
Proceedings of NAACL HLT 2009: Short Papers, pages 237–240,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Semantic classification with WordNet kernels

Diarmuid Ó Séaghdha
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Abstract

This paper presents methods for performing
graph-based semantic classification using ker-
nel functions defined on the WordNet lexi-
cal hierarchy. These functions are evaluated
on the SemEval Task 4 relation classification
dataset and their performance is shown to be
competitive with that of more complex sys-
tems. A number of possible future develop-
ments are suggested to illustrate the flexibility
of the approach.

1 Introduction

The estimation of semantic similarity between
words is one of the longest-established tasks in Nat-
ural Language Processing and many approaches to
the problem have been proposed. The two domi-
nant lexical similarity paradigms are distributional
similarity, which compares words on the basis of
their observed co-occurrence behaviour in corpora,
and semantic network similarity, which compares
words based on their position in a graph such as
the WordNet hierarchy. In this paper we consider
measures of network similarity for the purpose of
supervised classification with kernel methods. The
utility of kernel functions related to popular distribu-
tional similarity measures has recently been demon-
strated by Ó Séaghdha and Copestake (2008); we
show here that kernel analogues of WordNet simi-
larity can likewise give good performance on a se-
mantic classification task.

2 Kernels derived from graphs

Kernel-based classifiers such as support vector ma-
chines (SVMs) make use of functions called kernel
functions (or simply kernels) to compute the similar-
ity between data points (Shawe-Taylor and Cristian-
ini, 2004). Valid kernels are restricted to the set of
positive semi-definite (psd) functions, i.e., those that
correspond to an inner product in some vector space.
Kernel methods have been widely adopted in NLP
over the past decade, in part due to the good perfor-
mance of SVMs on many tasks and in part due to the
ability to exploit prior knowledge about a given task
through the choice of an appropriate kernel function.
In this section we consider kernel functions that use
spectral properties of a graph to compute the sim-
ilarity between its nodes. The theoretical founda-
tions and some machine learning applications of the
adopted approach have been developed by Kondor
and Lafferty (2002), Smola and Kondor (2003) and
Herbster et al. (2008).

Let G be a graph with vertex set V = v1, . . . , vn

and edge set E ⊆ V × V . We assume that G is
connected and undirected and that all edges have a
positive weight wij > 0. Let A be the symmetric
n×n matrix with entries Aij = wij if an edge exists
between vertices vi and vj , and Aij = 0 otherwise.
Let D be the diagonal matrix with entries Dii =∑

j∈V Aij . The graph Laplacian L is then defined
as

L = D−A (1)

The normalised Laplacian is defined as L̂ =
D− 1

2 LD− 1
2 . Both L̂ and L are positive semi-

definite, but they are typically used as starting points
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for the derivation of kernels rather than as kernels
themselves.

Let λ1 ≥ · · · ≥ λn be the eigenvalues of L and
u1, . . . , un the corresponding eigenvectors. Note
that un = 0 for all graphs. L is singular and hence
has no well-defined inverse, but its pseudoinverse
L+ is defined as

L+ =
n−1∑

i=1

λ−1
i uiu

T
i (2)

L+ is positive definite, and its entries are related to
the resistance distance between points in an elec-
trical circuit (Herbster et al., 2008) and to the av-
erage commute-time distance, i.e., the average dis-
tance of a random walk from one node to another
and back again (Fouss et al., 2007). The similar-
ity measure defined by L+ hence takes information
about the connectivity of the graph into account as
well as information about adjacency. An analogous
pseudoinverse L̂+ can be defined for the normalised
Laplacian.

A second class of graph-based kernel functions
are the diffusion kernels introduced by Kondor and
Lafferty (2002). The kernel Ht is defined as Ht =
e−tL̂, or equivalently:

Ht =
n−1∑

i=1

exp(−tλ̂i)ûiû
T
i (3)

where t > 0, and λ̂1 ≥ · · · ≥ λ̂n and û1, . . . , ûn

are the eigenvalues and eigenvectors of L̂+ respec-
tively. Ht can be interpreted in terms of heat diffu-
sion or the distribution of a lazy random walk ema-
nating from a given point at a time point t.

3 Methodology

3.1 Graph construction
WordNet (Fellbaum, 1998) is a semantic network in
which nodes correspond to word senses (or synsets)
and edges correspond to relations between senses.
In this work we restrict ourselves to the noun com-
ponent of WordNet and use only hyponymy and in-
stance hyponymy relations for graph construction.
The version of WordNet used is WordNet 3.0.

To evaluate the utility of the graph-based kernels
described in Section 2 for computing lexical sim-
ilarity, we use the dataset developed for the task

on Classifying Semantic Relations Between Nom-
inals at the 2007 SemEval competition (Girju et
al., 2007). The dataset comprises candidate exam-
ple sentences for seven two-argument semantic rela-
tions, with 140 training sentences and approximately
80 test sentences for each relation. It is a particularly
suitable task for evaluating WordNet kernels, as the
candidate relation arguments for each sentence are
tagged with their WordNet sense and it has been pre-
viously shown that a kernel model based on distribu-
tional lexical similarity can attain very good perfor-
mance (Ó Séaghdha and Copestake, 2008).

3.2 Calculating the WordNet kernels

The noun hierarchy in WordNet 3.0 contains 82,115
senses; computing kernel similarities on a graph of
this size raises significant computational issues. The
calculation of the Laplacian pseudoinverse is com-
plicated by the fact that while L and L̂ are very
sparse, their pseudoinverses are invariably dense and
require very large amounts of memory. To circum-
vent this problem, we follow Fouss et al. (2007)
in computing L+ and L̂+ one column at a time
through a Cholesky factorisation procedure. Only
those columns required for the classification task
need be calculated, and the kernel computation for
each relation subtask can be performed in a mat-
ter of minutes. Calculating the diffusion kernel in-
volves an eigendecomposition of L̂, meaning that
computing the kernel exactly is infeasible. The so-
lution used here is to approximate Ht by using the
m smallest components of the spectrum of L̂ when
computing (3); from (2) it can be seen that a similar
approximation can be made to speed up computation
of L+ and L̂+.

3.3 Experimental setup

For all kernels and relation datasets, the kernel ma-
trix for each argument position was precomputed
and normalised so that every diagonal entry equalled
1. A small number of candidate arguments are not
annotated with a WordNet sense or are assigned a
non-noun sense; these arguments were assumed to
have self-similarity equal to 1 and zero similarity to
all other arguments. This does not affect the pos-
itive semi-definiteness of the kernel matrices. The
per-argument kernel matrices were summed to give
the kernel matrix for each relation subtask. The ker-
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Full graph m = 500 m = 1000
Kernel Acc F Acc F Acc F
B 72.1 68.4 - - - -
L+ 73.3 69.4 73.2 70.5 73.6 70.6
L̂+ 72.5 70.0 72.7 70.0 74.1 71.0
Ht - - 68.6 64.7 69.8 65.1

Table 1: Results on SemEval Task 4

nels described in Section 2 were compared to a base-
line kernel B. This baseline represents each word as
a binary feature vector describing its synset and all
its hypernym synsets in the WordNet hierarchy, and
calculates the linear kernel between vectors.

All experiments were run using the LIBSVM sup-
port vector machine library (Chang and Lin, 2001).
For each relation the SVM cost parameter was op-
timised in the range (2−6, 2−4, . . . , 212) through
cross-validation on the training set. The diffusion
kernel parameter t was optimised in the same way,
in the range (10−3, 10−2, . . . , 103).

4 Results

Macro-averaged accuracy and F-score for each ker-
nel are reported in Table 1. There is little difference
between the Laplacian and normalised Laplacian
pseudoinverses; both achieve better performance
than the baseline B. The results also suggest that the
reduced-eigenspectrum approximations to L+ and
L̂+ may bring benefits in terms of performance as
well as efficiency via a smoothing effect. The best
performance is attained by the approximation to L̂+

with m = 1, 000 eigencomponents. The heat ker-
nel Ht fares less well; the problem here may be that
the optimal range for the t parameter has not been
identified.

Comparing these results to those of the partici-
pants in the 2007 SemEval task, the WordNet-based
lexical similarity model fares very well. All versions
of L+ and L̂+ attain higher accuracy than all but one
of 15 systems in the competition and higher F-score
than all but three. Even the baseline B ranks above
all but the top three systems, suggesting that this too
can be a useful model. This is in spite of the fact that
all systems which made use of the sense annotations
also used a rich variety of other information sources
such as features extracted from the sentence context,
while the models presented here use only the graph

structure of WordNet.1

5 Related work

There is a large body of work on using WordNet
to compute measures of lexical similarity (Budanit-
sky and Hirst, 2006). However, many of these mea-
sures are not amenable for use as kernel functions as
they rely on properties which cannot be expressed
as a vector inner product, such as the lowest com-
mon subsumer of two vertices. Hughes and Ram-
age (2007) present a lexical similarity model based
on random walks on graphs derived from WordNet;
Rao et al. (2008) propose the Laplacian pseudoin-
verse on such graphs as a lexical similarity measure.
Both of these works share aspects of the current pa-
per; however, neither address supervised learning or
present an application-oriented evaluation.

Extracting features from WordNet for use in su-
pervised learning is a standard technique (Scott and
Matwin, 1999). Siolas and d’Alche-Buc (2000) and
Basili et al. (2006) use a measure of lexical similar-
ity from WordNet as an intermediary to smooth bag-
of-words kernels on documents. Siolas and d’Alche-
Buc use an inverse path-based similarity measure,
while Basili et al. use a measure of “conceptual den-
sity” that is not proven to be positive semi-definite.

6 Conclusion and future work

The main purpose of this paper has been to demon-
strate how kernels that capture spectral aspects of
graph structure can be used to compare nodes in
a lexical hierarchy and thus provide a kernelised
measure of WordNet similarity. As far as we are
aware, these measures have not previously been in-
vestigated in the context of semantic classification.
The resulting WordNet kernels have been evaluated
on the SemEval Task 4 dataset and shown to attain
a higher level of performance than many more com-
plicated systems that participated in that task.

Two obvious shortcomings of the kernels dis-
cussed here are that they are defined on senses
rather than words and that they are computed on a

1Of course, information about lexical similarity is not suf-
ficient to classify all examples. In particular, the models pre-
sented here perform relatively badly on the ORIGIN-ENTITY

and THEME-TOOL relations, while scoring better than all
SemEval entrants on INSTRUMENT-AGENCY and PRODUCT-
PRODUCER.
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rather impoverished graph structure (the WordNet
hyponym hierarchy is quite tree-like). One of the
significant benefits of spectral graph kernels is that
they can be computed on arbitrary graphs and are
most powerful when graphs have a rich connectiv-
ity structure. Some potential future directions that
would make greater use of this flexibility include the
following:

• A simple extension from sense-kernels to
word-kernels involves adding word nodes to
the WordNet graph, with an edge linking each
word to each of its possible senses. This is sim-
ilar to the graph construction method of Hughes
and Ramage (2007) and Rao et al. (2008).
However, preliminary experiments on the Se-
mEval Task 4 dataset indicate that further re-
finement of this approach may be necessary
in order to match the performance of kernels
based on distributional lexical similarity (Ó
Séaghdha and Copestake, 2008).

• Incorporating other WordNet relations such as
meronymy and topicality gives a way of ker-
nelising semantic association or relatedness;
one application of this might be in develop-
ing supervised methods for spelling correction
(Budanitsky and Hirst, 2006).

• A WordNet graph can be augmented with in-
formation from other sources, such as links
based on corpus-derived similarity. Alterna-
tively, the graph-based kernel functions could
be applied to graphs constructed from parsed
corpora (Minkov and Cohen, 2008).
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