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Abstract 

Semantic inference is a key component 
for advanced natural language under-
standing. However, existing collections of 
automatically acquired inference rules 
have shown disappointing results when 
used in applications such as textual en-
tailment and question answering. This pa-
per presents ISP, a collection of methods 
for automatically learning admissible ar-
gument values to which an inference rule 
can be applied, which we call inferential 
selectional preferences, and methods for 
filtering out incorrect inferences. We 
evaluate ISP and present empirical evi-
dence of its effectiveness. 

1 Introduction 

Semantic inference is a key component for ad-
vanced natural language understanding. Several 
important applications are already relying heavily 
on inference, including question answering 
(Moldovan et al. 2003; Harabagiu and Hickl 2006), 
information extraction (Romano et al. 2006), and 
textual entailment (Szpektor et al. 2004). 

In response, several researchers have created re-
sources for enabling semantic inference. Among 
manual resources used for this task are WordNet 
(Fellbaum 1998) and Cyc (Lenat 1995). Although 
important and useful, these resources primarily 
contain prescriptive inference rules such as “X di-
vorces Y ⇒ X married Y”. In practical NLP appli-
cations, however, plausible inference rules such as 
“X married Y” ⇒ “X dated Y” are very useful. This, 
along with the difficulty and labor-intensiveness of 
generating exhaustive lists of rules, has led re-

searchers to focus on automatic methods for build-
ing inference resources such as inference rule 
collections (Lin and Pantel 2001; Szpektor et al. 
2004) and paraphrase collections (Barzilay and 
McKeown 2001). 

Using these resources in applications has been 
hindered by the large amount of incorrect infer-
ences they generate, either because of altogether 
incorrect rules or because of blind application of 
plausible rules without considering the context of 
the relations or the senses of the words. For exam-
ple, consider the following sentence: 
Terry Nichols was charged by federal prosecutors for murder 
and conspiracy in the Oklahoma City bombing. 

and an inference rule such as: 
 X is charged by Y ⇒ Y announced the arrest of X (1) 

Using this rule, we can infer that “federal prosecu-
tors announced the arrest of Terry Nichols”. How-
ever, given the sentence: 
Fraud was suspected when accounts were charged by CCM 
telemarketers without obtaining consumer authorization. 

the plausible inference rule (1) would incorrectly 
infer that “CCM telemarketers announced the ar-
rest of accounts”. 

This example depicts a major obstacle to the ef-
fective use of automatically learned inference 
rules. What is missing is knowledge about the ad-
missible argument values for which an inference 
rule holds, which we call Inferential Selectional 
Preferences. For example, inference rule (1) 
should only be applied if X is a Person and Y is a 
Law Enforcement Agent or a Law Enforcement 
Agency. This knowledge does not guarantee that 
the inference rule will hold, but, as we show in this 
paper, goes a long way toward filtering out errone-
ous applications of rules. 

In this paper, we propose ISP, a collection of 
methods for learning inferential selectional prefer-
ences and filtering out incorrect inferences. The 
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presented algorithms apply to any collection of 
inference rules between binary semantic relations, 
such as example (1). ISP derives inferential selec-
tional preferences by aggregating statistics of in-
ference rule instantiations over a large corpus of 
text. Within ISP, we explore different probabilistic 
models of selectional preference to accept or reject 
specific inferences. We present empirical evidence 
to support the following main contribution: 

Claim: Inferential selectional preferences can be 
automatically learned and used for effectively fil-
tering out incorrect inferences. 

2 Previous Work 

Selectional preference (SP) as a foundation for 
computational semantics is one of the earliest top-
ics in AI and NLP, and has its roots in (Katz and 
Fodor 1963).  Overviews of NLP research on this 
theme are (Wilks and Fass 1992), which includes 
the influential theory of Preference Semantics by 
Wilks, and more recently (Light and Greiff 2002). 

Rather than venture into learning inferential 
SPs, much previous work has focused on learning 
SPs for simpler structures. Resnik (1996), the 
seminal paper on this topic, introduced a statistical 
model for learning SPs for predicates using an un-
supervised method. 

Learning SPs often relies on an underlying set of 
semantic classes, as in both Resnik’s and our ap-
proach. Semantic classes can be specified manu-
ally or derived automatically. Manual collections 
of semantic classes include the hierarchies of 
WordNet (Fellbaum 1998), Levin verb classes 
(Levin 1993), and FrameNet (Baker et al. 1998). 
Automatic derivation of semantic classes can take 
a variety of approaches, but often uses corpus 
methods and the Distributional Hypothesis (Harris 
1964) to automatically cluster similar entities into 
classes, e.g. CBC (Pantel and Lin 2002). In this 
paper, we experiment with two sets of semantic 
classes, one from WordNet and one from CBC. 

Another thread related to our work includes ex-
tracting from text corpora paraphrases (Barzilay 
and McKeown 2001) and inference rules, e.g. 
TEASE1 (Szpektor et al. 2004) and DIRT (Lin and 
Pantel 2001). While these systems differ in their 
approaches, neither provides for the extracted in-

                                                      
1 Some systems refer to inferences they extract as entail-
ments; the two terms are sometimes used interchangeably. 

ference rules to hold or fail based on SPs. Zanzotto 
et al. (2006) recently explored a different interplay 
between SPs and inferences. Rather than examine 
the role of SPs in inferences, they use SPs of a par-
ticular type to derive inferences.  For instance the 
preference of win for the subject player, a nomi-
nalization of play, is used to derive that “win ⇒ 
play”. Our work can be viewed as complementary 
to the work on extracting semantic inferences and 
paraphrases, since we seek to refine when a given 
inference applies, filtering out incorrect inferences. 

3 Selectional Preference Models 

The aim of this paper is to learn inferential selec-
tional preferences for filtering inference rules. 

Let pi ⇒ pj be an inference rule where p is a bi-
nary semantic relation between two entities x and 
y. Let 〈x, p, y〉 be an instance of relation p. 

Formal task definition: Given an inference rule 
 pi ⇒ pj and the instance 〈x, pi, y〉, our task is to 
determine if 〈x, pj, y〉 is valid. 

Consider the example in Section 1 where we 
have the inference rule “X is charged by Y” ⇒ “Y 
announced the arrest of X”. Our task is to auto-
matically determine that “federal prosecutors an-
nounced the arrest of Terry Nichols” (i.e., 
〈Terry Nichols, pj, federal prosecutors〉) is valid 
but that “CCM telemarketers announced the arrest 
of accounts” is invalid. 

Because the semantic relations p are binary, the 
selectional preferences on their two arguments may 
be either considered jointly or independently. For 
example, the relation p = “X is charged by Y” 
could have joint SPs: 
 〈Person, Law Enforcement Agent〉 
 〈Person, Law Enforcement Agency〉  (2) 
 〈Bank Account, Organization〉 
or independent SPs: 
 〈Person, *〉 
 〈*, Organization〉 (3) 
 〈*, Law Enforcement Agent〉 
This distinction between joint and independent 
selectional preferences constitutes the difference 
between the two models we present in this section. 

The remainder of this section describes the ISP 
approach. In Section 3.1, we describe methods for 
automatically determining the semantic contexts of 
each single relation’s selectional preferences. Sec-
tion 3.2 uses these for developing our inferential 
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selectional preference models. Finally, we propose 
inference filtering algorithms in Section 3.3. 

3.1 Relational Selectional Preferences 

Resnik (1996) defined the selectional preferences 
of a predicate as the semantic classes of the words 
that appear as its arguments. Similarly, we define 
the relational selectional preferences of a binary 
semantic relation pi as the semantic classes C(x) of 
the words that can be instantiated for x and as the 
semantic classes C(y) of the words that can be in-
stantiated for y. 

The semantic classes C(x) and C(y) can be ob-
tained from a conceptual taxonomy as proposed in 
(Resnik 1996), such as WordNet, or from the 
classes extracted from a word clustering algorithm 
such as CBC (Pantel and Lin 2002). For example, 
given the relation “X is charged by Y”, its rela-
tional selection preferences from WordNet could 
be {social_group, organism, state…} for X and 
{authority, state, section…} for Y. 

Below we propose joint and independent mod-
els, based on a corpus analysis, for automatically 
determining relational selectional preferences. 

Model 1: Joint Relational Model (JRM) 

Our joint model uses a corpus analysis to learn SPs 
for binary semantic relations by considering their 
arguments jointly, as in example (2). 

Given a large corpus of English text, we first 
find the occurrences of each semantic relation p. 
For each instance 〈x, p, y〉, we retrieve the sets C(x) 
and C(y) of the semantic classes that x and y be-
long to and accumulate the frequencies of the tri-
ples 〈c(x), p, c(y)〉, where c(x) ∈ C(x) and  
c(y) ∈ C(y)2. 

Each triple 〈c(x), p, c(y)〉 is a candidate selec-
tional preference for p. Candidates can be incorrect 
when: a) they were generated from the incorrect 
sense of a polysemous word; or b) p does not hold 
for the other words in the semantic class. 

Intuitively, we have more confidence in a par-
ticular candidate if its semantic classes are closely 
associated given the relation p. Pointwise mutual 
information (Cover and Thomas 1991) is a com-
monly used metric for measuring this association 
strength between two events e1 and e2: 

                                                      
2 In this paper, the semantic classes C(x) and C(y) are ex-
tracted from WordNet and CBC (described in Section 4.2).  
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where |x, p, y| denotes the frequency of observing 
the instance 〈x, p, y〉 and |C(w)| denotes the number 
of classes to which word w belongs. |C(w)| distrib-
utes w’s mass equally to all of its senses cw. 

Model 2: Independent Relational Model (IRM) 

Because of sparse data, our joint model can miss 
some correct selectional preference pairs. For ex-
ample, given the relation  
 Y announced the arrest of X 

we may find occurrences from our corpus of the 
particular class “Money Handler” for X and “Law-
yer” for Y, however we may never see both of 
these classes co-occurring even though they would 
form a valid relational selectional preference. 

To alleviate this problem, we propose a second 
model that is less strict by considering the argu-
ments of the binary semantic relations independ-
ently, as in example (3). 

Similarly to JRM, we extract each instance  
〈x, p, y〉 of each semantic relation p and retrieve the 
set of semantic classes C(x) and C(y) that x and y 
belong to, accumulating the frequencies of the tri-
ples 〈c(x), p, *〉 and 〈*, p, c(y)〉, where  
c(x) ∈ C(x) and c(y) ∈ C(y). 

All tuples 〈c(x), p, *〉 and 〈*, p, c(y)〉 are candi-
date selectional preferences for p. We rank candi-
dates by the probability of the semantic class given 
the relation p, according to Equations 3.3. 

                                                      
3 cx and cy are shorthand for c(x) and c(y) in our equations. 
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3.2 Inferential Selectional Preferences 

Whereas in Section 3.1 we learned selectional 
preferences for the arguments of a relation p, in 
this section we learn selectional preferences for the 
arguments of an inference rule pi ⇒ pj. 

Model 1: Joint Inferential Model (JIM) 

Given an inference rule pi ⇒ pj, our joint model 
defines the set of inferential SPs as the intersection 
of the relational SPs for pi and pj, as defined in the 
Joint Relational Model (JRM). For example, sup-
pose relation pi = “X is charged by Y” gives the 
following SP scores under the JRM: 
 〈Person, pi, Law Enforcement Agent〉 = 1.45 
 〈Person, pi, Law Enforcement Agency〉 = 1.21  
 〈Bank Account, pi, Organization〉 = 0.97 

and that pj = “Y announced the arrest of X” gives 
the following SP scores under the JRM: 
 〈Law Enforcement Agent, pj, Person〉 = 2.01 
 〈Reporter, pj, Person〉 = 1.98  
 〈Law Enforcement Agency, pj, Person〉 = 1.61 

The intersection of the two sets of SPs forms the 
candidate inferential SPs for the inference pi ⇒ pj: 
 〈Law Enforcement Agent, Person〉 
 〈Law Enforcement Agency, Person〉 

We rank the candidate inferential SPs according 
to three ways to combine their relational SP scores, 
using the minimum, maximum, and average of the 
SPs. For example, for 〈Law Enforcement Agent, 
Person〉, the respective scores would be 1.45, 2.01, 
and 1.73. These different ranking strategies pro-
duced nearly identical results in our experiments, 
as discussed in Section 5. 

Model 2: Independent Inferential Model (IIM) 

Our independent model is the same as the joint 
model above except that it computes candidate in-
ferential SPs using the Independent Relational 
Model (IRM) instead of the JRM. Consider the 
same example relations pi and pj from the joint 
model and suppose that the IRM gives the follow-
ing relational SP scores for pi: 
 〈Law Enforcement Agent, pi, *〉 = 3.43 
 〈*, pi, Person〉 = 2.17  
 〈*, pi, Organization〉 = 1.24 

and the following relational SP scores for pj: 
 〈*, pj, Person〉 = 2.87 
 〈Law Enforcement Agent, pj, *〉 = 1.92  
 〈Reporter, pj, *〉 = 0.89 

The intersection of the two sets of SPs forms the 
candidate inferential SPs for the inference pi ⇒ pj: 
 〈Law Enforcement Agent, *〉 
 〈*, Person〉  

We use the same minimum, maximum, and av-
erage ranking strategies as in JIM. 

3.3 Filtering Inferences 

Given an inference rule pi ⇒ pj and the instance  
〈x, pi, y〉, the system’s task is to determine whether 
〈x, pj, y〉 is valid. Let C(w) be the set of semantic 
classes c(w) to which word w belongs. Below we 
present three filtering algorithms which range from 
the least to the most permissive: 
• ISP.JIM, accepts the inference 〈x, pj, y〉 if the 

inferential SP 〈c(x), pj, c(y)〉 was admitted by the 
Joint Inferential Model for some c(x) ∈ C(x) and 
c(y) ∈ C(y). 

• ISP.IIM.∧, accepts the inference 〈x, pj, y〉 if the 
inferential SPs 〈c(x), pj, *〉 AND 〈*, pj, c(y)〉 were 
admitted by the Independent Inferential Model 
for some c(x) ∈ C(x) and c(y) ∈ C(y) . 

• ISP.IIM.∨, accepts the inference 〈x, pj, y〉 if the 
inferential SP 〈c(x), pj, *〉 OR 〈*, pj, c(y)〉 was 
admitted by the Independent Inferential Model 
for some c(x) ∈ C(x) and c(y) ∈ C(y) . 

Since both JIM and IIM use a ranking score in 
their inferential SPs, each filtering algorithm can 
be tuned to be more or less strict by setting an ac-
ceptance threshold on the ranking scores or by se-
lecting only the top τ percent highest ranking SPs. 
In our experiments, reported in Section 5, we 
tested each model using various values of τ. 

4 Experimental Methodology 

This section describes the methodology for testing 
our claim that inferential selectional preferences 
can be learned to filter incorrect inferences. 

Given a collection of inference rules of the form 
pi ⇒ pj, our task is to determine whether a particu-
lar instance 〈x, pj, y〉 holds given that 〈x, pi, y〉 
holds4. In the next sections, we describe our collec-
tion of inference rules, the semantic classes used 
for forming selectional preferences, and evaluation 
criteria for measuring the filtering quality. 
                                                      

4 Recall that the inference rules we consider in this paper are 
not necessary strict logical inference rules, but plausible in-
ference rules; see Section 3. 
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4.1 Inference Rules 

Our models for learning inferential selectional 
preferences can be applied to any collection of in-
ference rules between binary semantic relations. In 
this paper, we focus on the inference rules con-
tained in the DIRT resource (Lin and Pantel 2001). 
DIRT consists of over 12 million rules which were 
extracted from a 1GB newspaper corpus (San Jose 
Mercury, Wall Street Journal and AP Newswire 
from the TREC-9 collection). For example, here 
are DIRT’s top 3 inference rules for “X solves Y”: 
 “Y is solved by X”, “X resolves Y”, “X finds a solution to Y” 

4.2 Semantic Classes 

The choice of semantic classes is of great impor-
tance for selectional preference. One important 
aspect is the granularity of the classes. Too general 
a class will provide no discriminatory power while 
too fine-grained a class will offer little generaliza-
tion and apply in only extremely few cases. 

The absence of an attested high-quality set of 
semantic classes for this task makes discovering 
preferences difficult. Since many of the criteria for 
developing such a set are not even known, we de-
cided to experiment with two very different sets of 
semantic classes, in the hope that in addition to 
learning semantic preferences, we might also un-
cover some clues for the eventual decisions about 
what makes good semantic classes in general. 

Our first set of semantic classes was directly ex-
tracted from the output of the CBC clustering algo-
rithm (Pantel and Lin 2002). We applied CBC to 
the TREC-9 and TREC-2002 (Aquaint) newswire 
collections consisting of over 600 million words. 
CBC generated 1628 noun concepts and these were 
used as our semantic classes for SPs. 

Secondly, we extracted semantic classes from 
WordNet 2.1 (Fellbaum 1998). In the absence of 
any externally motivated distinguishing features 
(for example, the Basic Level categories from Pro-
totype Theory, developed by Eleanor Rosch 
(1978)), we used the simple but effective method 
of manually truncating the noun synset hierarchy5 
and considering all synsets below each cut point as 
part of the semantic class at that node. To select 
the cut points, we inspected several different hier-
archy levels and found the synsets at a depth of 4 

                                                      
5 Only nouns are considered since DIRT semantic relations 
connect only nouns. 

to form the most natural semantic classes. Since 
the noun hierarchy in WordNet has an average 
depth of 12, our truncation created a set of con-
cepts considerably coarser-grained than WordNet 
itself. The cut produced 1287 semantic classes, a 
number similar to the classes in CBC. To properly 
test WordNet as a source of semantic classes for 
our selectional preferences, we would need to ex-
periment with different extraction algorithms. 

4.3 Evaluation Criteria 

The goal of the filtering task is to minimize false 
positives (incorrectly accepted inferences) and 
false negatives (incorrectly rejected inferences). A 
standard methodology for evaluating such tasks is 
to compare system filtering results with a gold 
standard using a confusion matrix. A confusion 
matrix captures the filtering performance on both 
correct and incorrect inferences: 

  
where A represents the number of correct instances 
correctly identified by the system, D represents the 
number of incorrect instances correctly identified 
by the system, B represents the number of false 
positives and C represents the number of false 
negatives. To compare systems, three key meas-
ures are used to summarize confusion matrices: 
• Sensitivity, defined as CA

A
+ , captures a filter’s 

probability of accepting correct inferences; 
• Specificity, defined as DB

D
+ , captures a filter’s 

probability of rejecting incorrect inferences; 
• Accuracy, defined as DCBA

DA
+++

+ , captures the 
probability of a filter being correct. 

5 Experimental Results 

In this section, we provide empirical evidence to 
support the main claim of this paper. 

Given a collection of DIRT inference rules of 
the form pi ⇒ pj, our experiments, using the meth-
odology of Section 4, evaluate the capability of our 
ISP models for determining if 〈x, pj, y〉 holds given 
that 〈x, pi, y〉 holds. 
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5.1 Experimental Setup 

Model Implementation 
For each filtering algorithm in Section 3.3, ISP.JIM, 
ISP.IIM.∧, and ISP.IIM.∨, we trained their probabil-
istic models using corpus statistics extracted from 
the 1999 AP newswire collection (part of the 
TREC-2002 Aquaint collection) consisting of ap-
proximately 31 million words. We used the Mini-
par parser (Lin 1993) to match DIRT patterns in 
the text. This permits exact matches since DIRT 
inference rules are built from Minipar parse trees. 

For each system, we experimented with the dif-
ferent ways of combining relational SP scores: 
minimum, maximum, and average (see Section 
3.2). Also, we experimented with various values 
for the τ parameter described in Section 3.3. 

Gold Standard Construction 
In order to compute the confusion matrices de-
scribed in Section 4.3, we must first construct a 
representative set of inferences and manually anno-
tate them as correct or incorrect. 

We randomly selected 100 inference rules of the 
form pi ⇒ pj from DIRT. For each pattern pi, we 
then extracted its instances from the Aquaint 1999 
AP newswire collection (approximately 22 million 
words), and randomly selected 10 distinct in-
stances, resulting in a total of 1000 instances. For 
each instance of pi, applying DIRT’s inference rule 
would assert the instance 〈x, pj, y〉. Our evaluation 
tests how well our models can filter these so that 
only correct inferences are made. 

To form the gold standard, two human judges 
were asked to tag each instance 〈x, pj, y〉 as correct 
or incorrect. For example, given a randomly se-
lected inference rule “X is charged by Y ⇒ Y an-

nounced the arrest of X” and the instance “Terry 
Nichols was charged by federal prosecutors”, the 
judges must determine if the instance 〈federal 
prosecutors, Y announced the arrest of X, Terry 
Nichols〉 is correct. The judges were asked to con-
sider the following two criteria for their decision: 
• 〈x, pj, y〉 is a semantically meaningful instance; 
• The inference pi ⇒ pj holds for this instance. 
Judges found that annotation decisions can range 
from trivial to difficult. The differences often were 
in the instances for which one of the judges fails to 
see the right context under which the inference 
could hold. To minimize disagreements, the judges 
went through an extensive round of training. 

To that end, the 1000 instances 〈x, pj, y〉 were 
split into DEV and TEST sets, 500 in each. The 
two judges trained themselves by annotating DEV 
together. The TEST set was then annotated sepa-
rately to verify the inter-annotator agreement and 
to verify whether the task is well-defined. The 
kappa statistic (Siegel and Castellan Jr. 1988) was 
κ = 0.72. For the 70 disagreements between the 
judges, a third judge acted as an adjudicator. 

Baselines 
We compare our ISP algorithms to the following 
baselines: 
• B0: Rejects all inferences; 
• B1: Accepts all inferences; 
• Rand: Randomly accepts or rejects inferences. 
One alternative to our approach is admit instances 
on the Web using literal search queries. We inves-
tigated this technique but discarded it due to subtle 
yet critical issues with pattern canonicalization that 
resulted in rejecting nearly all inferences. How-
ever, we are investigating other ways of using Web 
corpora for this task. 

Table 1. Filtering quality of best performing systems according to the evaluation criteria defined in Section 4.3 on 
the TEST set – the reported systems were selected based on the Accuracy criterion on the DEV set. 

PARAMETERS SELECTED FROM DEV SET 
SYSTEM 

RANKING STRATEGY τ (%) 
SENSITIVITY 
(95% CONF) 

SPECIFICITY 
(95% CONF) 

ACCURACY 
(95% CONF) 

B0 - - 0.00±0.00 1.00±0.00 0.50±0.04 
B1 - - 1.00±0.00 0.00±0.00 0.49±0.04 

Random - - 0.50±0.06 0.47±0.07 0.50±0.04 
ISP.JIM maximum 100 0.17±0.04 0.88±0.04 0.53±0.04 
ISP.IIM.∧ maximum 100 0.24±0.05 0.84±0.04 0.54±0.04 CBC 
ISP.IIM.∨ maximum 90 0.73±0.05 0.45±0.06 0.59±0.04† 
ISP.JIM minimum 40 0.20±0.06 0.75±0.06 0.47±0.04 
ISP.IIM.∧ minimum 10 0.33±0.07 0.77±0.06 0.55±0.04 WordNet 
ISP.IIM.∨ minimum 20 0.87±0.04 0.17±0.05 0.51±0.05 

† Indicates statistically significant results (with 95% confidence) when compared with all baseline systems using pairwise t-test. 
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5.2 Filtering Quality 

For each ISP algorithm and parameter combina-
tion, we constructed a confusion matrix on the de-
velopment set and computed the system sensitivity, 
specificity and accuracy as described in Section 
4.3. This resulted in 180 experiments on the devel-
opment set. For each ISP algorithm and semantic 
class source, we selected the best parameter com-
binations according to the following criteria: 
• Accuracy: This system has the best overall abil-

ity to correctly accept and reject inferences. 
• 90%-Specificity: Several formal semantics and 

textual entailment researchers have commented 
that inference rule collections like DIRT are dif-
ficult to use due to low precision. Many have 
asked for filtered versions that remove incorrect 
inferences even at the cost of removing correct 
inferences. In response, we show results for the 
system achieving the best sensitivity while main-
taining at least 90% specificity on the DEV set. 

We evaluated the selected systems on the TEST 
set. Table 1 summarizes the quality of the systems 
selected according to the Accuracy criterion. The 
best performing system, ISP.IIM.∨, performed  sta-
tistically significantly better than all three base-
lines. The best system according to the 90%-
Specificity criteria was ISP.JIM, which coinciden-
tally has the highest accuracy for that model as 
shown in Table 16. This result is very promising 
for researchers that require highly accurate infer-
ence rules since they can use ISP.JIM and expect to 
recall 17% of the correct inferences by only ac-
cepting false positives 12% of the time. 

Performance and Error Analysis 

Figures 1a) and 1b) present the full confusion ma-
trices for the most accurate and highly specific sys-
tems, with both systems selected on the DEV set. 
The most accurate system was ISP.IIM.∨, which is 
the most permissive of the algorithms. This sug-

                                                      
6 The reported sensitivity of ISP.Joint in Table 1 is below 
90%, however it achieved 90.7% on the DEV set. 

gests that a larger corpus for learning SPs may be 
needed to support stronger performance on the 
more restrictive methods. The system in Figure 
1b), selected for maximizing sensitivity while 
maintaining high specificity, was 70% correct in 
predicting correct inferences. 

Figure 2 illustrates the ROC curve for all our 
systems and parameter combinations on the TEST 
set. ROC curves plot the true positive rate against 
the false positive rate. The near-diagonal line plots 
the three baseline systems. 

Several trends can be observed from this figure. 
First, systems using the semantic classes from 
WordNet tend to perform less well than systems 
using CBC classes. As discussed in Section 4.2, we 
used a very simplistic extraction of semantic 
classes from WordNet. The results in Figure 2 
serve as a lower bound on what could be achieved 
with a better extraction from WordNet. Upon in-
spection of instances that WordNet got incorrect 
but CBC got correct, it seemed that CBC had a 
much higher lexical coverage than WordNet. For 
example, several of the instances contained proper 
names as either the X or Y argument (WordNet has 
poor proper name coverage). When an argument is 
not covered by any class, the inference is rejected. 

Figure 2 also illustrates how our three different 
ISP algorithms behave. The strictest filters, ISP.JIM 
and ISP.IIM.∧, have the poorest overall perform-
ance but, as expected, have a generally very low 
rate of false positives. ISP.IIM.∨, which is a much 
more permissive filter because it does not require 
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Figure 1. Confusion matrices for a) ISP.IIM.∨ – best 
Accuracy; and b) ISP.JIM – best 90%-Specificity.
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both arguments of a relation to match, has gener-
ally many more false positives but has an overall 
better performance. 

We did not include in Figure 2 an analysis of the 
minimum, maximum, and average ranking strate-
gies presented in Section 3.2 since they generally 
produced nearly identical results. 

For the most accurate system, ISP.IIM.∨, we ex-
plored the impact of the cutoff threshold τ on the 
sensitivity, specificity, and accuracy, as shown in 
Figure 3. Rather than step the values by 10% as we 
did on the DEV set, here we stepped the threshold 
value by 2% on the TEST set. The more permis-
sive values of τ increase sensitivity at the expense 
of specificity. Interestingly, the overall accuracy 
remained fairly constant across the entire range of 
τ, staying within 0.05 of the maximum of 0.62 
achieved at τ=30%. 

Finally, we manually inspected several incorrect 
inferences that were missed by our filters. A com-
mon source of errors was due to the many incorrect 
“antonymy” inference rules generated by DIRT, 
such as “X is rejected in Y”⇒“X is accepted in Y”. 
This recognized problem in DIRT occurs because 
of the distributional hypothesis assumption used to 
form the inference rules. Our ISP algorithms suffer 
from a similar quandary since, typically, antony-
mous relations take the same sets of arguments for 
X (and Y). For these cases, ISP algorithms learn 
many selectional preferences that accept the same 
types of entities as those that made DIRT learn the 
inference rule in the first place, hence ISP will not 
filter out many incorrect inferences. 

6 Conclusion 

We presented algorithms for learning what we call 
inferential selectional preferences, and presented 

evidence that learning selectional preferences can 
be useful in filtering out incorrect inferences. Fu-
ture work in this direction includes further explora-
tion of the appropriate inventory of semantic 
classes used as SP’s. This work constitutes a step 
towards better understanding of the interaction of 
selectional preferences and inferences, bridging 
these two aspects of semantics. 
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Figure 3. ISP.IIM.∨ (Best System)’s performance 
variation over different values for the τ threshold. 
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