
Proceedings of NAACL HLT 2009: Short Papers, pages 1–4,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Cohesive Constraints in A Beam Search Phrase-based Decoder

Nguyen Bach and Stephan Vogel
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{nbach, stephan.vogel}@cs.cmu.edu

Colin Cherry
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA
collinc@microsoft.com

Abstract

Cohesive constraints allow the phrase-based decoder
to employ arbitrary, non-syntactic phrases, and en-
courage it to translate those phrases in an order that
respects the source dependency tree structure. We
present extensions of the cohesive constraints, such
as exhaustive interruption count and rich interrup-
tion check. We show that the cohesion-enhanced de-
coder significantly outperforms the standard phrase-
based decoder on English→Spanish. Improvements
between 0.5 and 1.2 BLEU point are obtained on
English→Iraqi system.

1 Introduction
Phrase-based machine translation is driven by a phrasal
translation model, which relates phrases (contiguous seg-
ments of words) in the source to phrases in the tar-
get. This translation model can be derived from a word-
aligned bitext. Translation candidates are scored accord-
ing to a linear model combining several informative fea-
ture functions. Crucially, this model incorporates trans-
lation model scores and n-gram language model scores.
The component features are weighted to minimize a
translation error criterion on a development set (Och,
2003). Decoding the source sentence takes the form of
a beam search through the translation space, with inter-
mediate states corresponding to partial translations. The
decoding process advances by extending a state with the
translation of a source phrase, until each source word has
been translated exactly once. Re-ordering occurs when
the source phrase to be translated does not immediately
follow the previously translated phrase. This is penalized
with a discriminatively-trained distortion penalty. In or-
der to calculate the current translation score, each state
can be represented by a triple:

• A coverage vector HC indicates which source words
have already been translated.

• A span f̄ indicates the last source phrase translated
to create this state.

• A target word sequence stores context needed by the
target language model.

As cohesion concerns only movement in the source, we
can completely ignore the language model context, mak-
ing state effectively an (f̄ ,HC ) tuple.

To enforce cohesion during the state expansion pro-
cess, cohesive phrasal decoding has been proposed in
(Cherry, 2008; Yamamoto et al., 2008). The cohesion-
enhanced decoder enforces the following constraint: once
the decoder begins translating any part of a source sub-
tree, it must cover all the words under that subtree before
it can translate anything outside of it. This notion can be
applied to any projective tree structure, but we use de-
pendency trees, which have been shown to demonstrate
greater cross-lingual cohesion than other structures (Fox,
2002). We use a tree data structure to store the depen-
dency tree. Each node in the tree contains surface word
form, word position, parent position, dependency type
and POS tag. We use T to stand for our dependency tree,
and T (n) to stand for the subtree rooted at node n. Each
subtree T (n) covers a span of contiguous source words;
for subspan f̄ covered by T (n), we say f̄ ∈ T (n).

Cohesion is checked as we extend a state (f̄h,HC h)
with the translation of f̄h+1, creating a new state
(f̄h+1,HC h+1). Algorithm 1 presents the cohesion
check described by Cherry (2008). Line 2 selects focal
points, based on the last translated phrase. Line 4 climbs
from each focal point to find the largest subtree that needs
to be completed before the translation process can move
elsewhere in the tree. Line 5 checks each such subtree
for completion. Since there are a constant number of fo-
cal points (always 2) and the tree climb and completion
checks are both linear in the size of the source, the entire
check can be shown to take linear time.

The selection of only two focal points is motivated by
a “violation free” assumption. If one assumes that the

1



Algorithm 1 Interruption Check (Coh1) (Cherry, 2008)
Input: Source tree T , previous phrase f̄h, current
phrase f̄h+1, coverage vector HC

1: Interruption ← False
2: F ← the left and right-most tokens of f̄h

3: for each of f ∈ F do
4: Climb the dependency tree from f until you reach

the highest node n such that f̄h+1 /∈ T (n).
5: if n exists and T (n) is not covered in HCh+1

then
6: Interruption ← True
7: end if
8: end for
9: Return Interruption

Figure 1: A candidate translation where Coh1 does not fire

translation represented by (f̄h,HC h) contains no cohe-
sion violations, then checking only the end-points of f̄h

is sufficient to maintain cohesion. However, once a soft
cohesion constraint has been implemented, this assump-
tion no longer holds.

2 Extensions of Cohesive Constraints
2.1 Exhaustive Interruption Check (Coh2)
Because of the “violation free” assumption, Algorithm 1
implements the design decision to only suffer a violation
penalty once, when cohesion is initially broken. How-
ever, this is not necessarily the best approach, as the de-
coder does not receive any further incentive to return to
the partially translated subtree and complete it.

For example, Figure 1 illustrates a translation candi-
date of the English sentence “the presidential election
of the united states begins tomorrow” into French. We
consider f̄4 = “begins”, f̄5 = “tomorrow”. The decoder
already translated “the presidential election” making the
coverage vector HC 5 = “1 1 1 0 0 0 0 1 1”. Algorithm 1
tells the decoder that no violation has been made by trans-
lating “tomorrow” while the decoder should be informed
that there exists an outstanding violation. Algorithm 1
found the violation when the decoder previously jumped
from “presidential” to “begins”, and will not find another
violation when it jumps from “begins” to “tomorrow”.

Algorithm 2 is a modification of Algorithm 1, chang-
ing only line 2. The resulting system checks all previ-

Algorithm 2 Exhaustive Interruption Check (Coh2)
Input: Source tree T , previous phrase fh, current
phrase fh+1, coverage vector HC

1: Interruption ← False
2: F ← {f |HCh(f) = 1}
3: for each of f ∈ F do
4: Climb the dependency tree from f until you reach

the highest node n such that f̄h+1 /∈ T (n).
5: if n exists and T (n) is not covered in HC h+1

then
6: Interruption ← True
7: end if
8: end for
9: Return Interruption

Algorithm 3 Interruption Count (Coh3)
Input: Source tree T , previous phrase f̄h, current
phrase f̄h+1, coverage vector HC

1: ICount ← 0
2: F ← the left and right-most tokens of f̄h

3: for each of f ∈ F do
4: Climb the dependency tree from f until you reach

the highest node n such that f̄h+1 /∈ T (n).
5: if n exists then
6: for each of e ∈ T (n) and HCh+1(e) = 0 do
7: ICount = ICount + 1
8: end for
9: end if

10: end for
11: Return ICount

ously covered tokens, instead of only the left and right-
most tokens of f̄h+1, and therefore makes no violation-
free assumption. For the example above, Algorithm 2
will inform the decoder that translating “tomorrow” also
incurs a violation. Because |F | is no longer constant,
the time complexity of Coh2 is worse than Coh1. How-
ever, we can speed up the interruption check algorithm
by hashing cohesion checks, so we only need to run Al-
gorithm 2 once per (f̄h+1,HC h+1) .

2.2 Interruption Count (Coh3) and Exhaustive
Interruption Count (Coh4)

Algorithm 1 and 2 described above interpret an inter-
ruption as a binary event. As it is possible to leave several
words untranslated with a single jump, some interrup-
tions may be worse than others. To implement this obser-
vation, an interruption count is used to assign a penalty
to cohesion violations, based on the number of words left
uncovered in the interrupted subtree. We initialize the in-
terruption count with zero. At any search state when the
cohesion violation is detected the count is incremented by

2



Algorithm 4 Exhaustive Interruption Count (Coh4)
Input: Source tree T , previous phrase fh, current
phrase fh+1, coverage vector HC

1: ICount ← 0
2: F ← {f |HCh(f) = 1}
3: for each of f ∈ F do
4: Climb the dependency tree from f until you reach

the highest node n such that f̄h+1 /∈ T (n).
5: if n exists then
6: for each of e ∈ T (n) and HCh+1(e) = 0 do
7: ICount = ICount + 1
8: end for
9: end if

10: end for
11: Return ICount

one. The modification of Algorithm 1 and 2 lead to Inter-
ruption Count (Coh3) and Exhaustive Interruption Count
(Coh4) algorithms, respectively. The changes only hap-
pen in lines 1, 5 and 6. We use an additional bit vector
to make sure that if a node has been reached once during
an interruption check, it should not be counted again. For
the example in Section 2.1, Algorithm 4 will return 4 for
ICount (“of”; “the”; “united”; “states”).

2.3 Rich Interruption Constraints (Coh5)

The cohesion constraints in Sections 2.1 and 2.2 do not
leverage node information in the dependency tree struc-
tures. We propose the rich interruption constraints (Coh5)
algorithm to combine four constraints which are Interrup-
tion, Interruption Count, Verb Count and Noun Count.
The first two constraints are identical to what was de-
scribed above. Verb and Noun count constraints are en-
forcing the following rule: a cohesion violation will be
penalized more in terms of the number of verb and noun
words that have not been covered. For example, we want
to translate the English sentence “the presidential elec-
tion of the united states begins tomorrow” to French with
the dependency structure as in Figure 1. We consider f̄h

= “the united states”, f̄h+1 = “begins”. The coverage bit
vector HC h+1 is “0 0 0 0 1 1 1 1 0”. Algorithm 5 will re-
turn true for Interruption, 4 for ICount (“the”; “pres-
idential”; “election”; “of”), 0 for V erbCount and 1 for
NounCount (“election”).

3 Experiments

We built baseline systems using GIZA++ (Och and Ney,
2003), Moses’ phrase extraction with grow-diag-final-
end heuristic (Koehn et al., 2007), a standard phrase-
based decoder (Vogel, 2003), the SRI LM toolkit (Stol-
cke, 2002), the suffix-array language model (Zhang and
Vogel, 2005), a distance-based word reordering model

Algorithm 5 Rich Interruption Constraints (Coh5)
Input: Source tree T , previous phrase f̄h, current
phrase f̄h+1, coverage vector HC

1: Interruption ← False
2: ICount, V erbCount, NounCount ← 0
3: F ← the left and right-most tokens of f̄h

4: for each of f ∈ F do
5: Climb the dependency tree from f until you reach

the highest node n such that f̄h+1 /∈ T (n).
6: if n exists then
7: for each of e ∈ T (n) and HCh+1(e) = 0 do
8: Interruption ← True
9: ICount = ICount + 1

10: if POS of e is “VB” then
11: V erbCount ← V erbCount + 1
12: else if POS of e is “NN” then
13: NounCount ← NounCount + 1
14: end if
15: end for
16: end if
17: end for
18: Return Interruption, ICount, V erbCount,

NounCount

with a window of 3, and the maximum number of target
phrases restricted to 10. Results are reported using low-
ercase BLEU (Papineni et al., 2002). All model weights
were trained on development sets via minimum-error rate
training (MERT) (Och, 2003) with 200 unique n-best lists
and optimizing toward BLEU. We used the MALT parser
(Nivre et al., 2006) to obtain source English dependency
trees and the Stanford parser for Arabic (Marneffe et al.,
2006). In order to decide whether the translation output
of one MT engine is significantly better than another one,
we used the bootstrap method (Zhang et al., 2004) with
1000 samples (p < 0.05). We perform experiments on
English→Iraqi and English→Spanish. Detailed corpus
statistics are shown in Table 1. Table 2 shows results in
lowercase BLEU and bold type is used to indicate high-
est scores. An italic text indicates the score is statistically
significant better than the baseline.

English→Iraqi English→Spanish
English Iraqi English Spanish

sentence pairs 654,556 1,310,127
unique sent. pairs 510,314 1,287,016
avg. sentence length 8.4 5.9 27.4 28.6
# words 5.5 M 3.8 M 35.8 M 37.4 M
vocabulary 34 K 109 K 117 K 173 K

Table 1: Corpus statistics

Our English-Iraqi data come from the DARPA
TransTac program. We used TransTac T2T July 2007

3



English→Iraqi English→Spanish
july07 june08 ncd07 nct07

Baseline 31.58 23.58 33.18 32.04
+Coh1 32.63 24.45 33.49 32.72
+Coh2 32.51 24.73 33.52 32.81
+Coh3 32.43 24.19 33.37 32.87
+Coh4 32.32 24.66 33.47 33.20
+Coh5 31.98 24.42 33.54 33.27

Table 2: Scores of baseline and cohesion-enhanced systems on
English→Iraqi and English→Spanish systems

(july07) as the development set and TransTac T2T June
2008 (june08) as the held-out evaluation set. Each test set
has 4 reference translation. We applied the suffix-array
LM up to 6-gram with Good-Turing smoothing. Our co-
hesion constraints produced improvements ranging be-
tween 0.5 and 1.2 BLEU point on the held-out evaluation
set.

We used the Europarl and News-Commentary parallel
corpora for English→Spanish as provided in the ACL-
WMT 2008 shared task evaluation. The baseline sys-
tem used the parallel corpus restricting sentence length
to 100 words for word alignment and a 4-gram SRI
LM with modified Kneyser-Ney smoothing. We used
nc-devtest2007(ncd07) as the development set and nc-
test2007(nct07) as the held-out evaluation set. Each test
set has 1 translation reference. We obtained improve-
ments ranging between 0.7 and 1.2 BLEU. All cohesion
constraints perform statistically significant better than the
baseline on the held-out evaluation set.

4 Conclusions
In this paper, we explored cohesive phrasal decoding, fo-
cusing on variants of cohesive constraints. We proposed
four novel cohesive constraints namely exhaustive inter-
ruption check (Coh2), interruption count (Coh3), exhaus-
tive interruption count (Coh4) and rich interruption con-
straints (Coh5). Our experimental results show that with
cohesive constraints the system generates better transla-
tions in comparison with strong baselines. To ensure the
robustness and effectiveness of the proposed approaches,
we conducted experiments on 2 different language pairs,
namely English→Iraqi and English→Spanish. These ex-
periments also covered a wide range of training corpus
sizes, ranging from 600K sentence pairs up to 1.3 mil-
lion sentence pairs. All five proposed approaches give
positive results. The improvements on English→Spanish
are statistically significant at the 95% level. We observe
a consistent pattern indicating that the improvements are
stable in both language pairs.

Acknowledgments
This work is in part supported by the US DARPA TransTac pro-
grams. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA. We would like
to thank Qin Gao and Matthias Eck for helpful conversations,
Johan Hall and Joakim Nirve for helpful suggestions on train-
ing and using the English dependency model. We also thanks
the anonymous reviewers for helpful comments.

References
Colin Cherry. 2008. Cohesive phrase-based decoding for statis-

tical machine translation. In Proceedings of ACL-08: HLT,
pages 72–80, Columbus, Ohio, June. Association for Com-
putational Linguistics.

Heidi J. Fox. 2002. Phrasal cohesion and statistical machine
translation. In Proceedings of EMNLP’02, pages 304–311,
Philadelphia, PA, July 6-7.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens, Chris Dyer, On-
drej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine transla-
tion. In Proceedings of ACL’07, pages 177–180, Prague,
Czech Republic, June.

Marie-Catherine Marneffe, Bill MacCartney, and Christopher
Manning. 2006. Generating typed dependency parses from
phrase structure parses. In Proceedings of LREC’06, Genoa,
Italy.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. MaltParser:
A data-driven parser-generator for dependency parsing. In
Proceedings of LREC’06, Genoa, Italy.

Franz J. Och and Hermann Ney. 2003. A systematic compar-
ison of various statistical alignment models. In Computa-
tional Linguistics, volume 1:29, pages 19–51.

Franz Josef Och. 2003. Minimum error rate training in statis-
tical machine translation. In Proceedings of ACL’03, pages
160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: A method for automatic evaluation of
machine translation. In Proceedings of ACL’02, pages 311–
318, Philadelphia, PA, July.

Andreas Stolcke. 2002. SRILM – An extensible language mod-
eling toolkit. In Proc. Intl. Conf. on Spoken Language Pro-
cessing, volume 2, pages 901–904, Denver.

Stephan Vogel. 2003. SMT decoder dissected: Word reorder-
ing. In Proceedings of NLP-KE’03, pages 561–566, Bejing,
China, Oct.

Hirofumi Yamamoto, Hideo Okuma, and Eiichiro Sumita.
2008. Imposing constraints from the source tree on ITG
constraints for SMT. In Proceedings of the ACL-08: HLT,
SSST-2, pages 1–9, Columbus, Ohio, June. Association for
Computational Linguistics.

Ying Zhang and Stephan Vogel. 2005. An efficient phrase-to-
phrase alignment model for arbitrarily long phrase and large
corpora. In Proceedings of EAMT’05, Budapest, Hungary,
May. The European Association for Machine Translation.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Inter-
preting BLEU/NIST scores: How much improvement do we
need to have a better system? In Proceedings of LREC’04,
pages 2051–2054.

4


