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Abstract

Human sentence processing involves integrat-
ing probabilistic knowledge from a variety of
sources in order to incrementally determine
the hierarchical structure for the serial input
stream. While a large number of sentence pro-
cessing effects have been explained in terms of
comprehenders’ rational use of probabilistic
information, effects of local coherences have
not. We present here a new model of local
coherences, viewing them as resulting from a
belief-update process, and show that the rele-
vant probabilities in our model are calculable
from a probabilistic Earley parser. Finally, we
demonstrate empirically that an implemented
version of the model makes the correct predic-
tions for the materials from the original exper-
iment demonstrating local coherence effects.

1 Introduction

The task of human sentence processing, recovering
a hierarchical structure from a serial input fraught
with local ambiguities, is a complex and difficult
problem. There is ample evidence that comprehen-
ders understand sentences incrementally, construct-
ing interpretations of partial structure and expecta-
tions for future input (Tanenhaus et al., 1995; Alt-
mann and Kamide, 1999). Many of the main behav-
ioral findings in the study of human sentence pro-
cessing have now been explained computationally.
Using probabilistic models trained on large-scale
corpora, effects such as global and incremental dis-
ambiguation preferences have been shown to be a
result of the rational use of syntactic probabilities

(Jurafsky, 1996; Hale, 2001; Narayanan and Juraf-
sky, 2001; Levy, 2008b; Levy et al., 2009). Simi-
larly, a number of other effects in both comprehen-
sion and production have been modeled as resulting
from rational strategies of languages users that take
into account all the probabilistic information present
in the linguistic signal (Genzel and Charniak, 2002;
Genzel and Charniak, 2003; Keller, 2004; Levy and
Jaeger, 2007).

One class of results from the literature that has
not yet been explained in terms of a rational com-
prehender strategy is that of local coherence effects
(Tabor et al., 2004; Gibson, 2006; Konieczny and
Müller, 2007), cases in which it appears that the
parser is systematically ignoring contextual infor-
mation about possible syntactic structures and pur-
suing analyses that are probable only locally. These
effects are problematic for rational models, because
of the apparent failure to use all of the available in-
formation. This paper describes a new model of lo-
cal coherence effects under rational syntactic com-
prehension, which proposes that they arise as a re-
sult of updating prior beliefs about the structures
that a given string of words is likely to have to pos-
terior beliefs about the likelihoods of those struc-
tures in context. The critical intuition embodied in
the model is that larger updates in probability distri-
butions should be more processing-intensive; hence,
the farther the posterior is from the prior, the more
radical the update required and the greater the pro-
cessing load. Section 2 describes the problem of lo-
cal coherences in detail and Section 3 describes ex-
isting models of the phenomenon. Following that,
Sections 4–5 describe our model and its computa-
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Figure 1: The difficulty of explaining local-
coherence effects as traditional garden-pathing.

tion from a probabilistic Earley parser. Section 6
presents the results of an experiment showing that
our model makes the correct predictions for the lo-
cal coherence effects seen in the original paper by
Tabor et al. (2004). Finally, Section 7 concludes and
discusses the insight our model gives into human
performance.

2 Local coherences

The first studies to report effects of local coherences
are described in Tabor et al. (2004). In Experiment
1, they use a self-paced reading task and materials
containing relative clauses (RCs) attached to nouns
in non-subject position as in (1).

(1) a. The coach smiled at the player tossed a
frisbee by the opposing team.

b. The coach smiled at the player who was
tossed a frisbee by the opposing team.

c. The coach smiled at the player thrown a
frisbee by the opposing team.

d. The coach smiled at the player who was
thrown a frisbee by the opposing team.

Their experimental design crossed RC reduction
with verb ambiguity. RCs are either reduced (1a,1c)
or unreduced (1b,1d), and the RC verb is either lex-
ically ambiguous between a past tense active and a
past participle (1a–1b), or is unambiguously a past
participle (1c–1d).

Tabor et al. point out that in one of these four
conditions (1a) there is a locally coherent string the
player tossed a frisbee. Out of context (e.g., if it
were starting a sentence) this string would have a
likely parse in which tossed is a past tense active
verb, the player is its agent, and a frisbee is its
theme (Figure 1, left). The preceding context within

the sentence, however, should rule out this interpre-
tation because the player appears within a PP and
hence should not be able to be the subject of a new
sentence (Figure 1, right). That is, given the preced-
ing context, the player tossed a frisbee must begin
a reduced RC, such that there is no local ambiguity.
Thus, if comprehenders are making full use of the
linguistic context, (1a) should be no more difficult
than the other examples, except insofar as ambigu-
ous verbs are harder than unambiguous verbs, and
reduced RCs are harder than unreduced RCs, pre-
dicting there would be only the two main effects of
RC reduction and verb ambiguity on reading times
for the tossed a frisbee region.

Tabor et al., however, predict an interaction such
that (1a) will have added difficulty above and be-
yond these two effects, because of the interference
from the locally coherent parse of the player tossed a
frisbee. Concordant with their predictions, they find
an interaction in the tossed a frisbee region, such
that (1a) is super-additively difficult. Because this
result requires that an impossible parse influences a
word’s difficulty, it is in direct opposition to the pre-
dictions of theories of processing difficulty in which
the probability of a word given context is the pri-
mary source of parsing difficulty, and more gener-
ally appears to be in opposition to any rational the-
ory, in which comprehenders are making use of all
the information in the linguistic context.

3 Existing models

With the results showing local coherence effects
in mind, we can ask the question of what sorts
of theories do predict these effects. This section
briefly describes two recent examples of such the-
ories. The first involves dynamical systems models
to explain the effects and the second uses a mathe-
matical model of the combination of bottom-up and
top-down probabilistic information.

In Tabor and Hutchins’s (2004) SOPARSE (self-
organized parse) model, reading a word activates a
set of lexically anchored tree fragments. Through
spreading activation between compatible fragments
and inhibition between incompatible ones, these tree
fragments then compete in a process which is sen-
sitive only to the local environment, i.e., ignoring
the global grammatical context. Eventually, the sys-
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tem stabilizes to the correct parse, and reading times
for each word are modeled as the time the system
takes to stabilize after reading a word. Stabilization
takes longer for locally coherent regions because the
locally coherent parse will be created and compete
with the globally grammatical parse.

There are, however, unresolved issues with this
model. The model has a number of free parameters,
relating to the equations used for the competition,
the method by which links between fragments are
formed, as well as the question of precisely what
tree fragments a given word will activate. While Ta-
bor and Hutchins (2004) work out these questions
in detail for the types of sentences they model, it is
unclear how the model could be scaled up to make
predictions for arbitrary types of sentences. That is,
there is no principled system for setting the three
types of parameters mentioned, and thus no clear in-
terpretation of their values. The model put forward
in this paper is an attempt to remedy this situation.

A recent proposal by Gibson (2006) can also ex-
plain some of the local coherence results. Gibson’s
proposal is that part-of-speech ambiguities have a
special status in parsing; in effect, lexical part-of-
speech ambiguities can be thought of as one-word
local coherences. In this model, a probability func-
tion P̃ is calculated over part-of-speech tags given
a word. This probability for tag ti and a word w,
P̃ (ti|w), is proportional to the context-independent
probability of ti given the word w, P (ti|w) – the
bottom-up component – multiplied by a smoothed
probability Ps of the tag given the context – the top-
down component:

P̃ (ti|w) =
P (ti|w)Ps(ti|context)∑

t∈T

P (t|w)Ps(t|context)
(1)

Difficulty is predicted to be high when the probabil-
ity P̃ of the correct tag is low.

Because the top-down probabilities are smoothed
to allow for all possible parts-of-speech, any word
which is lexically ambiguous will be more difficult
to process, regardless of whether it is ambiguous or
not in its context. This can thus explain some of the
difference between the ambiguous and unambiguous
verbs in Tabor et al. (2004). It is not clear, however,
under such a model why the super-additive interac-
tion would obtain—that is, why (1a) should be so

much harder than (1b) starting at the word tossed.
In addition, Gibson’s model is a bit underspecified:
he does not discuss how the top-down probabilities
are calculated, nor what the precise linking hypothe-
sis is between the final P̃ and reading times. Finally,
it is not at all clear why the top-down expectations
should be smoothed, since the smoothing actually
has negative consequences on the processor’s per-
formance.

4 Parsing as belief update

The basic intuition behind the model presented here
is that incrementally processing a sentence can be
conceptualized as a process of updating one’s be-
liefs. Such an analogy has been used to moti-
vate surprisal-based theories of sentence processing
(Hale, 2001; Levy, 2008a), where beliefs about the
structure of a sentence after seeing the first i − 1
words in the sentence, which we denote as wi−1

0 ,
are updated upon encountering wi. In this case, the
surprisal of a word (− logP (wi|wi−1

0 )) is equiva-
lent to the Kullback-Leibler divergence of the beliefs
after wi

0 from the beliefs after wi−1
0 (Levy, 2008a).

Our model focuses on another belief-update process
in sentence processing: updating beliefs about the
structures that a string of words is likely to have in-
dependent of context to beliefs about what structures
it is likely to have in context. A bit more formally, it
views the process of integrating a string of words
wj

i into a sentence as beginning with a ‘bottom-
up’ prior distribution of syntactic structures likely to
spanwj

i and integrating that with ‘top-down’ knowl-
edge from the previous words in the sentence wi

0 in
order to reach a posterior distribution conditioning
on wj

0 over which structures actually can span wj
i .

This belief update process can be viewed as a ratio-
nal reconstruction of the Tabor and Hutchins (2004)
model, where – instead of the system dynamics of
competition between arbitrary tree fragments – dif-
ferences between prior and posterior probability dis-
tributions over syntactic structures determine pro-
cessing difficulty.

More formally still, when integrating wj
i into a

sentence, for each syntactic category X , we can de-
fine the prior probability conditioned only onwj

i that
wj

i will form the beginning of that category, i.e., that
anX exists which begins at index i and spans at least
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through j:

Prior: P (Xk≥j
i |wj

i ) (2)

It is important to note here that this prior probability
is conditional only on the value of wj

i and not the
values of i or j; that is, in the prior probability, i and
j should be interpreted merely as a way to coindex
the start and end points of the string of words being
integrated with a category X potentially spanning
them, and not as making reference to position in the
full sentence string.

For each categoryX , this prior probability will be
updated to the posterior probability of that category
spanning wj

i given all the words seen so far:

Posterior: P (Xk≥j
i |wj

0) (3)

In the equation for the posterior, of course, the in-
dices i and j are positions in the sentence string, and
not merely coindices.

Given these prior and posterior beliefs, we pre-
dict difficulty to arise in cases where the prior re-
quires substantial modification to reach the poste-
rior, that is, cases in which the prior and poste-
rior make substantially different predictions for cat-
egories. A strong local coherence will have sharply
different prior and posterior distributions, causing
difficulty. We represent the prior and posterior be-
liefs as vectors of the probabilities of each syntactic
category spanningwj

i , and measureMij , the amount
of modification required, as the summed K-L diver-
gence of the prior from the posterior vector. That is,
if N is the set of nonterminals in the grammar, the
size of the belief update is modeled as1

Mij
def=
∑

X∈N

D
(
P (Xk≥j

i |wj
0) ||P (Xk≥j

i |wj
i )
)

In the remainder of the paper, we show how to com-
pute Mij by using Bayesian inference on quanti-
ties calculated in ordinary probabilistic incremen-
tal Earley parsing with a stochastic context-free

1Note that for each syntactic category X ∈ N , the proba-
bility distribution P (Xk≥j

i |I) for some information I is over a
binary random variable indicating the presence of X . The dif-
ferent syntactic categories X that could span from i to any k
are not mutually exclusive, hence we cannot define size of be-
lief update as a single K-L divergence defined over multinomial
distributions.

grammar (SCFG), and show that our model makes
the correct predictions using an SCFG for English
on the original local-coherences experiment of Ta-
bor et al. (2004).

5 Computing priors and posteriors

For SCFGs, a probabilistic Earley parser (Earley,
1970; Stolcke, 1995) provides the basic quantities
we need to compute the prior (2) and posterior
(3) for each category X . Following Stolcke, we
use capital Latin characters to denote non-terminal
categories and use lowercase Greek characters to
denote (possibly null) sequences of terminals and
non-terminals. We write the probability that a non-
terminal X can be recursively rewritten by SCFG
rules as a certain series of symbols µ by

P (X ∗⇒ µ)

An edge built from the rule X → λµ where λ has
been recognized as beginning at position i and end-
ing at position j is denoted

j : Xi → λ.µ

The forward probability of that edge at position j,
αj , is defined to be the joint probability that the root
node will generate all words recognized so far wj

0 as
well as the edge

αj(Xi → λ.µ)

With this terminology, we are now in a position to
describe how we calculate the posterior and prior
probability vectors for our model.

5.1 Calculating the posterior
To calculate the posterior, we first use the definition
of conditional probability to rewrite it as

P (Xk≥j
i |wj

0) =
P (Xk≥j

i , wj
0)

P (wj
0)

In a context-free grammar, given the syntactic cat-
egory that dominates a string of words, the words’
probability is independent from everything outside
the category. Thus, this is equivalent to

P (Xk≥j
i |wj

0) =
P (wi

o, Xi)P (wj
i |X

k≥j
i )

P (wj
0)

=
P (S ∗⇒ wi

0Xν)P (X ∗⇒ wj
iµ)

P (S ∗⇒ wj
0λ)
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5.1.1 Posterior: the numerator’s first term
The first term in the numerator P (S ∗⇒ wi

0Xν)
can be computed from a parse of wi

0 by summing
forward probabilities of the form

αi(Xi → .µ) (4)

5.1.2 Posterior: the denominator
Similarly, the denominator P (S ∗⇒ wj

0λ) can be
computed from a parse of wj

0 by summing forward
probabilities of the form

αj(Y → λwj
j−1.µ) (5)

for all Y. This is because the forward probability of
a state is conditioned on generating all the previous
words.

5.1.3 Posterior: the numerator’s second term
The second term in the numerator P (X ∗⇒ wj

iµ)
for an arbitrary category X cannot necessarily be
calculated from a probabilistic Earley parse of the
sentence, because the parser does not construct
states that are not potentially useful in forming a sen-
tence (i.e., states that would have a forward proba-
bility of zero.) However, to calculate the probability
of X generating words wj

i we can parse wj
i sepa-

rately with a goal category of X . From this parse,
we can extract the probability of wj

i being generated
from X in the same way as we extracted the proba-
bility of wj

0 being generated from S, i.e., as a sum of
forward probabilities at j (Eq. 5).2

5.2 Calculating the prior

To calculate the prior, we first use Bayes rule to
rewrite it as

P (Xk≥j
i |wj

i ) =
P (wj

i |X
k≥j
i )P (Xk≥j

i )

P (wj
i )

(6)

Recall that at this point, i and j do not refer to in-
dex positions in the actual string but rather serve to
identify the substring wj

i of interest. That is, P (wj
i )

denotes the probability that at an arbitrary point in
2To calculate the posterior, it is not necessary to parse wj

i

separately, since these states are only excluded from the parse
when their forward probability is zero, in which case the first
term in the numerator will also be zero. A separate parse is nec-
essary, however, when using this term to calculate the prior.

Table 1: Event space for the prior

Event Description
E0: There are at least i′ words |w| ≥ i′
E1: A category X begins at i′ Xi′

E2: An Xi′ spans at least through j Xk≥j
i′

E3: There are at least j words |w| ≥ j
E4: Words wj

i′ are these specific w̃j
i′ wj

i′ = w̃j
i′

an arbitrary sentence, the next j − i words will be
wj

i , and P (Xk≥j
i ) denotes the probability that an ar-

bitrary point in an arbitrary sentence will be the left
edge of a category X that spans at least j − i words.
None of the three terms in Eq. 6 can be directly ob-
tained. However, we can obtain a very good approx-
imation of Eq. 6 as follows. First, we marginalize
over the position within a sentence with which the
left edge i might be identified:

P (Xk≥j
i |wj

i ) =

∑

i′=0,1,...

(
P (wj

i′ |X
k≥j
i′ )P (Xk≥j

i′ )

P (wj
i′)

)
P (i = i′)

(7)

In Eq. 7, i′ is identified with the actual string position
within the sentence.

Second, we rewrite the first term in this sum with
event space notation, using the event space given in
Table 1.

P (wj
i′ |X

k≥j
i′ )P (Xk≥j

i′ )

P (wj
i′)

=
P (E0,3,4|E0...3)P (E0...3)

P (E0,3,4)

=
P (E4|E0...3)P (Eo...3)

P (Eo,3,4)

Applying the chain rule, we can further simplify.

=
P (E4|E0...3)P (E1...3|E0)P (E0)

P (E3,4|E0)P (E0)

=
P (E4|E0...3)P (E1...3|E0)

P (E3,4|E0)

=
P (E2...4|E0, E1)P (E1|E0)

P (E3,4|E0)
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Switching back from event space notation and sub-
stituting this term into Eq. 7, we now have

P (Xk≥j
i |wj

i ) =

∑

i′=0,1,...

(
P (wj

i′ |Xi′ , E0)P (Xi′ |E0)

P (wj
i′ |E0)

)
P (i = i′)

(8)

Thus, by conditioning all terms on E0, the presence
of at least i′ words, we have transformed the proba-
bilities we need to calculate into these four terms,
which are easier to calculate from the parser. We
now consider how to calculate each of the terms.

5.2.1 Prior: the numerator’s first term
The first term in the numerator can be simplified

because our grammar is context-free:

P (wj
i′ |Xi′ , E0) = P (wj

i′ |Xi′)

= P (X ∗⇒ wj
i′)

This can be computed as described in Section 5.1.3.

5.2.2 Prior: the numerator’s second term
The second term in the numerator can be rewritten

as follows:

P (Xi′ |E0) =
P (Xi′ , E0)
P (E0)

=
P (S ∗⇒ ẘi′

0Xµ)

P (S ∗⇒ ẘi′
0 µ)

where ẘi′
0 denotes any sequence of i′ words. Given

a value i′ we can calculate both terms by parsing
the string ẘi

0X , where each word ẘ in ẘi
0X is a

special word that can freely act as any preterminal.
The denominator can then be calculated by summing
the forward probabilities of the last word ẘi

i−1 as in
Eq. 5, and the numerator by summing the forward
probability of X , as in Eq. 4.

5.2.3 Prior: the denominator
The denominator in the calculation of the prior

can be calculated in a way analogous to the numera-
tor’s second term (Section 5.2.2):

P (wj
i′ |E0) =

P (wj
i′ , E0)

P (E0)

=
P (S ∗⇒ ẘi′

0w
j
i′µ)

P (S ∗⇒ ẘi′
0 µ)

5.2.4 Prior: starting position probability
Finally, we must calculate the second term in

Eq. 8, the probability of the starting position
P (i = i′). Given that all our terms are conditional
on the existence of all words in the sentence up to
i′ (E0), the probability of a starting position P (i) is
the probability of drawing i′ randomly from the set
of positions in sentences generated by the grammar
such that all words up to that position exist. For most
language grammars, this distribution can be easily
approximated by a sample of sentences generated
from the SCFG, since most of the probability mass
is concentrated in small indices.

6 Experiment

We tested the predictions of an implemented ver-
sion of our model on the materials from Ta-
bor et al. (2004). To generate quantitative predic-
tions, we created a small grammar of relevant syn-
tactic rules, and estimated the rule probabilities from
syntactically annotated text. We calculated summed
K-L divergence of the prior from the posterior vector
for each word in the Tabor et al. items, and predict
this sum to be largest at the critical region when the
sentence has an effect of local coherence.

6.1 Methods
6.1.1 Grammar

We defined a small SCFG for the problem, and es-
timated its rule probabilities using the parsed Brown
corpus. The resulting SCFG is identical to that used
in Levy (2008b) and is given in Table 2.

6.1.2 Lexicon
Lexical rewrite probabilities for part-of-speech

tags were also estimated using the entire parsed
Brown corpus.

6.1.3 Materials
The materials were taken from Experiment 1 of

Tabor et al. (2004). We removed 8 of their 20 items
for which our trained model either did not know the
critical verb or did not know the syntactic structure
of some part of the sentence. For the other 12 items,
we replaced unknown nouns (9 instances) and un-
known non-critical verbs (2 instances), changed one
plural noun to singular, and dropped one sentence-
initial prepositional phrase.
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Table 2: The SCFG used in Experiment 3. Rule
weights given as negative log-probabilities in bits.

Rule Weight
ROOT → S 0
S → S-base CC S-base 7.3
S → S-base 0.01
S-base → NP-base VP 0
NP → NP-base RC 4.1
NP → NP-base 0.5
NP → NP-base PP 2.0
NP-base → DT NN NN 4.7
NP-base → DT NN 1.9
NP-base → DT JJ NN 3.8
NP-base → PRP 1.0
NP-base → NNP 3.1
VP/NP → VBD NP 4.0
VP/NP → VBD 0.1
VP → VBD PP 2.0
VP → VBD NP 0.7
VP → VBD 2.9
RC →WP S/NP 0.5
RC → VP-pass/NP 2.0
RC →WP FinCop VP-pass/NP 4.9
PP → IN NP 0
S/NP → VP 0.7
S/NP → NP-base VP/NP 1.3
VP-pass/NP → VBN NP 2.2
VP-pass/NP → VBN 0.4

6.2 Procedure

For these 12 items, we ran our model on the four
conditions in (1). For each word, we calculated
the prior and posterior vectors for substrings of
three lengths at wi. The summed K-L divergence
is reported for a substring length of 1 word us-
ing a prior of P (Xk≥i

i−1 |wi
i−1), for a length of 2

using P (Xk≥i
i−2 |wi

i−2), and for a length of 3 us-
ing P (Xk≥i

i−3 |wi
i−3). For all lengths, we predict the

summed divergence to be greater at critical words
for the part-of-speech ambiguous conditions (1a,1b)
than for unambiguous (1c,1d), because the part-of-
speech unambiguous verbs cannot give rise to a prior
that predicts for a sentence to begin. For a substring
length of 3, we also predict that the divergence is
superadditively greatest in the ambiguous reduced
condition (1a), because of the possibility of starting
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2

a sentence with the player tossed.

6.3 Results
The results of the experiment are shown in Figures
2–4. For all three substring lengths, the model pre-
dicts difficulty to be greater in the ambiguous condi-
tions at the critical words (tossed/thrown a frisbee).
For 1-word substrings, the effect is localized on the
critical verb (tossed/thrown), for 2-word substrings
it is localized on the word directly following the
critical verb (tossed/thrown a), and for 3-word sub-
strings there are two effects: one on the critical verb
(the player tossed/thrown) and one two words later
(tossed/thrown a frisbee). Furthermore, for 3-word
substrings, the effect is superadditively greatest for
the player tossed. These results thus nicely confirm
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both of our predictions and demonstrate that a model
in which large belief updates from a bottom-up prior
to a posterior induce difficulty is capable of account-
ing for effects of local coherences.

7 Conclusion

This paper has described a model of local coherence
effects in sentence processing, which views the pro-
cess of integrating a string of words wj

i into a sen-
tence as a process of updating prior beliefs about
the structures spanning those words to posterior be-
liefs. These prior beliefs are simply the probabilities
of those structures given only the words being inte-
grated, and the posterior beliefs are the probabilities
given the entire sentence processed thus far. Diffi-
culty is predicted to result whenever this update is
large – which we model in terms of a large summed
K-L divergence of the prior from the posterior vec-
tor. We demonstrated a method of normatively cal-
culating these probabilities from probabilistic Ear-
ley parses and used this implemented model to make
predictions for the materials for the original experi-
mental result of effects of local coherences (Tabor et
al., 2004). Our results demonstrated that the model
predicts difficulty to occur at the correct part of the
sentence in the correct condition.

We improve on existing models in two ways.
First, we make predictions for where local coher-
ences should obtain for an arbitrary SCFG, not just
one particular class of sentences. This allows the
model to scale up for use with a broad coverage

grammar and to make predictions for arbitrary sen-
tences, which was not possible with a model such as
Tabor & Hutchins (2004).

Second, our model gives a rational basis to an ef-
fect which has typically been seen to result from ir-
rationality of the human sentence processor. Specif-
ically, the cost that our model describes of updating
bottom-up prior beliefs to in-context posterior be-
liefs can be viewed as resulting from a rational pro-
cess in the case that the bottom-up prior is available
to the human sentence processor more rapidly than
the in-context posterior. Interestingly, the fact that
the prior is actually more difficult to compute than
the posterior suggests that the only way it would be
available more rapidly is if it is precomputed. Thus,
our model provides the insight that, to the extent
that comprehenders are behaving rationally in pro-
ducing effects of local coherences, this may indi-
cate that they have precomputed the likely syntac-
tic structures of short sequences of words. While it
may be unlikely that they calculate these probabil-
ities for sequences directly from their grammar as
we do in this paper, there could be a number of ways
to approximate this prior: for example, given a large
enough corpus, these probabilities could be approx-
imated for any string of words that appears suffi-
ciently often by merely tracking the structures the
string has each time it occurs. Such a hypothesis for
how comprehenders approximate the prior could be
tested by manipulating the frequency of the relevant
substrings in sentences with local coherences.

This work can be extended in a number of ways.
As already mentioned, one logical step is using
a broad-coverage grammar. Another possibility re-
lates to the problem of correlations between the dif-
ferent components of the prior and posterior vec-
tors. For example, in our small grammar, whenever a
ROOT category begins, so does an S, an S-base, and
an NP-base. Dimensionality reduction techniques on
our vectors may be able to remove such correlations.
These steps and more exhaustive evaluation of a va-
riety of datasets remain for the future.
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