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Abstract

Multi-task learning is the problem of maxi-
mizing the performance of a system across a
number of related tasks. When applied to mul-
tiple domains for the same task, it is similar to
domain adaptation, but symmetric, rather than
limited to improving performance on a target
domain. We present a more principled, better
performing model for this problem, based on
the use of a hierarchical Bayesian prior. Each
domain has its own domain-specific parame-
ter for each feature but, rather than a constant
prior over these parameters, the model instead
links them via a hierarchical Bayesian global
prior. This prior encourages the features to
have similar weights across domains, unless
there is good evidence to the contrary. We
show that the method of (Daumé Ill, 2007),
which was presented as a simple “prepro-
cessing step,” is actually equivalent, except
our representation explicitly separates hyper-
parameters which were tied in his work. We
demonstrate that allowing different values for
these hyperparameters significantly improves
performance over both a strong baseline and
(Daumeé III, 2007) within both a conditional
random field sequence model for named en-
tity recognition and a discriminatively trained
dependency parser.

Introduction

The goal ofmulti-task learnings to improve perfor-
mance on a set of related tasks, when provided wittor each domain, the obvious first attempt at domain
(potentially varying quantities of) annotated data fomdaptation is to build a system from the union of the
each of the tasks. Itis very closely relateditmmain
adaptation a far more common task in the naturalbaseline. In this paper we propose a more principled,
language processing community, but with two priformal model of domain adaptation, which not only

mary differences. Firstly, in domain adaptation theutperforms previous work, but maintains attractive
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different tasks are actually just different domains.
Secondly, in multi-task learning the focus is on im-
proving performance acrosal tasks, while in do-
main adaptation there is a distinction betweenrce
data andargetdata, and the goal is to improve per-
formance on the target data. In the present work we
focus on domain adaptation, but like the multi-task
setting, we wish to improve performance acradls
domains and not a singtargetdomains. The word
domainis used here somewhat loosely: it may refer
to a topical domain or to distinctions that linguists
might term mode (speech versus writing) or regis-
ter (formal written prose versus SMS communica-
tions). For example, one may have a large amount
of parsed newswire, and want to use it to augment
a much smaller amount of parsed e-mail, to build a
higher quality parser for e-mail data. We also con-
sider the extension to the task where the annotation
is not the same, but is consistent, across domains
(that is, some domains may be annotated with more
information than others).

This problem is important because it is omni-
present in real life natural language processing tasks.
Annotated data is expensive to produce and limited
in quantity. Typically, one may begin with a con-
siderable amount of annotated newswire data, some
annotated speech data, and a little annotated e-mail
data. It would be most desirable if the aggregated
training data could be used to improve the perfor-
mance of a system on each of these domains.

From the baseline of building separate systems

training data, and we will refer to this as a second
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performance characteristics in terms of training antb have a high value, and this will in turn influence

testing speed. We also show that the domain adaptifie top-level parameter to have a high value, which

tion work of (Daumé III, 2007), which is presentedwill then influence the American newswire to have

as an ad-hoc “preprocessing step,” is actually equiva high value, because there will be no evidence in

alent to our formal model. However, our representathe American data to override the prior. Conversely,

tion of the model conceptually separates some of thiesome feature is highly indicative ééName=true

hyperparameters which are not separated in (Daunfi@ the British newswire, and osName=falsefor

[, 2007), and we found that setting these hyperpathe American newswire, then the British parameter

rameters with different values from one another wawill have a high (positive) value while the American

critical for improving performance. parameter will have a low (negative) value, because
We apply our model to two tasks, named entityn both cases the domain-specific evidence will out-

recognition, using a linear chain conditional randonweigh the effect of the prior.

field (CRF), and dependency parsing, using a dis-

criminative, chart-based model. In both cases, we'2 Formal Model

find that our model improves performance over botfur domain adaptation model is based on a hierar-

baselines and prior work. chical Bayesian prior, through which the domain-
specific parameters are tied. The model is very
2 Hierarchical Bayesian Domain general-purpose, and can be applied to any discrim-
Adaptation inative learning task for which one would typically

21 Motivation puta prior With amean over the parameters. We will
build up to it by first describing a general, single-
We call our modelhierarchical Bayesian domain domain, discriminative learning task, and then we
adaptation because it makes use of a hierarchicalll show how to modify this model to construct
Bayesian prior. As an example, take the case fur hierarchical Bayesian domain adaptation model.
building a logistic classifier to decide if a word is|n a typical discriminative probabilistic model, the
part of a person’s name. There will be a paramtearning process consists of optimizing the log con-
eter (weight) for each feature, and usually there igijtional likelihood of the data with respect to the pa-
a zero-mean Gaussian prior over the parameter vahmeters,%ig(Z; 8). This likelihood function can
ues so that they don't get too largeln the stan- take on many forms: logistic regression, a condi-
dard, single-domain, case the log likelihood of thgjonal Markov model, a conditional random field, as
data and prior is calculated, and the optimal papell as others. It is common practice to put a zero-
rameter values are found. Now, let's extend thisnean Gaussian prior over the parameters, leading to

model to the case of two domains, one containinghe following objective, for which we wish to find
American newswire and the other containing Britishhe optimal parameter values:

newswire. The data distributions will be similar for ,
the two domains, but not identical. In our model, argmax| ZLoig(2;8) — Z 9_. 1)
we have separate parameters for each feature in each 0 o — 202

domain. We also have a top level parameter (alsg
to be learned) for each feature. For each domairfb
the Gaussian prior over the parameter values is no
centered around these top level parameters inste
of around zero. A zero-mean Gaussian prior is the%

placed over the top level parameters. In this eX3 ., ti.domain model (illustrated in Figure 1(b)).

ample,.lf some fe_ature, safyqrdz Nigel,” only aP-  Each feature weigh6, is replicated once for each
pears in the British newswire, the corresponquiomain’ as well as for a top-level set of parame-

weight for the American newswire will have a Sim'ters. We will refer to the parameters for domain

llar va]ge. This _happens because_ Fhe evidence Has 64, with individual component®y;, the top-
the British domain will push the British parameterle\/eI parameters a8., and all paraméters collec-

IThis can be regarded as a Bayesian prior or as weight re§ively as 8. All of the power of our model stems
ularization; we adopt the former perspective here. from the relationship between these sets of param-

rom a graphical models perspective, this looks like

igure 1(a), wherg! is the mean for the prior (in our
se, zero)g? is the variance for the priof are the
rameters, or feature weights, agtis the data.
ow we will extend this single-domain model into
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(a) (b) (c)
Figure 1:(a) No domain adaptation. The model paramet@rsre normally distributed, with mean (typically zero)
and variancer?. The likelihood of the dataz, is dependent on the model parameters. The form of the dsttébdition
depends on the underlying model (e.qg., logistic regressioa CRF).(b) Our hierarchical domain adaptation model.
The top-level parameter8,, are normally distributed, with mean (typically zero) and variance?. There is a plate
for each domain. Within each plate, the domain-specificrpatars,8y are normally distributed, with mea. and
varianceaj. (c) Our hierarchical domain adaptation model, with an extrall@f structure. In this example, the
domains are further split into text and speech super-dosnaach of which has its own set of parametégg Gnd iy
for text andBsp andosp for speech) 84 is normally distributed with mea@y; if domaind is in the text super-domain,
and6s, if it is in the speech super-domain.

eters. First, we place a zero-mean Gaussian prigreater effect on the parameter value.

over the top level parametef. Then, these top  To achieve this, we modify the objective func-
level parameters are used as the mean for a Gausstam. We now sum over the log likelihood for all do-
prior placed over each of the domain-specific paranmains, including a Gaussian prior for each domain,
eters@y. These domain-specific parameters are thdmut which is now centered arour@d, the top-level

the parameters used in the original conditional logparameters. Outside of this summation, we have a
likelihood functions for each domain. The domain-Gaussian prior over the top-level parameters which
specific parameter values jointly influence an apprds identical to the prior in the original model:

priate value for the higher-level parameters. Con-

versely, the higher-level parameters will largely de;ghier(@; 0) = )
termine the domain-specific parameters when there _ \2 0.
is little or no evidence from within a domain, but can Lorig(Z4; 64) — Z (6ai —0:)7\ _ z (6.)
be overriden by domain-specific evidence when it 205 202
clearly goes against the general picture (for instan¢ghere 02
Leedsis normally alocation but within thesports
domain is usually amrganization(football team)).

2

and g2 are variances on the priors over
the parameters for all the domains, as well as the
top-level parameters. The graphical models repre-
The beauty of this model is that the degree of insentation is shown in Figure 1(b).
fluence each domain exerts over the others, for eachOne potential source of confusion is with respect
parameter, is based on the amount of evidence eatththe directed or undirected nature of our domain
domain has about that parameter. If a domain haglaptation model, and the underlying model of the
a lot of evidence for a feature weight, then that evidata. Our hierarchical Bayesian domain adaptation
dence will outweigh the effect of the prior. However,model isdirected as illustrated in Figure 1. How-
when a domain lacks evidence for a parameter thever, somewhat counterintuitively, the underlying
opposite occurs, and the prior (whose value is deteferiginal) model of the data can be eithgirected
mined by evidence in the other domains) will have ar undirected and for our experiments we use undi-
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rected, conditional random field-based models. Th2&.3 Model Generalization

directed domain adaptation model can be viewegha model as presented thus far can be viewed
as a model of the parameters, and those paramelgy 4 o level tree, with the top-level parameters
weights are used by the underlying data model. 19t the root, and the domain-specific ones at the
Figure 1, the entire data model is represented by |gayes. However, it is straightforward to generalize
single node7, conditioned on the paramete&or  {he model to any tree structure. In the generalized
8a. The form of that model can then be almost anyyesion, the domain-specific parameters would still

thing, including an undirected model. _ be at the leaves, the top-level parameters at the root,
~ From an implementation perspective, the objedyt new mid-level parameters can be added based
tive function is not much more difficult to implement 5, peliefs about how similar the various domains
than the original single-domain model. Forall of ourye  For instance, if one had four datasets, two of
experiments, we optimized the log likelihood usingyhich contained speech data and two of which con-
L_-BFG_S, WhICh requires the function value and Paltained newswire, then it might be sensible to have
tial derivatives of each parameter. The new partiglyq sets of mid-level parameters, one for the speech
derivatives for the domain-specific parameters (BWiata and one for the newswire data, as illustrated in
not the top-level parameters) utilize the same pagig e 1(c). This would allow the speech domains

tial derivatives as in the original model. The onlyig influence one another more than the newswire do-
change in the calculations is with respect to the primains. and vice versa.

ors. The partial derivatives for the domain-specific

parameters are: 2.4 Formalization of (Daume Ill, 2007)
0%ier(2;0)  0.%4(%4,04) 6ai — O, As mentioned earlier, our model is equivalent to that
004 - 904, - a2 (3)  presented in (Daumé Ill, 2007), and can be viewed
T ’ as a formal version of his modeél.In his presenta-

and the derivatives for the top level parametérs ijon, the adapation is done through feature augmen-

are. tation. Specifically, for each feature in the original
0 Lier(Z;0) 6. — 64, 6., version, a new version is created for each domain, as
T*J = Z_ Tg - 02 (4) wellasa general, domain-independent version of the

feature. For each datum, two versions of each orig-

This function is convex. Once the optimal paraminal feature are present: the version for that datum’s

eters have been learned, the top level parametat®main, and the domain independent one.

can be discarded, since the runtime model for each The equivalence between the two models can be

domain is the same as the original (single-domairghown with simple arithmetic. Recall that the log

model, parameterized by the parameters learned ftikelihood of our model is:

that domain in the hierarchical model. However, it (B4 — 6.)2 (6,)2
g gorlg(@d, ed) - z T‘g - Z 20*2

may be useful to retain the top-level parameters fo

use in adaptation to further domains in the future. _ _
In our model there are extra hyper-parameters e now introduce a new variabl@; = 64 — 6., and

which can be tuned. These are the varianggsor plug it into the equation for log likelihood:

each domain. When this value is large then the priog (Wgi)? (6,i)?

has little influence, and when set high enough will b Zorig(Zd; Yo+ 6.) — z T"z - Z 202

equivalent to training each model separately. When ' d ! X

this value is close to zero the prior has a strong inl he result is the model of (Daume 111, 2007), where

fluence, and when it is sufficiently close to zero the he Yy are the dqmgm-speuflc feature welg'hts, and
it will be equivalent to completely tying the param- ”d are the d_omam-mdependenzt featzure weights. In
eters, such thafly, ; = 6, for all domains. Despite hls_formulatlon, the variancegg = o; for all do-

having many more parameters, for both of the tasl@a'n,Sd' _ . . .

on which we performed experiments, we found that This sepayahon of the ql(_)mam-speqflc and inde-
our model did not take much more time to train tha(fendent variances was critical to our mproved per
a baseline model trained on all of the data concate2' Mance. When using a Gaussian prior there are

nated together. 2Many thanks to David Vickrey for pointing this out to us.
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two parameters set by the user: the mear(usu- #Train  #Test
ally zero), and the variancez?. Technically, each Words _ Words
of these parameters is actually a vector, with an en- MUC-6 165082 15032
try for each feature, but almost always the vectors MUC-7 89644 64490
. . CoNLL 203261 46435
are uniform and the same parameter is used for each _ : —
feature (there are exceptions, e.g. (Lee et al., 2007) r?\blhe 1f.trl:lumber ‘;f Wct’_'[(ds in the _t:_almggtandttest sets for
Because Daumé Il (2007) views the adaptation agc" ©' "€ hamed entily recognition datasets.
merel menting the f r h of hj o
erely augmenting the _eatu € space, €ach ot NS NLL has four classesperson organization lo-
features has the same prior mean and variance, re-,. .
L : o : cation, andmisc MUC data has seven classggr-
gardless of whether it is domain specific or indepen- I : .
. Ron organization location, percent date time, and
dent. He could have set these parameters dn‘ferent|¥10ne They overlap in the three core classpert
but he did no In our presentation of the model, y y P P

we explicitly represent different variances for each 2" °r9"?".“zat'°” and locatiory, but CONLL *.‘"?‘S
. ne additional class and MUC has four additional
domain, as well as the top level parameters.

o . . Classes.
found that specifying different values for the domain The differences in the label sets led us to perform

specific versus domain independent variances sig-

L . aﬂNo sets of experiments for the baseline and hier-
nificantly improved performance, though we foun

no gains from using different values for the diﬂ‘er-fh’erhlcal Bayesian models. In the first set of exper-

. e . iments, at training time, the model allows any la-
ent domain specific variances. The values were s .
el from the union of the label sets, regardless of
based on development data.

whether that label was legal for the domain. At test
3 Named Entity Recognition tim_e, we wo_uld ign_ore guesses made by the model
] ) ] which were inconsistent with the allowed labels for
For our first set of experiments, we used a lineal 5t qomairtt In the second set of experiments, we
chain, conditional random field (CRF) model, egtricted the model at training time to only allow
trained for named entity recognition (NER). The USeq4) |abels for each domain. At test time, the do-
of CRFs for sequence modeling has become stapyain was specified, and the model was once again

dard so we will omit the model details; good explayestricted so that words would never be tagged with
nations can be found in a number of places (Lafferty |5pel outside of that domain’s label set.

et al., 2001; Sutton and McCallum, 2007). Our fea-
tures were based on those in (Finkel et al., 2005). 3.2 Experimental Results and Discussion

31 Data In our experiments, we compared our model to sev-
' eral strong baselines, and the full set of results is in

We used three named entity datasets, from thgspie 2. The models we used were:

CoNLL 2003, MUC-6 and MUC-7 shared tasks.
CoNLL is British newswire, while MUC-6 and TARGET ONLY. Trained and tested on only the data
MUC-7 are both American newswire. Arguably for that domain.
MUC-6 and MUC-7 should not count as separat@ || para. Trained and tested on data from all do-
domains, but because they were annotated sepa- mains, concatenated into one large dataset.
rately, for different shared tasks, we chose to treat . .
them as such, and feel that our experimental resulé"" DATA_ . Same as AL DATA, but restricted .
justify the distinction. We used the standard train possible labels for each word based on domain.
and test sets for each domain, which for CoNLL corDAUMEOQ7. Trained and tested using the same tech-
responds to the (more difficult) testb set. For details ~ hique as (Daumé lll, 2007). We note that they
about the number of training and test words in each ~ present results using per-token label accuracy,
dataset, please see Table 1. while we used the more standard entity preci-
One interesting challenge in dealing with both  sion, recall, and F score (as in the CoNLL 2003
CoNLL and MUC data is that the label sets differ. ~ shared task).

3Although he alludes to the potential for something similar  4We treated them identically to the background symbol. So,
in the last section of his paper, when discussing the keraeli for instance, labelling a word @atein the CoNLL data had no
tion interpretation of his approach. effect on the score.
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Named Entity Recognition HIER BAYES significantly outperformed all of the

Model | Precision Recall F1 baselines (not including R BAYES*) with greater
MUC-6 than 95% confidence.
TARGET ONLY 86.74 80.10 83.29

For both the HER BAYES and DAUMEO7 mod-

ALL DATA* 85.04 83.49 84.26
ALL DATA 86.00 8271 8432 eIs,_ we fognd t_hat performance was better for the
DAUMEO7* 87.83 83.41 8556 variant which did not restrict possible labels based
DAUMEO7 8781 8223 8546 on the domain, while the & DATA model did ben-
HIER BAYES* 88.59 84.97 86.74 efit from the label restriction. For i#ER BAYES and
HIER BAYES 88.77 85.14 86.92 DAuMEQ7, this result may be due to the structure
MUC-7 of the models. Because both models have domain-
TARGET ONLY 81.17 70.23 75.30 specific features, the models likely learned that these
ALL DATA* 81.66 76.17 78.82 labels were never actually allowed. However, when
ALL DATA 8220 7091 76.14 a feature does not occur in the data for a particular
DAUMEQ7* 83.33 7542 79.18 domain, then the domain-specific parameter for that
DAUMEO7 8351  75.63 79.37 feature will have positive weight due to evidence

HIER BAYES* 82.90  76.95 79.82 present in the other domains, which at test time can

HIER BAYES gg’l'\llzl_ 7702 79.98 lead to assigning an illegal label to a word. This
TARGET ONLY SEEC 8477 8513 information that a word may be of some other (un-
" known to that domain) entity type may help prevent
ALL DATA 86.34 84.45 85.38 h 'f is| i h |
ALL DATA 86.58 83.90 8522 t e mode rom mls_a_lbe ing the Worq. For example,
DAUMEOT7* 86.09 85.06 8557 in CoNLL, nationalities, such akaqi and Ameri-
DAUMEO7 8635 8526 85.80 can are labeled amisc If a previously unseen na-
HIER BAYES* 86.33 85.06 85.69 tionality is encountered in the MUC testing data, the
HIER BAYES 86.51 85.13 85.81 MUC model may be tempted to label is deeation,

Table 2: Named entity recognition results for each of th®ut this evidence from the CoNLL data may prevent
models. With the exception of theaRGET ONLY model, that, by causing it to instead be label®isg a label
all three datasets were combined when training each @fhich will subsequently be ignored.
the models. In typical domain adaptation work, showing gains
_ is made easier by the fact that the amount of train-
DAUMEQ7*. Same as BUMEO7, but restricted jng gata in theargetdomain is comparatively small.
possible labels for each word based on domaifyjihin the multi-task learning setting, it is more
HIER BAYES. Our hierarchical Bayesian domainchallenging to show gains over tha A DATA base-
adaptation model. line. Nevertheless, our results show that, so long as
HIER BAYES*. Same as HER BAVEs, but re- theamountofdatain each domain is not widely dis-

stricted possible labels for each word based oparate, it is possible to achieve gains on all of the
the domain. domains simultaneously.

For all of the baseline models, and for the topd Dependency Parsing
level-parameters in the hierarchical Bayesian modeJl, 1 Parsing Model
we usedo = 1. For the domain-specific parameters,™ arsing viode
we usedogy = 0.1 for all domains. We also tested our model on an untyped dependency

The HER BAYES model outperformed all base- parsing task, to see how it performs on a more struc-
lines for both of the MUC datasets, and tied withturally complex task than sequence modeling. To
the DauMEOQ7 for CoNLL. The largest improvement our knowledge, the discriminatively trained depen-
was on MUC-6, where KR BAYES outperformed dency model we used has not been previously pub-
DAUMEOQ7*, the second best model, by86%. This lished, but it is very similar to recent work on dis-
improvement is greater than the improvement maderiminative constituency parsing (Finkel and Man-
by that model over the &AL DATA* baseline. To as- ning, 2008). Due to space restrictions, we cannot
sess significance we used a document-level pairgilve a complete treatment of the model, but will give
t-test (over all of the data combined), and found thadn overview.
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We built a CRF-based model, optimizing the like-parent, dependent (or none, if it is a stopping deci-
lihood of the parse, conditioned on the words andion), direction of attachment, whether there is a pre-
parts of speech of the sentence. At the heart ofious dependent in that direction, and the words and
our model is the Eisner dependency grammar chanparts of speech of the sentence. We used the same
parsing algorithm (Eisner, 1996), which allows forfeatures as (McDonald et al., 2005), augmented with
efficient computation of inside and outside scoresnformation about whether or not a dependent is the
The Eisner algorithm, originally designed for gen-irst dependent (information they did not have).
erative parsing, decomposes the probability of a de-
pendency parse into the probabilities of each attach-2 Data

ment of a dependent to its parent, and the prObtT"—"or our dependency parsing experiments, we used

prliies of each parent stopping faking dependents:nc2008T04 OntoNotes Release 2.0 data (Hovy
ese probabilities can be conditioned onthe chilqy, 5 5006 This dataset is still in development,

parent, and direction of the dependency. We use d includes data from seven different domains, la-

a slight modi_fi_cation of the algori_thm which allows beled for a number of tasks, including PCFG trees.
each probability to also be conditioned on wheth he domains span both newswire and speech from

there is a previous dependent. While the unmodifieg]ultiple sources. We converted the PCEG trees

version of the algorithm includes stopping prObabil"mto dependency trees using the Collins head rules

ities, conditioned on the parent and direction, theYCoIIins 2003).  We also omitted the WSJ portion

. . "5t the data, because it follows a different annotation
tence is most likely, because all words must evenué'cheme from the other domaihsFor each of the

qlly stop_taking dependents. Hovye_ve_r, in the mOd_iFemaining six domains, we aimed for an 75/25 data
fied version, the stopping probability is also Condl'split, but because we divided the data using the pro-

tioned on whether or not there is a previous depeQ/’lded sections, this split was fairly rough. The num-
dent, so this probability does make a difference.

) ) i ber of training and test sentences for each domain
While the Eisner algorithm computes locally nor-5r¢ gpecified in the Table 3, along with our results.
malized probabilities for each attachment decision,

our model computes unnormalized scores. From.3  Experimental Results and Discussion
a graphical models perspective, our parsing model , ,
is undirected, while the original model is directed. W& compared the same four domain adaptation

The score for a particular tree decomposes the sarfig?dels for dependency parsing as we did for the
way in our model as in the original Eisner model,"amed entity experiments, once again seting:
but it is globally normalized instead of locally nor-1-0 andog = 0.1. Unlike the named entity experi-
malized. Using the inside and outside scores we c4R€nts however, there were no label set discrepencies
compute partial derivatives for the feature weightsPetween the domains, so only one version of each
as well as the value of the normalizing constanfomain adaptation model was necessary, instead of
needed to determine the probability of a particula® tWo versions in that section.

parse. This is done in a manner completely analo- Our full dependency parsing results can be found
gous to (Finkel and Manning, 2008). Partial derivaln Table 3. Firstly, we found that &umeQ7, which
tives and the function value are all that is needed tgad outperformed the A. DATA baseline for the
find the optimal feature weights using L-BFES.  sequence modeling task, performed worse than the

F r r m ver h attachment a — _
eafures are computed over eac "Specifically, all the other domains use the “new” Penn

stopping decision, and can be conditioned on thﬁeebank annotation style, whereas the WSJ data is stiflén t

- “traditional” annotation style, familiar from the past dele's
5The dependencies themselves are stitected in both  work in Penn Treebank parsing. The major changes are in
cases, itis just the underlying graphical model used to agenp hyphenation and NP structure. In the new annotation style,
the likelihood of a parse which changes from a directed modehany hyphenated words are separated into multiple tokeitfs, w
to an undirected model. a new part-of-speech tag given to the hyphens, and leftward-
6In (Finkel and Manning, 2008) we used stochastic gradiertiranching structure inside noun phrases is indicated byofise
descent to optimize our weights because our function etialua a new NML phrasal category. The treatment of hyphenated
was too slow to use L-BFGS. We did not encounter this problenwords, in particular, makes the two annotation styles iston
in this setting. tent, and so we could not work with all the data together.
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Dependency Parsing

Training Testing BRGET ALL HIER
Range # Sent Range # Sent NOY DATA DAUMEO7 BAYES
ABC 0-55 1195 56—-69 199 83.32%88.97%  87.30% 88.68%
CNN 0-375 5092 376-437 1521 85.53% 87.09% 86.41987.26%
MNB 0-17 509 18-25 245 77.06% 86.41% 84.70%86.71%
NBC 0-29 552 30-39 149 76.21%85.82%  85.01% 85.32%
PRI 0-89 1707 90-112 394 87.65%  90.28% 89.529400.59%

VOA 0-198 1512 199-264 383 89.17%92.11%  90.67% 92.09%

Table 3: Dependency parsing results for each of the domaiptation models. Performance is measured as unlabeled
attachment accuracy.

baseline here, indicating that the transfer of inforBayesian priors to tie parameters across multiple,
mation between domains in the more structurallgimilar tasks. Evgeniou et al. (2005) present a sim-
complicated task is inherently more difficult. Ourilar model, but based on support vector machines,
model's gains over the A DATA baseline are to predict the exam scores of students. Elidan et
quite small, but we tested their significance using al. (2008) make us of amndirectedBayesian trans-
sentence-level paired t-test (over all of the data confer hierarchy to jointly model the shapes of differ-
bined) and found them to be significantmt: 10°°.  ent mammals. The complete literature on related
We are unsure why some domains improved whilenulti-task learning is too large to fully discuss here,
others did not. It is not simply a consequence dbut we direct the reader to (Baxter, 1997; Caruana,
training set size, but may be due to qualities of th&997; Yu et al., 2005; Xue et al., 2007). For a more

domains themselves. general discussion of hierarchical priors, we recom-
mend Chapter 5 of (Gelman et al., 2003) and Chap-
5 Related Work ter 12 of (Gelman and Hill, 2006).

We already discussed the relation of our work t
(Daumeé lll, 2007) in Section 2.4. Another piece o
similar work is (Chelba and Acero, 2004), who alsdn this paper we presented a new model for domain
modify their prior. Their work is limited to two do- adaptation, based on a hierarchical Bayesian prior,
mains, a source and a target, and their algorithm hahich allows information to be shared between do-
a two stage process: First, train a classifier on th@ains when information is sparse, while still allow-
source data, and then use the learned weights frdiftg the data from a particular domain to override the
that classifier as the mean for a Gaussian prior whéaformation from other domains when there is suf-
training a new model on just the target data. ficient evidence. We outperformed previous work
Daume Ill and Marcu (2006) also took a Bayesia®n a sequence modeling task, and showed improve-
approach to domain adaptation, but structured theifénts on dependency parsing, a structurally more
model in a very different way. In their model, it is complex problem, where previous work failed. Our
assumed that each datum within a domain is eitherrgodel is practically useful and does not require sig-
domain-specific datum, or a general datum, and thetficantly more time to train than a baseline model
domain-specific and general weights were learnedsing the same data (though it does require more
Whether each datum is domain-specific or gener&nemory, proportional to the number of domains). In
is not known, so they developed an EM based algdhe future we would like to see if the model could be
rithm for determining this information while simul- adapted to improve performance on data from a new
taneously learning the feature weights. Their modélomain, potentially by using the top-level weights
had good performance, but came with a 10 to 1%hich should be less domain-dependent.
times slowdown at training time. Our slowest de-
pendency parser took four days to train, making thi§\Cknowledgements
model close to infeasible for learning on that data. The first author is supported by a Stanford Graduate
Outside of the NLP community there has beeirellowship. We also thank David Vickrey for his
much similar work making use of hierarchical helpful comments and observations.
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