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Abstract marquées | |
questions | - | | i

We present a novel machine translation everx | - - :

framework based on kernel regression nous| |l ‘

techniques. In our model, the translation e feq, o Wy, Y.
0 ‘{“eO' @[10,]&

task is viewed as a string-to-string map-
ping, for which a regression type learning
is employed with both the source and the
target sentences embedded into their ker-
nel induced feature spaces. We report the  to predict the translatiop for a new sentence.

Figure 1: Phrase alignment in SMT

experiments on a French-English transla- Comparing with traditional methods, this model

tion task showing encouraging results. gives us a theoretical framework to capture higher-
dimensional dependencies within the sentences. To

1 Introduction solve the multi-output regression problem, we inves-

Fig. 1 illustrates an example of phrase alignmerf{92te two models, least squares regression (LSR)

for statistical machine translation (SMT). A roughSimilar to the technique presented in (Cortes et al,,
linear relation is shown by the co-occurences of009), and maximum margin regression (MMR) in-

phrases in bilingual sentence pairs, which motivatd&oduced in (Szedmak et al., 2006).
us to introduce a novel study on the SMT task: The rest of the paper is organized as follows. Sec-

If we define the feature spadé, of our source tion 2 gives a brief review of the regression models.
xT

languageY as all its possible phrases (i.e. informa-S€ction 3 details the solution to the pre-image prob-

tive blended word-grams), and define the mapping'em'_ Wg repo@ the_experimental results in Section
®, : X — H,, then a sentence € X can be ex- 4 With discussions in Section 5.

pressed by its feature vectdr,(z) € H,. Each
component ofp,(x) is indexed by a phrase with the
value being the frequency of it in. The definition 21 Kernel Induced Feature Space

of the feature spack, of our target languagg’ can In the practical learning process, only the inner prod-

b.e made in a similar way, with corrgspondlng r.naphcts of the feature vectors are needed (see Section
ping ®, : Y — H,. Now in the machine translation

. , 2.2, 2.3 and 3), so we can perform the so-called
task, givenS = {(x;,y;) : z; € X,y; € V,i = . ) . . )
. kernel trick to avoid dealing with the very high-
1,...,m}, a set of sample sentence pairs whegre . : - .
. . . dimensional feature vectors explicitly. That is, for
is the translation ofr;, we are trying to learr'v a

) ! xr,z € X, akernel function is defined as:
matrix represented linear operator, such that:

Dy(y) = f(x) = Wky(x) D) kalz,2) = (Pa(2), Pu(2))

2 Kernel Regression with Vector Outputs

D,(z) @,(2) (2)
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Similarly, a kernel functions, (-, -) is defined in{,. wheres,(-,-) ands,(-,-) denote the kernel func-
In our case, the blendedspectrum string ker- tions associated to the respective normalized feature
nel (Lodhi et al., 2002) that compares two stringvectors.
by counting how many (contiguous) substrings of This dual problem can be solved efficiently with
length from 1 up tan they have in common, is agooda perceptron algorithm based on an incremental
choice for the kernel function to induce our featuresubgradient method, of which the bounds on the
spacesH, and’, implicitly, even though it brings complexity and achievable margin can be found in
in some uninformative features (word n-grams) agSzedmak et al., 2006).
well, when compared to our original definition. Then according to Karush-Kuhn-Tucker theory,
, W is expressed as:
2.2 Least Squares Regression
m
A basic method tp solve the problem in Eq. 1'|s'least W — Z ;B () B (a5) T @)
squares regression that seeks the ma¥ixmini- —

mizing the squared loss i, on the training sesb' _ o
In practice, MMR works better when the distribu-

min WM, — M, % (3) tion of the training points are symmetrical. So we
center the data before normalizing them.®l§, =

v(\;)here M, o - [q)m(xé)’ - <I>§(wmt)], tll'\]/IyF :b LS &, (z;) is the centre of mass of the source
Lljs(yric))’rm’ u(ym)], and|| - || denotes the Frobe- & ronce sample sét; ) in the feature space, the

. i . ... new feature map is given ) =,(-) — Pg,.
lefgrentlatlng the expression and setting it e similar ope?atio% is pz?fz(rr)ned c,;i()_) to SE,
2810 gives. tain®,(-). Then the L2-normalizations df,(-) and

OWM, M, — 2M, M, =0 ®,(-) yield our final feature vector$,,(-) and®,(-).
—1Ing T . .
= W=MK, M, (4) 3 Preimage Solution
whereK, = M, M, = (kz(zi,2;)1<ij<m) IS the  To find the pre-image sentenge= f~!(z) can be
Gram matrix. achieved by seeking; that has the minimum loss

between its feature vectdr, (y;) and our prediction
f(x). Thatis (Eqg. 8: LSR, Eqg. 9: MMR):
An alternative solution to our regression learn-

2.3 Maximum Margin Regression

ing problem is proposed in (Szedmak et al.y; = arg min [Wo,(z)— &, (y)|
2006), called maximum margin regression. If L2- yey'(x) B
normalized feature vectors are used in Eq. 1, de- = arg min ty (Y, y) — 2ky () K ke (2) (8)
noted by®,(-) and®,(-), MMR solves the follow- B : = =
ing optimization: ) L= {2y(y), W (),
1 " S
min §\|W\|% +CY & 5) = arg max 2 aiky (Yi, y) Rz (i) (9)
i=1 =
st (Py(yi), Wy ()3, > 1 -6, where Y(z) C Y is a finite set covering all po-
&>0i=1,...,m. tential translations for the given source sentence

. _— . z, and ky () = (ke(2i)i<icm) and ky(-) =
whereC' > 0 is the regularization coefficient, and (ky (-, i) 1<i<m) @rem x 1 column matrices.

with dual variablesy; gives: lexicon that contains possible translations for every
m m component (word or phrase) in But the size of it
min Z 0GRy (T4, )Ry (Yi, i) — Z Q; will grow exponentially with the length af, which
ij=1 i=1 poses implementation problem for a decoding algo-
s.t. 0<; <C,i=1,...,m. (6) rithm.
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In earlier systems, several heuristic search meth- (@  jous revenous aux | |questions | marquées ... |
pds were developed, of which a typical example Ty ——
is Koehn (2004)’'s beam search decoder for phrase- ® : : — .
based models. However, in our case, because of the pous revenous aux_Juestions ] rarguces |[.. |
ry(y,y) item in Eqg. 8 and the normalization opera- fwe return to | mnq
tion in MMR, neither the expression in Eg. 8 nor
the one in Eq. 9 can be decomposed into a sumigure 2: Search states with the limited distortion.
of subfunctions each involving feature components
in a local area only. It means we cannot estimate ) ) )
exactly how well a part of the source sentence igbove. However, our score functions will bring

translated, until we obtain a translation for the entird0"e runtime complexities when compared with tra-

sentence, which prevents us doing a straightfonmar%“ional probabilistic methods. The time complexity
beam search similar to (Koehn, 2004).

of a naive implementation of the blendegpectrum
To simplify the situation, we restrict the reorder-

string kernel between two sentencesand s; is
ing (distortion) of phrases that yield the output sen?(nlsil|s;1), where|-| denotes the length of the sen-
tences by only allowing adjacent phrases to e

Jence. So the score function in Eq. 11 results in an
change their positions. (The discussion of this strafVerage runtime complexity @(m”l}/l)’ wher_el_ IS
egy can be found in (Tillmann, 2004).) We usg;, the average Ierlgth of the sentenge# the training
andyj;.; to denote the substrings sfandy that be- ;set. Note heres, (2(1,,),2i) can be pre-computed
gin with theith word and end with thgth. Now, if [OF l= rom 1 to |z| before the beam search, which
we go back to the implementation of a beam searcﬁa”S_ forO(m|z|) space. The gverage runt_lme com-
the current distortion restriction guarantees that iHIexﬁy_ of the score functltin in Eq. 10 will be the
each expansion of the search states (hypotheses) wHne if we pre-computi; "k (71.4,))-
havex[,,, translated to &, ), either like state (a)
or like state (b) in Fig. 2, wherg, is the number of
words translated in the source sentence, /gmgithe 4.1 Resource Description

number of words obtained in the translation.
We assume that ify is a good translation of;,

o

4 Experimental Results

Baseline System To compare with previous work,

_ : we take Pharaoh (Koehn, 2004) as a baseline system,
theny;,,,) is a good translation of,;,) as well. S0 yith its default settings (translation table size 10,
we can expect that the squared I93¥ ¢, (z(1.1,])) = peam size 100). We train a trigram language model
®y (y1,))[|* in the LSR is small, or the inner prod- i the SRILM toolkit (Stocke, 2002). Whilst, the
uct (Py (Y1), WPs(2(14,)))7, In the MMR is o0 meters for the maximum entropy model are de-

large, for the hypothesis yielding a good translatione|sneq hased on the minimum error rate training
According to Eq. 8 and Eq. 9, the hypotheses in thg, oihod (Och, 2003).

search stacks can thus be reranked with the follow- |, {ha following experiments, to facilitate com-

ing score functions (Eq. 10: LSR, Eq. 11: MMR): na1is0n, each time we train our regression models

and the language model and translation model for

Score(x(i1,); Yu,)) = (10)  pharaoch on a common corpus, and use the same
Ky (W11, Yiay) — 2Ky (W, ) Ky ke (210,])  phrase translation table as Pharaoh’s to decode our

Score(z(1.,1, Y1:,]) = systems. According to our preliminary experiments,
m with the beam size of 100, the search errors of our
> iy (Yi Ypa,)) B (T, 21a,)) (11) systems can be limited within 1.5%.

=1
Corpora To evaluate our models, we randomly

Therefore, to solve the pre-image problem, weake 12,000 sentences from the French-English por-
just employ the same beam search algorithm d®n of the 1996-2003 Europarl corpus (Koehn,
(Koehn, 2004), except we limit the derivation of new2005) for scaling-up training, 300 for test (Test), and
hypotheses with the distortion restriction mentione®00 for the development of Pharaoh (Dev). Some
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Vocabulary Words Perplexity ol ‘

Fr | En | Fr | En | Dev | Test i S B T
4k | 5084 | 4039| 43k | 39k | 32.25| 31.92 L l-mommTEITTTE
6k | 6426 | 5058 | 64k | 59Kk | 30.81] 29.03 ot S
8k | 7377| 5716| 85k | 79k | 29.91| 28.94 ; : =
10k | 8252 | 6339 | 106k | 98k | 27.55| 27.09
12k | 9006 | 6861 | 127k | 118k | 27.19| 26.41 Figure 3: BLEU(%) versug-spectrum

Table 1: Statistics of the corpora. | P PSPRSRE—

i -
s

characteristics of the corpora are summarized in Ta- .
ble 1.

30
4000

4.2 Results

Based on the 4k training corpus, we test the per-

formance of the blended-spectrum string kernel in

LSR and MMR using BLEU score, with n increas-

ing from 2 to 7. Fig. 3 shows the results. It can be

found that the performance becomes stable whenA cknowledgements

reaches a certain value. Finally, we choose the 3-

spectrum for LSR, and the 5-spectrum for MMR. The authors ac_knowledge the support of the EU un-
Then we scale up the training set, and compare tﬁjeer the IST project No. FP6-033917.

performance of our models with Pharaoh in Fig. 4.

We can see that the LSR model performs almost §3¢ferences

well a.s I.DharaOh’ whose dlﬁgrgnces OT BLEU scor%- Cortes, M. Mohri, and J. Weston. 2005. A general re-

are within 0.5% when the training set is larger than gression technique for learning transductionsPiac.

6k. But MMR model performs worse than the base- of |ICML’05.

line. With the training set of 12k, it is outperformed

by Pharaoh by 3.5%.

Figure 4: BLEU(%) versus training set size

which we will leave the further exploration to future

P. Koehn. 2004. Pharaoh: A beam search decoder
for phrase-based statistical machine translation mod-
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