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Abstract 

 Contemporary parser research is, to a 
large extent, focused on statistical parsers 
and deep-unification-based parsers. This 
paper describes an alternative, hybrid ar-
chitecture in which an ATN-like parser, 
augmented by many preference tests, 
builds on the results of a fast chunker. 
The combination is as efficient as most 
stochastic parsers, and accuracy is close 
and continues to improve.  These results 
raise questions about the practicality of 
deep unification for symbolic parsing. 

1 Introduction 

The original goals of the RH parser were to obtain 
accurate parses where (a) application speed was 
needed, and (b) large amounts of annotated mate-
rial for a subject idiom were not available.  Addi-
tional goals that evolved were (c) that parses for 
particular documents could be brought to an almost 
arbitrary level of correctness for research purposes, 
by grammar correction, and (d) that information 
collected during parsing could be modified for an 
application with a modest amount of effort. Goal 
(a) ruled out the use of unification-based symbolic 
parsers, because deep unification is a relatively 
slow operation, no matter what amount of compu-
tational sophistication is employed. Until very re-
cently, goal (b) ruled out stochastic parsers, but 
new results (McClosky et al. 2006) suggest this 
may no longer be the case.  However, the "addi-
tional" goals still favor symbolic parsing.  

To meet these goals, the RH parser combines a 
very efficient shallow parser with an overlay parser 
that is "retro", in that the grammar is related to 
Augmented Transition Networks (Woods, 1970), 
operating on the shallow-parser output.  A major 
"augmentation" is a preference-scoring component.  

Section 2 below reviews the shallow parser 
used, and Section 3 describes the overlay parser.  
Some current results are presented in section 4.  

Section 5 examines some closely-related work, and 
Section 6 discusses some implications. 

2 The XIP Parser for English  

XIP is a robust parser developed by Xerox 
Research Center Europe.  It is actually a full parser 
that produces a tree of chunks, plus identification 
of (sometimes alternative) typed dependencies 
among the chunk heads  (Ait-Mokhtar et al. 2002, 
Gala 2004). But because the XIP dependency 
analyzer for English was incomplete when RH 
work began, and because classic parse trees are 
more convenient for discourse-related applications, 
we focused on the chunk output.  

XIP is astonishingly fast, contributing very little 
to RH parse time.  It consists of the XIP engine, 
plus language-specific grammars, each consisting 
of: (a) a finite state lexicon producing alternative 
tags and morphological analyses for each token, 
together with subcategorization, control and 
(some) semantic class features, (b) a part of speech 
tagger, and (c) conveniently expressed, layered 
rule sets that perform the following functions: 
- Lexicon extension, which adds words and 

adds or overrides feature information, 
- Lexical disambiguation (including use of the 

tagger to provide default assignments)   
- Multi-word identification for named entities, 

dates, short constructions, etc. 
- Chunking, obtaining basic chunks such as 

basic adjective, adverbial, noun and 
prepositional phrases. 

- Dependency Analysis (not used in RH)   
All rule sets have been extended within RH 

development except for the dependency rule sets..  

3   Overlay Parser 

The overlay parser builds on chunker output to 
produce a single tree (figure 1) providing syntactic 
categories and functions, heads, and head features.   
The output tree requires further processing to ob-
tain long distance dependency information, and 
make some unambiguous coordination adjustments 
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Figure 1. Output Parse Tree. * indicates head.  Mouseover shows head features

Some of this has already been done in a post-parse 
phase. The feasibility of such post-parse deepening 
(for a statistical parser) is demonstrated by Cahill 
et al (2004). 

The major parser components are a control, the 
ATN-like grammar networks, and collections of 
tests.  The control is invoked recursively to build 
non-chunk constituents by following grammar 
network paths and creating output networks. 

Figure 2 shows the arcs of an excerpt from a 
grammar network used to build a noun phrase. The 
Test labels on the arcs resemble specialized cate-
gories. The MetaOps (limited in the illustration to 
Prolog-like cuts) expedite processing by permitting 
or barring exploration of further ordered arcs 
originating at the same state. 

An output network, illustrated in figure 3, 
mirrors the full paths traversed in a grammar net- 

 
From 
 

To 
 

Test Syn 
fun 

Fin
al? 

Meta 
Op 

S1 S1 PREADV PRE No cut 
S1 S2 PRON HEAD Yes cut 
S1 S3 PROPER HEAD Yes cut 
S1 S4 

S7 
BASENP HEAD Yes cut 

//After pronoun 
S2 - REFL REFL Yes cut 
S2 - PEOPLE APPS Yes cut 

Figure 2. Some arcs of grammar network for GNP 
 

From To Cat Synfun Ref 
OSa OSb NP HEAD NPChunk 

(The park) 
OSb OSc PP NMOD Final state of 

 PP net for 
(in Paris) 

States Score Final? 
Osa 0 No 
Osb 0 Yes 
OSc 1 Yes 

Figure 3. Output network for "The park in Paris" 

work by one invocation of the control. The arcs 
refer either to chunks or to final states of other out-
put networks. Output networks do not contain cy-
cles or converging arcs, so states represent unique 
paths. They carry head and other path information, 
and a preference score.  The final parser output is a 
single tree, derived from a highest scoring path of a 
topmost output network.  Ties are broken by low 
attach considerations.  

Each invocation of the control is given a 
grammar network entry state and a desired 
constituent category. After initializing a new 
output network, the arcs from the given entry state 
are followed. Processing an arc may begin with an 
optional pretest. If that succeeds, or there is no 
pretest, a constructive test follows.  The tests are 
indexed by grammar network test labels, and are 
expressed as blocks of procedural code, for initial 
flexibility in determining the necessary checks.  

Pretests include fast feasibility checks, and con-
texted checks of consistency of the potential new 
constituent with the current output network path. 
Constructive tests can make additional feasibility 
checks.  If these checks succeed, either a chunk is 
returned, or the control is reentered to try to build a 
subordinate output network. Results are cached, to 
avoid repeated testing. 

After a chunk or subordinate network ON' is 
returned from a constructive test, one new arc Ai is 
added to the current output network ON to 
represent each full path through ON'.  All added 
arcs have the same origin state in ON, but unique 
successor states and associated preference scores.   
The preference score is the sum of the score at the 
common origin state, plus the score of the repre-
sented path in ON', plus a contexted score for the 
alternative within ON.  The latter is one of <-1, 0, 
+1>, and expresses the consistency of Ai with the 
current path with respect to dependency, coordina-
tion and apposition. Structural and punctuation 
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aspects are also considered. Preference tests are 
indexed by syntactic category or syntactic func-
tion, and are organized for speed.  Most tests are 
independent of Ai length, and can be applied once 
and the results assumed for all Ai.   

Before a completed output network is returned, 
paths ending at those lower scoring final states 
which cannot ultimately be optimal are pruned. 
Such pruning is critical to efficiency. 

4 Indicative Current Results 

To provide a snapshot of current RH parser 
performance, we compare its current speed and 
accuracy directly to those of a widely used 
statistical parser, Collins model 3 (Collins, 1999), 
and indirectly to two other parsers.  Wall Street 
Journal section 23 of the Penn Treebank (Marcus 
et al. 1994) was used in all experiments. 

"Training" of the RH parser on  the Wall Street 
Journal area (beyond general RH development) 
occupied about 8 weeks, and involved testing and 
(non-exhaustively) correcting the parser using two 
WSJ texts: (a) section 00, and (b) 700 sentences of 
section 23 used as a dependency bank by King et 
al. (2003).  The latter were used early in RH devel-
opment, and so were included in the training set. 

4.1 Comparative Speed 

Table 1 compares RH parser speed with Collins 
model 3, using the same CPU, showing the elapsed 
times for the entire 2416-line section 23.   

The results are then extrapolated to two other 
parsers, based on published comparisons with 
Collins. The extrapolation to XLE, a mature 
unification-based parser that uses a disambiguating 
statistical post-processor, is drawn from Kaplan et 
al. (2004).  Results are given for both the full 
grammar and a reduced version that omits less 
likely rules.  The second comparison is with the 
fast stochastic parser by Sagae and Lavie (2005).  

Summarizing these results, RH is much faster 
than Collins model 3 and the reduced version of 
XLE, but a bit slower than Sagae-Lavie. 

The table also compares coverage, as percent-
ages of non-parsed sentences. For RH this was 
10% for the test set discussed below, which did not 
contain any training sentences, and was 10.4% for 
the full section 23.  This is reasonable for a sym-
bolic parser with limited training on an idiom, and 
better than the 21% reported for XLE English.  

 Time No full parse 
Sagae/ Lavie ~ 4 min 1.1% 
RH parser 5 min 10%  
Collins m3 16 min  .6% 
XLE full ~80 minutes ~21% 
XLE reduced ~24 minutes unknown 
Table 1: Speeds and Extrapolated speeds 

 
 Fully 

accurate 
F-score Avg 

cross  
brackets 

Sagae/Lavie unknwn 86% unknwn 
Collins Lbl 33.6% 88.2% 1.05 
CollinsNoLbl 35.4% 89.4 % 1.05 
RH NoLbl 46% 86 % .59 
Table 2. Accuracy Comparison    

4.2 Comparative Acccuracy 

Table 2 primarily compares the accuracy of the 
Collins model 3 and RH parsers.  The entries show 
the proportion of fully accurate parses, the f-score 
average of bracket precision and recall, and 
average crossing brackets,  as obtained by EVALB 
(Sekine and Collins, 1997). The RH f-score is 
currently somewhat lower, but the proportion of 
fully correct parses is significantly higher. 

This data may be biased toward RH, because, of 
necessity, the test set used is smaller, and a 
different bracketing method is used. For Collins 
model 3, the entries show both labeled and 
unlabeled results for all of WSJ section 23.  The 
Collins results were generated from the bracketed 
output and Penn Treebank gold standard files 
provided in a recent Collins download.  

But because RH does not generate treebank style 
tags, the RH entries reflect a test only on a random 
sample of 100 sentences from the 1716 sentences 
of section 23 not used as "training" data, using a 
different, available, gold standard creation and 
bracketing method. In that method (Newman, 
2005), parser results are produced in a "TextTree" 
form, initially developed for fast visual review of 
parser output, and then edited to obtain gold 
standard trees. Both sets of trees are then bracketed 
by a script to obtain, e.g., 

{An automatic transformation 
          {of parse trees}  
          {to text trees}} 
{can expedite  
           {parser output reviews}} 
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For non-parsed sentences in the parser outputs, 
brackets are applied to the chunks.  EVALB is then 
used to compare the two sets of bracketed results.  

Accuracy for XLE is not given, because the 
results reported by Kaplan et al. (2004) compare 
labeled functional dependencies drawn from LFG 
f-structures with equivalents derived automatically 
from Collins outputs. (All f-scores are <= 80%). 

5 Related Work 

Several efforts combine a chunker with a 
dependency analyzer operating on the chunks, 
including XIP itself. The XIP dependency analyzer 
is very fast, but we do not have current coverage or 
accuracy data for XIP English.   

Other related hybrids do not build on chunks, 
but, rather, adjust full parsers to  require or prefer 
results consistent with chunk boundaries. Daum et 
al. (2003) use chunks to constrain a WCDG 
grammar for German, reducing parse times by 
about 2/3 (but the same results are obtained using a 
tagger alone). They estimate that an ideal chunker 
would reduce times by about 75%. No absolute 
numbers are given. Also, Frank et al. (2003) use a 
German topological field identifier to constrain an 
HPSG  parser.  They show speedups of about 2.2 
relative to a tagged baseline, on a corpus whose 
average sentence length is about 9 words. 

6 Discussion 

We have shown that the RH hybrid can compete 
with stochastic parsers in efficiency and, with only 
limited "training" on an idiom, can approach them 
in accuracy.  Also, the test organization prevents 
speed from degrading as the parser is improved.  

The method is significant in itself, but also leads 
to questions about the advantages of deep-
unification-based parsers for practical NLP. These 
parsers are relatively slow, and their large numbers 
of results require disambiguation, e.g., by corpus-
trained back-ends.  They do provide more informa-
tion than RH, but there is much evidence that the 
additional information can be obtained by rapid 
analysis of a single best parse.  Also, it has never 
been shown that their elegant notations actually 
facilitate grammar development and maintenance. 
Finally, while unification grammars are reversible 
for use in generation, good generation methods 
remain an open research problem.  
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