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An exponential modeb, (y|x) is a model with a set
of features| f1(z,v), ..., fr(x,y)} and equal num-

ber of parametera = {)\,, ..

and whereZ,(z) is a normalization factor.
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Abstract

In (Chen, 2009), we show that for a vari-
ety of language models belonging to the ex-
ponential family, the test set cross-entropy of
a model can be accurately predicted from its
training set cross-entropy and its parameter
values. In this work, we show how this rela-
tionship can be used to motivate two heuristics
for “shrinking” the size of a language model
to improve its performance. We use the first
heuristic to develop a novel class-based lan-
guage model that outperforms a baseline word
trigram model by 28% in perplexity and 1.9%
absolute in speech recognition word-error rate
on Wall Street Journal data. We use the second
heuristic to motivate a regularized version of
minimum discrimination information models
and show that this method outperforms other
techniques for domain adaptation.

Introduction

., Ar} Where

exp(iy Aifi(x,y))
ZA(Z‘)

pa(ylz) = 1)

of domain, training set size, and model typ&his
relationship is strongest if th& = {);} are esti-
mated using; -+/¢2 regularization (Kazama and Tsu-
jii, 2003). In ¢, + (3 regularization, parameters are
chosen to optimize

F F
o 1 9
O£1+£§ (A) = Htrain + 5 ; ‘)‘z| + 202D ; )‘i (3)

for somea ando. With (a« = 0.5,0% = 6) and
takingy = 0.938, test set cross-entropy can be pre-
dicted with eq. (2) for a wide range of models with a
mean error of a few hundredths of a nat, equivalent
to a few percent in perplexit.

In this paper, we show how eq. (2) can be applied
to improve language model performance. First, we
use eq. (2) to analyze backoff features in exponential
n-gram models. We find that backoff features im-
prove test set performance by reducing the “size” of
amodel; S°F | |\ rather than by improving train-
ing set performance. This suggests the following
principle for improving exponential language mod-
els: if a model can be “shrunk” without increasing
its training set cross-entropy, test set cross-entropy
should improve. We apply this idea to motivate
two language models: a novel class-based language
model and regularized minimum discrimination in-
formation (MDI) models. We show how these mod-

In els outperform other models in both perplexity and

(Chen, 2009), we show that for many types of exyord-error rate on Wall Street Journal (WSJ) data.
ponential language models, if a training and test set The organization of this paper is as follows: In
are drawn from the same distribution, we have

F
"y ~
Hiest ~ Hirain + D Z |)\i‘ 2
i=1

whereHestdenotes test set cross-entropif;ain de-
notes training set cross-entro@y;is the number of
events in the training data; the areregularizedpa-
rameter estimates; angdis a constant independentbits. We use nats to be consistent with (Chen, 2009).
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Section 2, we analyze the use of backoff features in
n-gram models to motivate a heuristic for model de-
sign. In Sections 3 and 4, we introduce our novel

1The cross-entropy of a modgh (y|z) on some datd =
(x1,51), ..., (xp,yp) is defined as- 5 37, log pa (y; ;).
It is equivalent to the negative mean log-likelihood per event as
well as to log perplexity.

2A natis a “natural” bit and is equivalent tog, e regular
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the evaluation daté{pcqis the predicted test set cross- OO o
entropy according to eq. (2); arfdyain is the training R Lot : i
set cross-entropy. The evaluation data is drawn from the 2| * : . . v .
same distribution as the trainingy, values are in nats. 3l ]
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4+ q . . . . .
i : -1 . ¥ [ : Figure 2: Like Figure 1, but for model with unigram
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ik gRerEx¥ T x ARSI RN performance a great deal. We present statistics in
S P S S 1 LSRRI fﬂ y % X Table 1 for various letter trigram models built on the
1 - “ti.% | same data set. Inthese and all later experiments, all
models are regularized with + ¢3 regularization
2T 1 with (a = 0.5,0% = 6). The last row corresponds to
3 1 anormal trigram model; the second row corresponds
4 to a model lacking unigram features; and the first

predicted letter

y row corresponds to a model with no unigram or bi-
Figure 1: Nonzero\; values for bigram features in let- gram features. As backoff features are added, we see
ter bigram model without unigram backoff featgres. Ifthat the training set cross-entropy improves, which
we denote bigrams as; _yu);, €ach column contains the jo o+ ¢rprising since the number of features is in-

?7h Se Foyr;e]zrpé”:;”?ei :t"thbég;agrlz w 't: 2;1”0";"“"26_ creasing. More surprising is that as we add features,
x P verage| i YN the “size” of the modell > | | ;| decreases.

this average includes history words for which no feature . . .
We can explain these results by examining a sim-

exists or for which\; = 0. _ :
ple example. Consider an exponential model con-

_ _ sisting of the featureg; (x, y) and f2(z, y) with pa-
class-based model and discuss MDI domain adaptgsmeter values,, = 3 and )\ = 4. From eq. (1),

tion, and compare these methods against other teGRlis model has the form
niques on WSJ data. Finally, in Sections 5 and 6 we

discuss related work and conclusichs. exp(3f1(z,y) + 4f2(7,y))

ZA(:C)

pilylz) = (4)

2 N-Gram Models and Backoff Features _ _

Now, consider creating a new featufe(z,y) =
In this section, we use eq. (2) to explain why backofff; (z, y)+ f2(z, y) and setting our parameters as fol-
features in exponential-gram models improve per- lows: AT*" = 0, \J®¥ = 1, and A" = 3. Substitut-
formance, and use this analysis to motivate a geneiial into eq. (1), we see thatynew(y|z) = p;(y|z)
heuristic for model design. An exponentialgram for all z, y. As the distribution this model de-
model contains a binary featuyg for eachn’-gram  scribes does not change, neither will its training per-
w occurring in the training data for’ < n, where formance. However, the (unscaled) S@le | Ail
fulz,y) = 1iff zy ends inw. We refer to features of the model has been reduced from 3+4=7 to
corresponding tov’-grams forn’ < n asbackoff 0+1+3=4, and consequently by eq. (2) we predict
features; it is well known that backoff features helgthat test performance will improve.

3A long version of this paper can be found at (Chen, 2008).  *When sgiiA:) = sgn(A2), 37, |\ is reduced most by
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In fact, sincepynew = pj, test performance will Heval | Hpred  Hirain 2 o
remain the same. The catch is that eq. (2) applies| wordn-gram | 4.649 | 4.672 3.354 1.405
only to theregularized parameter estimates for a modelM 4.536| 4544 3296 1.330
model, and in generalA"®" will not be the regu-
larized parameter estimates for the expanded featufable 2: Various statistics for word and class trigram
set. We can Compute the actual regu|arized param@pde|3 built on 100k sentences of WSJ training data.
ters A" for which eq. (2)will apply; this may im-
prove predicted performance even more. been significantly decreased. We can extend this

Hence, by adding “redundant” features to a modetiea to higher-order-gram models as welk.g, bi-
to shrink its total size}_,_, |\;|, we can improve gram parameters can shrink trigram parameters, and
predicted performance (and perhaps also actual pefan in turn be shrunk by unigram parameters. As
formance). This analysis suggests the followinghown in Table 1, both training set cross-entropy and
technique for improving model performance: model size can be reduced by this technique.

Heuristic 1 Identify groups of features which will
tend to have similap\; values. For each such fea-
ture group, add a new feature to the model that isn this section, we show how we can use Heuris-
the sum of the original features. tic 1 to design a novel class-based model that outper-

The larger the original;’s, the larger the reduction forms existing models in both perplexity and speech

in model size and the higher the predicted gain.  recognition word-error rate. We assume a wori
Given this perspective, we can explain why backalways mapped to the same clags). For a sen-

off features improven-gram model performance. tencew - - - w;, we have

For simplicity, consider a bigram model, one with- -

out unigram backoff features. It seems intuitive p(wy---w) =[5 plejler- - ¢, wi - wja)x

that probabilities of the formp(w;|w;—,) are sim- H;le(wj‘cl i wy - wi_q)  (6)

ilar across differentv;_, and thus so are thg for

the corresponding bigram features. (If a word ha¥herec; = c(w;) andc;4, is the end-of-sentence

a high unigram probability, it will also tend to havetoken. We use the notatigRy(y|w) to denote an ex-

high bigram probabilities.) In Figure 1, we plot thePonentialn-gram model, a model containing a fea-

nonzero)\; values for all (bigram) features in a bi- ture for each suffix of eachy occurring in the train-

gram model without unigram features. Each columid set. We us@ng(y|w:, w:) to denote a model con-

contains the\; values for a different predicted word taining all features ipng(y|w1) andpng(y|w2).

w;, and the %’ mark in each column is the average \We can define a class-baseegram model by

value of |\;| over all history wordsw; ;. We see choosing parameterizations for the distributions

that the averag®\;| for each worduw; is often quite P(¢j| ---) andp(w;| - - ) in eq. (6) above. For exam-

far from zero, which suggests creating features  Ple, the most widely-used class-basedram model
is the one introduced by Brown et al. (1992); we re-

Juw, (2,9) Z fuw; 1w, (2, Y) (5) ferto this model as the IBM class model:

wj—1

3 Class-Based Language Models

P(Cj|01 o Cj—1,W1 wjfl): png(cj|cj720j71)

to reduce the overall size of the model.
p(wjler -~ cj,wi -+ wj—1)= png(wjlc;) (7)

In fact, these features are exactly unigram backoff
features. In Figure 2, we plot the nonzexpvalues (In the original work, non-exponentiakgram mod-
for all bigram features after addlng unigram backofg|s are used. ) Clearly, there is a large space of pos-
features. We see that the averagdg's are closer siple class-based models.
to zero, implying that the model siZe-_, |\;| has Now, we discuss how we can use Heuristic 1 to
setting 5" to the\; with the smaller magnitude, and the sizedeSIQn_ a nov“el Cl_asf'based model by using class in-
of the reduction is equal t\;®%. If sgn(x;) # sgniz), no formation to “shrink” a word-based-gram model.
reduction is possible through this transformation. The basic idea is as follows: if we have argramw
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and anothen-gramw’ created by replacing a word By design, it is meant to have similar training set

in w with a similar word, then the two correspond-cross-entropy as a word-gram model while being

ing features should have simila;'s. For exam- significantly smaller.

ple, it seems intuitive that the-gramson Monday To give an idea of whether this model behaves as

morningandon Tuesday morninghould have sim- expected, in Table 2 we provide statistics for this

ilar \;’s. Heuristic 1 tells us how to take advantagemodel (as well as for an exponential wonggram

of this observation to improve model performance. model) built on 100k WSJ training sentences with 50
Let's begin with a word trigram model classes using the same regularization as before. We

Png(wjlwj—owj—1).  First, we would like to see that modeM is both smaller than the baseline

convert this model into a class-based modehnd has a lower training set cross-entropy, similar to

Without loss of generality, we have the behavior found when adding backoff features to
wordn-gram models in Section 2. As long as eq. (2)
plw;lwj_aw; 1) =3, plw;, cjlw;_sw;_1) holds, modeM should have good test performance;

in (Chen, 2009), we show that eq. (2) does indeed

=5 pleilw;_ow; s owe 1) (8
2, Pleglg—ats 1 )plwshey—2wimaes) - (8) hold for models of this type.

Thus, it seems reasonable to use the distributio
Png(¢jlwj—2wj—1) @ndpng(w;|wj—sw;-1¢;) as the
starting point for our class model. This model carin this section, we compare moddl against other
express the same set of word distributions as owtass-based models in perplexity and word-error
original model, and hence may have a similar trainrate. The training data is 1993 WSJ text with verbal-
ing cross-entropy. In addition, this transformatiorized punctuation from the CSR-III Text corpus, and
can be viewed as shrinking together werdyrams the vocabulary is the union of the training vocabu-
that differ only inw;. That is, we expect that pairs lary and 20k-word “closed” test vocabulary from the
of n-gramsw; _sw;_jw; that differ only inw; (be- first WSJ CSR corpus (Paul and Baker, 1992). We
longing to the same class) should have simﬂar evaluate training set sizes of 1k, 10k, 100k, and 900k
From Heuristic 1, we can make new features sentences. We create three different word classings
containing 50, 150, and 500 classes using the algo-
Fuyswyre; (@,9) = D fuyyw,yw, (z,y)  (9)  rithm of Brown et al. (1992) on the largest training
w;€c; set® For each training set and number of classes, we
_ build 3-gram and 4-gram versions of each model.
These are exactly the featurespiiy(c;|w;_2w;_1).

When applying Heuristic 1, all features typically be- From the verbalized punctuation data from the
long to the same model, but even when they dont{ammg and test portions of the WSJ CSR corpus,

. we randomly select 2439 unique utterances (46888
one can achieve the same net effect. y q (

. . words) as our evaluation set. From the remaining
Then, we can use Heuristic 1 to also shrink to-

: verbalized punctuation data, we select 977 utter-
gethern-gram features fon-grams that differ only ances (18279 words) as our development set.

in their histories. For example, we can create new . ]
We compare the following model types: con-
features of the form . :
ventional (.e., non-exponential) wore@-gram mod-
Z o o (2,1) (10) els; conventional IBM class:-gram models in-
DR terpolated with conventional word-gram models
(Brown et al., 1992); and modd¥l. All conven-
This corresponds to replacingng(cjlw;j—ow;—1) tional n-gram models are smoothed with modified
with the distribution png(cj|cj—2cj—1, wj—2w;—1). Kneser-Ney smoothing (Chen and Goodman, 1998),
We refer to the resulting model as modigl except we also evaluate wordgram models with
Katz smoothing (Katz, 1987 Note: Because word

S :
%.l Class-Based Model Comparison

ijff_)ij]Cj (x? y) =

W;—2€C;5-2,W;-1€C5-1

p(ejler--cj—1,wi-wj—1)=png(¢;lej—2¢j—1,wj—2wj—1) — . _ -
11 One can imagine choosing word classes to optimize model
p(wjler-cjwi--wj—1)=png(w;lw;—2w;-1¢;) (11) shrinkage; however, this is not an avenue we pursued.
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training set (sents.) training set (sents.)

1k 10k 100k 900k 1k 10k 100k 900k
conventional worch-gram, Katz conventional worch-gram, modified KN
39 579.3 317.1 196.7 137.5 3g 488.4 270.6 168.2 121.b
49 592.6 325.6 202.4 136.7 4q 486.8 267.4 163.6 114.4
interpolated IBM class model modelM

3g9,50c | 358.4 2245 156.8 117.
30, 150c| 346.5 210.5 149.0 114.
39,500c| 372.6 210.9 1458 112. 30,500c| 387.5 212.7 142.2 108.
49,50c | 362.1 220.4 149.6 109. 49,50c | 345.8 209.0 139.1 101.
49, 150c| 346.3 207.8 1425 105.2 49, 150c| 344.1 202.8 135.7 99.1
49g,500c| 371.5 207.9 140.5 103.6 49, 500c| 390.7 211.1 138.5 100.

39,50c | 3415 210.0 1445 110.9
39, 150c| 342.6 203.7 140.0 108.

W00
Oy = O

[®2)

Table 3: WSJ perplexity results. The best performance for each training set for each model type is highlighted in bold.

training set (sents.) training set (sents.)
1k 10k 100k 900k 1k 10k 100k 900k
conventional worch-gram, Katz conventional wordh-gram, modified KN
39 355% 30.7% 26.2% 22.7% 3g 345% 30.5% 26.1% 22.6%
49 35.6% 30.9% 26.3% 22.7% 49 345% 30.4% 25.7% 22.3%
interpolated IBM class model modelM

39,50c | 32.2% 28.7% 25.2% 22.5% | 39,50c | 30.8% 27.4% 24.0% 21.7%
30,150c| 31.8% 28.1% 25.0% 22.3% | 3g,150c| 31.0% 27.1% 23.8% 21.5%
30,500c| 32.5% 28.5% 24.5% 22.1% 39,500c| 32.3% 27.8% 23.9% 21.4%
49,50c | 32.2% 28.6% 25.0% 22.0% | 49,50c | 30.8% 27.5% 23.9% 21.2%
49, 150c| 31.8% 28.0% 24.6% 21.8% 49, 150c| 31.0% 27.1% 23.5% 20.8%
49,500c| 32.7% 28.3% 24.5% 21.6% 49,500c| 32.4% 27.9% 24.1% 21.1%

Table 4: WSJ lattice rescoring results; all values are word-error rates. The best performance for each training set size
for each model type is highlighted in bold. Each 0.1% in error rate corresponds to about 47 errors.

classes are derived from the largest training set, réee rescoring. We generate lattices on both our de-
sults for word models and class models are compaelopment and evaluation data sets using the Latt-
rable only for this data set. The interpolated model i&\IX decoder (Saon et al., 2005) in the Attila speech
the most popular state-of-the-art class-based modelcognition system (Soltau et al., 2005). The lan-
in the literature, and is the only model here using thguage model for lattice generation is created by
development set to tune interpolation weights. building a modified Kneser-Ney-smoothed word tri-

We display the perplexities of these models on th@am model on our largest training set; this_ model is
evaluation set in Table 3. Mod®! performs best of Pruned to contain a total of 350kgrams using the

all (even without interpolating with a word-gram algorithm of Stolcke (1998). We choose the acoustic

model), outperforming the interpolated model withweight for each model to optimize word-error rate
every training set and achieving its largest reductiofi" the development set.

in perplexity (4%) on the largest training set. While |, 14pje 4, we display the word-error rates for

these perplexi.ty reductions are .quite modest, Wh@ach model. If we compare the best performance
matters more is speech recognition performance. ¢ 1\odelM for each training set with that of the

For the speech recognition experiments, we usstate-of-the-art interpolated class model, we find that
a cross-word quinphone system built from 50 hoursodelM is superior by 0.8—-1.0% absolute. These
of Broadcast News data. The system contains 21¢&ins are much larger than are suggested by the
context-dependent states and a total of 50336 Gauserplexity gains of modeM over the interpolated
sians. To evaluate our language models, we use lattodel; as has been observed earlier, perplexity is
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| Heval | Hpred  Higain > 23! This analysis suggests the following method for

baselinen-gram model improving model performance:
1k | 5.915| 5.875 2.808 3.269 - _ e .
10k | 52121 5231 3.106 2.265 Heuristic 2 Find a “similar” distribution estimated
100k | 4.649| 4.672 3.354 1.405 from an independent training set, and use this distri-
MDI n-gram model bution as a prior.

1k | 5.444| 5285 2.678 2.780
10k | 5.031| 4973 3.053 2.046
100k | 4.611| 4595 3.339 1.339

It is straightforward to apply this heuristic to the task
of domain adaptation for language modeling. In the
usual formulation of this task, we have a test set and

Table 5: Various statistics for WSJ trigram models, wit? small j[r"_’"nmg set from 'the same dqmaln, and a
and without a Broadcast News prior model. The first coll2rge training set from a different domain. The goal

umn is the size of the in-domain training set in sentenceks to use the data from the outside domain to max-
imally improve language modeling performance on

not a reliable predictor of hr nition perf rthe target domain. By Heuristic 2, we can build a
otarela e.p edictor of speech recognition pe 0,anguage model on the outside domain, and use this
mance. While we can only compare class mode

: " “hodel as the prior model for a language model built
with word models on the largest training set, forthlsOn the in-domain data. This method is identical to
training set model outperforms the baseline Katz'the MDI method for domain adaptation, except that
smoothed word trigram model by 1.9% absolfite. o ’

we also apply regularization.
4 Domain Adaptation In our domain adaptation experiments, our out-
of-domain data is a 100k-sentence Broadcast News
In this section, we introduce another heuristic fOEraining set. For our in-domain WSJ data, we use
improving exponential models and show how thigraining set sizes of 1k, 10k, and 100k sentences. We
heuristic can be used to motivate a regularized vegyild an exponentiah-gram model on the Broad-
sion of minimum discrimination information (MDI) cast News data and use this model as the prior model
models (Della Pletra etal., 1992). L_et.’s say we havg(ym in eq. (12) when building an exponentia
a modelp; estimated from one training set and aram model on the in-domain data. In Table 5, we
“similar” model ¢ estimated from an independentgisplay various statistics for trigram models built on
training set. Imagine we usgas aprior model for  varying amounts of in-domain data when using a
pa; i.e, we make a new modef; new as follows: Broadcast News prior and not. Across training sets,
- the MDI models are both smaller i >, | ;| and
exp(3;—1 AT"fi(, y)) ini X
i=1"% ’ (12) have better training set cross-entropy than the un-
Z new(z) adapted models built on the same data. By eq. (2),
the adapted models should have better test perfor-
mance and we verify this in the next section.

Panew(ylz) = a(ylz)

Then, choos@"®" such thapf new(y|z) = pj (y|x)
for all z, y (assuming this is possible). ¢fis “simi-
lar” to pj, then we expect the sizk 37— | A" of
pinew to be less than that gf; . Since they describe _ _ '
the same distribution, their training set cross-entroplt this section, we examine how MDI adapta-
will be the same. By eq. (2), we expeﬂinew to tion compares to other state-of-the-art methods for
have better test set performance tharafter reesti- domain adaptation in both perplexity and speech
mation? In (Chen, 2009), we show that eq. (2) doegecognition word-error rate. For these experiments,
indeed hold for models with priorsj need not be We use the same development and evaluation sets
accounted for in computing model size as long as #nd lattice rescoring setup from Section 3.1.

is estimated on a separate training set. The most widely-used techniques for domain

B ——— _ adaptation are linear interpolation and count merg-
Results for several other baseline language models and WIIIH In linear interpolation. separ ram models
a different acoustic model are given in (Chen, 2008). g. P » Sep g

"That s, we expect thegularizedparameterd "™®Wto yield ~ are built on the in-domain and out-of-domain data
improved performance. and are interpolated together. In count merging, the

4.1 Domain Adaptation Method Comparison
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tion of 28% and word-error rate reduction of 1.9%

in-domain data (sents)) in-domain data (sents.) | apgolute with a 900k-sentence training set. The most
1k 10k 100k 1k 10k 100k

in-domain data only closely-related existing model to mod#l is the
39| 488.4 270.6 168.2 34.5% 30.5% 26.1% modelfullibmpredictproposed by Goodman (2001):
49 | 486.8 267.4 163.3 345% 30.4% 25.7%

count merging plejlej—2ej-1wj-2wj-1)=
3g | 503.1 290.9 170.7 30.4% 28.3% 25.2% Ap(e;wj—awj—1)+(1—X) pleslej—2¢i—1)
4g | 497.1 2849 165.3 30.0% 28.0% 25.3% (w;]¢;_2¢; 105,15 )=
linear interpolation PRt ettty t=1=
3g | 328.3 2348 162.3 30.3% 28.5% 25.8% pp(w;|wj—2wj1c;)+(1=p) p(wjlej—2cj-1c;)  (13)
0, 0, 0 . . .. H H
49 | 3253 2308 |\/|1|§|7.mo?:|%|3/0 284% 25.2%| This is similar to modeM except that linear in-

3g | 2963 2187 157.4 30.0% 28.0% 24.9% terpolation is used to combine word and class his-
4g | 293.7 2158 152_3 20.6% 27.9% 24.9% | tory information, and there is no analog to the fi-

nal term in eq. (13) in mode¥l. Using the North
Table 6: WSJ perplexity and lattice rescoring results fofMerican Business news corpus, the largest perplex-
domain adaptation models. Values on the left are perpleity reduction achieved over a Katz-smoothed trigram
ities and values on the right are word-error rates. model baseline bfullibmpredictis about 25%, with
a training set of 1M words. InV-best list rescor-
in-domain and out-of-domain data are concatenateg® _W'th a 284M.'W9rq training set, the best re_sult
into a single training set, and a singlegram model achieved for an |nd|v!dua_1l class-based model is an
is built on the combined data set. The in-domailg?'so/0 a_bsolute reduct!on in word-error rate.
data set may be replicated several times to more To situate the quall_ty of our results, we also re-
heavily weight this data. We also consider the base W the best perplexity and word-error rate resulf[s
line of not using the out-of-domain data. reported fgr class-based language mod_els relative
to conventional wordh-gram model baselines. In

In Table 6, we display perplexity and word-error :
rates for each method, for both trigram and 4_grarberms of absolute word-error rate, the best gains we

models and with varying amounts of in-domain Our_'td in the Ilterz:\jtulre are frorrtnuflt[[-r]clalsBsMcorln-
training data. The last method corresponds to trROSI€n-gram modets, a vanant o the c1ass

exponential MDI model; all other methods empIO)}mdeI (Yamamoto and Sagisaka, 1999; Yamamoto

conventional (non-exponentiatygram models with Et al., 20?3)' Trlese Zre calle@mposﬂer;odels ¢
modified Kneser-Ney smoothing. In count merging ecause frequent word sequences can be concate-

only one copy of the in-domain data is included i-hated into single units within the model; the term

the training set; including more copies does not imr_nultl-classrefers to choosing different word clus-

prove evaluation set word-error rate. ten&gs:TeF?endll?g cl)n word pc;&?og - 1n e\;<per|me:1ts ¢
Looking first at perplexity, MDI models outper- onthe spoken language database, Yamamoto €

form the next best method, linear interpolation, b)?l' (2003) report a reduction in perplexity of 9% and

. ) 0
about 10% in perplexity on the smallest data set an Kmtcrease |tr;1wdo:d_ accuraC)é Olf 2.2% absolute over
3% in perplexity on the largest. In terms of word-2 Iatz-smoof © r:grim T;]O E' t gai found
error rate, MDI models again perform best of all, N terms of perplexity, the best gains we foun

outperforming interpolation by 0.3-0.7% absoluté'™® from SuperARV language models (Wang and
and count merging by 0.1-0.4% absolute. Harper, 2002; Wang et al., 2002; Wang et al., 2004).

In these models, classes are basedbstract role
5 Related Work valuesas given by a Constraint Dependency Gram-
mar. The class and word prediction distributions are
n-gram models that back off to a variety of mixed
In past work, the most common baseline models angord/class histories in a specific order. With a WSJ
Katz-smoothed word trigram models. Compared ttraining set of 37M words and a Katz-smoothed tri-
this baseline, modeé¥ achieves a perplexity reduc- gram model baseline, a perplexity reduction of up to

5.1 Class-Based Language Models
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53% is achieved as well as a decrease in word-errtion can obviate the need for intelligent feature se-
rate of up to 1.0% absolute. lection. In this work, we include alh-gram fea-

All other perplexity and absolute word-error ratetures present in the adaptation datasfoe {3,4}.
gains we found in the literature are considerablfChueh and Chien (2008) propose the use of inequal-
smaller than those listed here. While different datéty constraints for regularization (Kazama and Tsu-
sets are used in previous work so results are not dii, 2003); here, we usé, +¢3 regularization instead.
rectly comparable, our results appear very competide hypothesize that the use of state-of-the-art regu-
tive with the body of existing results in the literature larization is the primary reason why we achieve bet-
ter performance relative to interpolation and count
merging as compared to earlier work.

Here, we discuss methods for supervised domain _ _
adaptation that involve only the simple static combi6 Discussion

nation of in-domain and out-of-domain data or mod- .
For exponential language models, eq. (2) tells us

SHat with respect to test set performance, the num-
ber of model parameters seems to matter not at all;

. . . Il that matters are the magnitudes of the parame-
method for domain adaptation. Jelinek et al. (199 g . P
o . r values. Consequently, one can improve exponen-
describe its use for combining a cache language

: 9%l language models by adding features (or a prior
model and static language model. Another popular guage m y 9 : ( A pr

. . . . model) that shrink parameter values while maintain-
method is count merging; this has been motivated

. . : ng training performance, and from this observa-
as an instance of MAP adaptation (Federico, 199 ;g gp e
. fon we develop Heuristics 1 and 2. We use these
Masataki et al., 1997). In terms of word-error rate . .
. . . . _ideas to motivate a novel and simple class-based
lyer et al. (1997) found linear interpolation to give

. . language model that achieves perplexity and word-
better speech recognition performance while Bac- guag perplextty

S . error rate improvements competitive with the best
chiani et al. (2006) found count merging to be su b P

erior. Klakow (1998) proposes log-linear inter 0Feported results for class-based models in the litera-
P ' prop 9 P ture. In addition, we show that with regularization,

lation for domain adaptation. As compared to "®9MDI models can outperform both linear interpola-

ular linear interpolation for bigram models, an im-,. L .
: . . tion and count merging in language model combina-
provement of 4% in perplexity and 0.2% absolute in. : . )
: tion. Still, Heuristics 1 and 2 are quite vague, and
word-error rate is found. . . .
. : . t remains to be seen how to determine when these
Della Pietra et al. (1992) introduce the idea o - . .
. T AT : e euristics will be effective.
minimum discrimination information distributions.
) . . . In summary, we have demonstrated how the trade-
Given a prior modelg(y|z), the goal is to find e 00 training set performance and model size
the nearest model in Kullback-Liebler divergence g P

e . . . im f lan m lin iver
that satisfies a set of linear constraints derived from pacts aspects of language modeling as diverse as

adaptation data. The model satisfying these concP ackoff n-gram features, class-based models, and

- . )
. ) . . domain adaptation. In particular, we can frame
tions is an exponential model containing one fea- . .

. . . . . performance improvements in all of these areas as
ture per constraint withy(y|xz) as its prior as in

eq. (12). While MDI models have been used mar]methods that shrink models without degrading train-

. . Yng set performance. All in all, eq. (2) is an impor-
times for language model adaptatieng, (Kneser et tant tool for both understanding and improving lan-
al., 1997; Federico, 1999), they have not performe&1 g P g

. . c o . guage model performance.
as well as linear interpolation in perplexity or word-
error rate (Rao et al., 1995; Rao et al., 1997).

One important issue with MDI models is how to
select the feature set specifying the model. With ¥e thank Bhuvana Ramabhadran and the anony-
small amount of adaptation data, one should intunous reviewers for their comments on this and ear-
itively use a small feature set,g, containing just lier versions of the paper.

unigram features. However, the use of regulariza-

5.2 Domain Adaptation

topic, syntax, etc., refer to (Bellegarda, 2004).
Linear interpolation is the most widely-used

Acknowledgements

475



References Dietrich Klakow. 1998. Log-linear interpolation of lan-
guage models. IRroc. of ICSLP

M'Ch.'el Bacchiani, Michael Riley, Brlan Roark, and Reinhard Kneser, Jochen Peters, and Dietrich Klakow.
Richard Sproat. 2006. MAP adaptation of stochas- . . .
1997. Language model adaptation using dynamic

tzlg(lg)r.jrfngasrs. Computer Speech and Language marginals. InProc. of Eurospeech
- Hjrokazu Masataki, Yoshinori Sagisaka, Kazuya Hisaki,
Jerome R. Bellegarda. 2004. Statistical language mode .
I . ; and Tatsuya Kawahara. 1997. Task adaptation us-
adaptation: review and perspective&gpeech Commu- . R .
oo . ing MAP estimation in n-gram language modeling. In
nication, 42(1):93-108. :
. . Proc. of ICASSPvolume 2, pp. 783-786, Washington,
Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, .
. : DC, USA. IEEE Computer Society.
Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
Douglas B. Paul and Janet M. Baker. 1992. The de-
based n-gram models of natural langua@amputa- !
. L ) sign for the Wall Street Journal-based CSR corpus.
tional Linguistics 18(4):467-479, December.
.. In Proc. of the DARPA Speech and Natural Language
Stanley F. Chen and Joshua Goodman. 1998. An empiri-
. ) Workshoppp. 357-362, February.
cal study of smoothing techniques for language mode|5 Sriniv R Michael D. Monkowski. and Salim
ing. Technical Report TR-10-98, Harvard University. "~ ° asa 1ao, Michael L. Vonkowskl, and salim
- Roukos. 1995. Language model adaptation via mini-
Stanley F. Chen. 2008. Performance prediction for expo- mum discrimination information. IRroc. of ICASSP
nential language models. Technical Report RC 24671 ' '

S " volume 1, pp. 161-164.
IBM R hD . . . .
esearch Division, October P. Srinivasa Rao, Satya Dharanipragada, and Salim

Stanle)_/ F. Chen. 2009. Performance prediction for expo- Roukos. 1997. MDI adaptation of language models
nential language models. Rroc. of HLT_NAACL . across corpora. IfProc. of Eurospeechpp. 1979—
Chuang-Hua Chueh and Jen-Tzung Chien. 2008. Reli-
able feature selection for language model adaptatio

In Proc. of ICASSPpp. 5089-5092.

Stephen Della Pietra, Vincent Della Pietra, Robert L.
Mercer, and Salim Roukos. 1992. Adaptive Ianguagﬁ|
modeling using minimum discriminant estimation. In
Proc. of the Speech and Natural Language DARPA
Workshop February.

Marcello Federico. 1996. Bayesian estimation method&
for n-gram language model adaptation.Froc. of IC-
SLP, pp. 240-243.

Marcello Federico. 1999. Efficient language model
adaptation through MDI estimation. Rroc. of Eu-
rospeechpp. 1583-1586.

Joshua T. Goodman. 2001. A bit of progress in language
modeling. Technical Report MSR-TR-2001-72, Mi- Proc. of EMNLR pp. 238-247.

R h. .
crosoft Researc Wen Wang, Yang Liu, and Mary P. Harper. 2002.

Rukmini lyer, Mari Ostendorf, and Herbert Gish. 1997. . . ! ;
. : . . . Rescoring effectiveness of language models using dif-
Using out-of-domain data to improve in-domain lan- S .
ferent levels of knowledge and their integration. In

guage models. IEEE Signal Processing Letters Proc. of ICASSPpp. 785-788.

4(8):221-223, August.
Frederick Jelinek, Bernard Merialdo, Salim Roukos, ang\/en Wang, Andr_eas _St_olcke, an(_j Mary P. Harper. 2004.
The use of a linguistically motivated language model

Martin Strauss. 1991. A dynamic language model for in corversational speech recognition. Rroc. of
speech recognition. IRroc. of the DARPA Workshop ICASSP pp. 261—264.

S h and Natural L . 293-295, Mor- . ) N .
on Speech and atural Language » Mo Hirofumi Yamamoto and Yoshinori Sagisaka. 1999.

ristown, NJ, USA. Multi-class composite n-gram based on connection di
Slava M. Katz. 1987. Estimation of probabilities from rection. InProc. of ICASSPpp. 533-536.

sparse data for the language model component of . : L
speech recognizerlEEE Transactions on Acoustics, 'ﬁrg;lggalj:mggqoo;o’ MSUTETF;LOS I(’:S(;)r?]?(’)sﬁgdn ;(:er:nlg:

Speech and Signal Processji%(3):400-401, March. o i
Jurn’ichi Kazama and Jun’ichi Tsujii. 2003. Evaluation gggge model. Speech Communicatiort1(2-3):369-

and extension of maximum entropy models with in- ’

equality constraints. IRroc. of EMNLRE pp. 137-144.

%eorge Saon, Daniel Povey, and Geoffrey Zweig. 2005.
Anatomy of an extremely fast LVCSR decoder. In
Proc. of Interspeectpp. 549-552.

agen Soltau, Brian Kingsbury, Lidia Mangu, Daniel
Povey, George Saon, and Geoffrey Zweig. 2005. The
IBM 2004 conversational telephony system for rich
transcription. InProc. of ICASSPpp. 205-208.

ndreas Stolcke. 1998. Entropy-based pruning of back-
off language models. IRroc. of the DARPA Broad-
cast News Transcription and Understanding Work-
shop pp. 270-274, Lansdowne, VA, February.

Wen Wang and Mary P. Harper. 2002. The Super-

ARV language model: Investigating the effectiveness

of tightly integrating multiple knowledge sources. In

476



