
Proceedings of NAACL HLT 2009: Short Papers, pages 141–144,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Faster MT Decoding through Pervasive Laziness

Michael Pust and Kevin Knight
Information Sciences Institute

University of Southern California
lastname@isi.edu

Abstract

Syntax-based MT systems have proven
effective—the models are compelling and
show good room for improvement. However,
decoding involves a slow search. We present
a new lazy-search method that obtains signifi-
cant speedups over a strong baseline, with no
loss in Bleu.

1 Introduction

Syntax-based string-to-tree MT systems have
proven effective—the models are compelling and
show good room for improvement. However, slow
decoding hinders research, as most experiments
involve heavy parameter tuning, which involves
heavy decoding. In this paper, we present a new
method to improve decoding performance, obtain-
ing a significant speedup over a strong baseline with
no loss in Bleu. In scenarios where fast decoding is
more important than optimal Bleu, we obtain better
Bleu for the same time investment. Our baseline
is a full-scale syntax-based MT system with 245m
tree-transducer rules of the kind described in (Gal-
ley et al., 2004), 192 English non-terminal symbols,
an integrated 5-gram language model (LM), and
a decoder that uses state-of-the-art cube pruning
(Chiang, 2007). A sample translation rule is:

S(x0:NP x1:VP)↔ x1:VP x0:NP
In CKY string-to-tree decoding, we attack spans

of the input string from shortest to longest. We pop-
ulate each span with a set of edges. An edge contains
a English non-terminal (NT) symbol (NP, VP, etc),
border words for LM combination, pointers to child
edges, and a score. The score is a sum of (1) the
left-child edge score, (2) the right-child edge score,
(3) the score of the translation rule that combined
them, and (4) the target-string LM score. In this pa-
per, we are only concerned with what happens when
constructing edges for a single span [i,j]. The naive
algorithm works like this:

for each split point k
for each edge A in span [i,k]
for each edge B in span [k,j]
for each rule R with RHS = A B
create new edge for span [i,j]

delete all but 1000-best edges

The last step provides a necessary beam. Without
it, edges proliferate beyond available memory and
time. But even with the beam, the naive algorithm
fails, because enumerating all<A,B,R> triples at
each span is too time consuming.

2 Cube Pruning

Cube pruning (Chiang, 2007) solves this problem by
lazily enumerating triples. To work, cube pruning
requires that certain orderings be continually main-
tained at all spans. First, rules are grouped by RHS
into rule sets (eg, all the NP-VP rules are in a set),
and the members of a given set are sorted by rule
score. Second, edges in a span are grouped by NT
into edge sets (eg, all the NP edges are in an edge
set), ordered by edge score.

Consider the sub-problem of building new [i,j]
edges by combining (just) the NP edges over [i,k]
with (just) the VP edges over [k,j], using the avail-
able NP-VP rules. Rather than enumerate all triples,
cube pruning sets up a 3-dimensional cube struc-
ture whose individually-sorted axes are the NP left
edges, the VP right edges, and the NP-VP rules. Be-
cause the corner of the cube (best NP left-edge, best
VP right-edge, best NP-VP rule) is likely the best
edge in the cube, at beam size 1, we would sim-
ply return this edge and terminate, without checking
other triples. We say “likely” because the corner po-
sition does not take into account the LM portion of
the score.1

After we take the corner and post a new edge from
it, we identify its 3 neighbors in the cube. We com-

1We also employ LM rule and edge forward-heuristics as in
(Chiang, 2007), which improve the sorting.

141



pute their full scores (including LM portion) and
push them onto a priority queue (PQ). We then pop
an item from the PQ, post another new edge, and
push the item’s neighbors onto the PQ. Note that this
PQ grows in size over time. In this way, we explore
the best portion of the cube without enumerating all
its contents. Here is the algorithm:

push(corner, make-edge(corner)) onto PQ
for i = 1 to 1000

pop(position, edge) from top of PQ
post edge to chart
for each n in neighbors(position)
push(n, make-edge(n)) onto PQ

if PQ is empty, break from for-loop

The functionmake-edge completely scores an edge
(including LM score) before inserting it into the PQ.
Note that in practice, we execute the loop up to 10k
times, to get 1000 edges that are distinct in their NTs
and border words.

In reality, we have to construct many cubes, one
for each combinable left and right edge set for a
given split point, plus all the cubes for all the other
split points. So we maintain a PQ-of-PQs whose el-
ements are cubes.

create each cube, pushing its fully-scored corner
onto the cube’s PQ

push cubes themselves onto a PQ-of-PQs
for i = 1 to 1000:

pop a cube C from the PQ-of-PQs
pop an item from C
post edge to chart
retrieve neighbors, score & push them onto C

push C back onto the PQ-of-PQs

3 Lazy Lists

When we meter the cube pruning algorithm, we find
that over 80% of the time goes to building the initial
queue of cubes, including deriving a corner edge for
each cube—only a small fraction is spent deriving
additional edges via exploring the cubes. For spans
of length 10 or greater, we find that we have to create
more than 1000 cubes, i.e., more than the number of
edges we wish to explore.

Our idea, then, is to create the cubes themselves
lazily. To describe our algorithm, we exploit an ab-
stract data structure called alazy list (aka generator,
stream, pipe, or iterator), which supports three oper-

ations:
next(list): pops the front item from a list
peek(list): returns the score of the front item
empty(list): returns true if the list is empty

A cube is a lazy list (of edges). For our purposes, a
lazy list can be implemented with a PQ or something
else—we no longer care how the list is populated or
maintained, or even whether there are a finite num-
ber of elements.

Instead of explicitly enumerating all cubes for a
span, we aim to produce a lazy list of cubes. As-
sume for the moment that such a lazy list exists—we
show how to create it in the next section—and call it
L. Let us also say that cubes come off L in order of
their top edges’ scores. To get our first edge, we let
C = next(L), and then we call next(C). Now a ques-
tion arises: do we pop the next-best edge off C, or
do we investigate the next cube in L? We can decide
by calling peek(peek(L)). If we choose to pop the
next cube (and then its top edge), then we face an-
other (this time three-way) decision. Bookkeeping
is therefore required if we are to continue to emit
edges in a good order.

We manage the complexity through the abstrac-
tion of a lazy list of lazy lists, to which we routinely
apply a single, key operation calledmerge-lists. This
operation converts a lazy list of lazy lists of X’s into
a simple lazy list of X’s. X can be anything: edges,
integers, lists, lazy lists, etc.

Figure 1 gives the generic merge-lists algorithm.
The yield function suspends computation and re-
turns to the caller. peek() lets the caller see what is
yielded, next() returns what is yielded and resumes
the loop, and empty() tells if the loop is still active.

We are now free to construct any nested “list of
lists of lists ... of lists of X” (all lazy) and reduce
it stepwise and automatically to a single lazy list.
Standard cube pruning (Section 2) provides a sim-
ple example: if L is a list of cubes, and each cube is
a lazy list of edges, then merge-lists(L) returns us a
lazy list of edges (M), which is exactly what the de-
coder wants. The decoder can populate a new span
by simply making 1000 calls to next(M).

4 Pervasive Laziness

Now we describe how to generate cubes lazily. As
with standard cube pruning, we need to maintain a

142



merge-lists(L):
(L is a lazy list of lazy lists)

1. set up an empty PQ of lists,
prioritized by peek(list)

2. push next(L) onto PQ
3. pop list L2 off PQ
4. yield pop(L2)
5. if !empty(L2) and peek(L2) is worse than

peek(peek(L)), then push next(L) onto PQ
6. if !empty(L2), then push L2 onto PQ
7. go to step 3

Figure 1: Generic merge-lists algorithm.

small amount of ordering information among edges
in a span, which we exploit in constructing higher-
level spans. Previously, we required that all NP
edges be ordered by score, the same for VP edges,
etc. Now we additionally order wholeedge sets
(groups of edges sharing an NT) with respect to each
other, eg, NP> VP > RB > etc. These are ordered
by the top-scoring edges in each set.

Ideally, we would pop cubes off our lazy list in
order of their top edges. Recall that the PQ-of-PQs
in standard cube pruning works this way. We cannot
guarantee this anymore, so we approximate it.

Consider first a single edge set from [i,k], eg, all
the NP edges. We build a lazy list of cubes that all
have a left-NP. Because edge sets from [k,j] are or-
dered with respect to each other, we may find that
it is the VP edge set that contains the best edge in
[k,j]. Pulling in all NP-VP rules, we can now postu-
late a “best cube,” which generates edges out of left-
NPs and right-VPs. We can either continue making
edge from this cube, or we can ask for a “second-
best cube” by moving to the next edge set of [k,j],
which might contain all the right-PP edges. Thus,
we have a lazy list of left-NP cubes. Its ordering
is approximate—cubes come off in such a way that
their top edges go from best to worst, but only con-
sidering the left and right child scores, not the rule
scores. This is the same idea followed by standard
cube pruning when it ignores internal LM scores.

We next create similar lazy lists for all the other
[i,k] edge sets (not just NP). We combine these lists
into a higher-level lazy list, whose elements pop off
according to the ordering of edge sets in [i,k]. This
structure contains all edges that can be produced

��������
�	


������������
���

����
����

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�	


��������
�	


��������
		


��
���
���
��
��

���
���
���
�

Figure 2: Organizing lazy lists for the decoder.

from split point k. We call merge-lists recursively
on the structure, leaving us with a single lazy list M
of edges. The decoder can now make 1000 calls to
next(M) to populate the new span.

Edges from other split points, however, must
compete on an equal basis for those 1000 slots. We
therefore produce a separate lazy list for each of the
j − i − 1 split points and combine these into an
even higher-level list. Lacking an ordering criterion
among split points, we presently make the top list a
non-lazy one via the PQ-of-PQs structure. Figure 2
shows how our lists are organized.

The quality of our 1000-best edges can be im-
proved. When we organize the higher-level lists by
left edge-sets, we give prominence to the best left
edge-set (eg, NP) over others (eg, VP). If the left
span is relatively short, the contribution of the left
NP to the total score of the new edge is small, so
this prominence is misplaced. Therefore, we repeat
the above process with the higher-level lists orga-
nized by right span instead of left. We merge the
right-oriented and left-oriented structures, making
sure that duplicates are avoided.

Related Work. Huang and Chiang (2007) de-

143



5x108 1x109 1.5x109 2x109 2.5x109 3x109

edges created

42000

43000

44000

45000

m
o
d
e
l 
c
o
s
t

lazy cube generation

exhaustive cube generation

Figure 3: Number of edges produced by the decoder, ver-
sus model cost of 1-best decodings.

scribe a variation of cube pruning called cube grow-
ing, and they apply it to a source-tree to target-
string translator. It is a two pass approach, where
a context-free parser is used to build a source for-
est, and a top down lazy forest expansion is used to
integrate a language model. The expansion recur-
sively calls cubes top-down, in depth first order. The
context-free forest controls which cubes are built,
and acts as a heuristic to minimize the number of
items returned from each cube necessary to generate
k-best derivations at the top.

It is not clear that a decoder such as ours, without
the source-tree constraint, would benefit from this
method, as building a context-free forest consistent
with future language model integration via cubes is
expensive on its own. However, we see potential
integration of both methods in two places: First,
the merge-lists algorithm can be used to lazily pro-
cess any nested for-loops—including vanilla CKY—
provided the iterands of the loops can be priori-
tized. This could speed up the creation of a first-pass
context-free forest. Second, the cubes themselves
could be prioritized in a manner similar to what we
describe, using the context-free forest to prioritize
cube generation rather than antecedent edges in the
chart (since those do not exist yet).

5 Results

We compare our method with standard cube prun-
ing (Chiang, 2007) on a full-scale Arabic/English
syntax-based MT system with an integrated 5-gram

20000 40000 60000 80000

decode time (seconds)

51.2

51.4

51.6

51.8

52

52.2

52.4

52.6

52.8

53

b
le
u

lazy cube generation

exhaustive cube generation

Figure 4: Decoding time versus Bleu.

LM. We report on 500 test sentences of lengths 15-
35. There are three variables of interest: runtime,
model cost (summed across all sentences), and IBM
Bleu. By varying the beam sizes (up to 1350),
we obtain curves that plot edges-produced versus
model-cost, shown in Figure 3. Figure 4 plots Bleu
score against time. We see that we have improved
the way our decoder searches, by teaching it to ex-
plore fewer edges, without sacrificing its ability to
find low-cost edges. This leads to faster decoding
without loss in translation accuracy.

Taken together with cube pruning (Chiang, 2007),
k-best tree extraction (Huang and Chiang, 2005),
and cube growing (Huang and Chiang, 2007), these
results provide evidence that lazy techniques may
penetrate deeper yet into MT decoding and other
NLP search problems.

We would like to thank J. Graehl and D. Chiang
for thoughts and discussions. This work was par-
tially supported under DARPA GALE, Contract No.
HR0011-06-C-0022.

References

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2).

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule. InProc. NAACL-HLT.

L. Huang and D. Chiang. 2005. Better k-best parsing. In
Proc. IWPT.

L. Huang and D. Chiang. 2007. Forest rescoring: Faster
decoding with integrated language models. InProc.
ACL.

144


