selecting 

the ones that have the lowest probability. The ex-

pectation is that instances selected in this fashion 

will capture more of the instances of the rare 

classes than would have been captured by random 

sampling. We evaluated LMS by comparing it to 

random sampling and showed that LMS outper-

forms it. We also demonstrated that LMS com-

pares favorably to K-means clustering. This is 

despite the fact that the cluster sizes were dictated 

by K-means and that K-means had at its disposal 

much richer linguistic representations and some 

annotated data.  

Thus, we conclude that LMS is a promising me-

thod for data selection. It is simple to use since one 

only needs the basic functionality that any lan-

guage modeling toolkit offers. It is flexible in that 

the number of the instances to be selected can be 

specified by the user, unlike, for example, when 

clustering using k-means. 
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6 Future Work

First, we would like to investigate the effect of se-

lective sampling methods (including LMS) on the 

performance of WSD models learned from the se-

lected data. Next, we plan to apply LMS for Do-

main adaptation. Unlike the scenario we dealt with 

in this paper, the language model would have to be 

learned from and applied to different corpora: it 

would be trained on the source corpus and used to 

compute probabilities for the instances in the target 

corpus that needs to be adapted. We will also expe-

riment with various outlier detection techniques to 

determine their applicability to data selection. 

Another promising direction is a simplified active 

learning approach in which a classifier is trained 

on the labeled data and applied to unlabeled data; 

the instances with a low classifier's confidence are 

selected for annotation (i.e. this is active learning 

conducted over a single iteration). This approach is 

more practical than the standard active learning for 

the reasons mentioned in Section 1 and should be 

compared to LMS. Finally, we will explore the 

utility of LMS-selected data as the initial training 

set for active learning (especially in the cases of 

the pseudo-monosemous verbs). 
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