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Abstract

Assessing learning progress is a critical
step in language learning applications and
experiments. In word learning, for exam-
ple, one important type of assessment is
a definition production test, in which sub-
jects are asked to produce a short defini-
tion of the word being learned. In current
practice, each free response is manually
scored according to how well its mean-
ing matches the target definition. Manual
scoring is not only time-consuming, but
also limited in its flexibility and ability to
detect partial learning effects.

This study describes an effective auto-
matic method for scoring free responses
to definition production tests. The algo-
rithm compares the text of the free re-
sponse to the text of a reference definition
using a statistical model of text semantic
similarity that uses Markov chains on a
graph of individual word relations. The
model can take advantage of both corpus-
and knowledge-based resources. Evalu-
ated on a new corpus of human-judged
free responses, our method achieved sig-
nificant improvements over random and
cosine baselines in both rank correlation
and label error.

Introduction

}@cs.cmu.edu

tice of language learning. For example, intelligent
Computer Assisted Language Learning (CALL) sys-
tems are being developed that can automatically tai-
lor lessons and questions to the needs of individual
students (Heilman et al., 2006). One critical task
that language tutors, word learning experiments, and
related applications have in common is assessing the
learning progress of the student or experiment sub-
ject during the course of the session.

When the task is learning new vocabulary, a vari-
ety of tests have been developed to measure word
learning progress. Some tests, such as multiple-
choice selection of a correct synonym or cloze com-
pletion, are relatively passive. In production tests,
on the other hand, students are asked to write or say
a short phrase or sentence that uses the word being
learned, called thearget word in a specified way.

In one important type of production test, called a
definition productiortest, the subject is asked to de-
scribe the meaning of the target word, as they under-
stand it at that point in the session. The use of such
tests has typically required a teacher or researcher
to manually score each response by judging its sim-
ilarity in meaning to the reference definition of the
target word. The resulting scores can then be used
to analyze how a person’s learning of the word re-
sponded to different stimuli, such as seeing the word
used in context. A sample target word and its ref-
erence definition, along with examples of human-
judged responses, are given in Sections 3.3 and 4.1.

However, manual scoring of the definition re-
sponses has several drawbacks. First, it is time-

Human language technologies are playing an irconsuming and must be done by trained experts.

creasingly important role in the science and pradvioreover, if the researcher wanted to test a new hy-
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pothesis by examining the responses with respect ligh score, even though the response and the target
a different but related definition, the entire set of redefinition have no words in common.
sponses would have to be manually re-scored againstBecause most responses are short (1 — 10 words)
the new target. Second, manual scoring can ofteyur task falls somewhere between word-word simi-
be limited in its ability to detect when partial learn-larity and passage similarity. There is a broad field
ing has taken place. This is due to the basic tradef existing work in estimating the semantic similar-
off between the sophistication of the graded scoriniy of individual words. This field may be roughly
scale, and the ease and consistency with which hdivided into two groups. First, there are corpus-
man judges can use the scale. For example, it ménased measures, which use statistics or models de-
be that the subject did not learn the complete meanived from a large training collection. These require
ing of a particular target word, bdid learn that this little or no human effort to construct, but are limited
target word had negative connotations. The usual the richness of the features they can reliably repre-
binary or ternary score would provide no or littlesent. Second, there are knowledge-based measures,
indication of such effects. Finally, because manuathich rely on specialized resources such as dictio-
scoring almost always must be done off-line after thaearies, thesauri, experimental data, WordNet, and so
end of the session, it presents an obstacle to our gaal. Knowledge-based measures tend to be comple-
of creating learning systems that can adapt quicklynentary to a corpus-based approach and emphasize
within a single learning session. precision in favor of recall. This is discussed further,
This study describes an effective automateélong with a good general summary of text semantic
method for assessing word learning by scoring fregimilarity work, by (Mihalcea et al., 2006).
responses to definition production tests. The method Because of the fundamental nature of the se-
is flexible: it can be used to analyze a response withantic similarity problem, there are close connec-
respect to whatever reference target(s) the teachertgns with other areas of human language tech-
researcher chooses. Such a test represents a p&glogies such as information retrieval (Salton and
erful new tool for language learning research. It ig-esk, 1971), text alignment in machine transla-
also a compelling application of human languagéon (Jayaraman and Lavie, 2005), text summariza-
technologies research on semantic similarity, andon (Mani and Maybury, 1999), and textual co-
we review related work for that area in Section 2herence (Foltz et al., 1998). Educational applica-
Our probabilistic model for computing text semandions include automated scoring of essays, surveyed
tic similarity, described in Section 3, can use botlin (Valenti et al., 2003), and assessment of short-
corpus-based and knowledge-based resources. adnswer free-response items (Burstein et al., 1999).
Section 4 we describe a new dataset of human def-As we describe in Section 3, we use a graph to
inition judgments and use it to measure the effegnodel relations between words to perform a kind
tiveness of the model against other measures of text semantic smoothingn the language models of
similarity. Finally, in Section 5 we discuss furtherthe subject response and target definition before

directions and applications of our work. comparing them. Several types of relation, such
as synonymy and co-occurrence, may be combined
2 Related Work to model the interactions between terms. (Cao

et al., 2005) also formulated a term dependency
The problem of judging a subject response againstraodel combining multiple term relations in a lan-
target definition is a type of text similarity problem.guage modeling framework, applied to information
Moreover, it is a texsemanticsimilarity task, since retrieval. Our graph-based approach may be viewed
we require more than measuring direct word overlaps a probabilistic variation on thspreading activa-
between the two text fragments. For example, if thdon concept, originally proposed for word-word se-
definition of the target wordmeliorateis to improve mantic similarity by (Quillian, 1967).
somethingand the subject responsamske it better Finally, (Mihalcea et al., 2006) describe a text se-
the response clearly indicates that the subject knowsantic similarity measure that combines word-word
the meaning of the word, and thus should receive similarities between the passages being compared.
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Due to limitations in the knowledge-based similarity other thesaurus-like resources.
measures used, semantic similarity is only estimated Example:airplaneandtransportation
between words with the same part-of-speech. Our
graph-based approach can relate words of different®
types and does not have this limitation. (Mihalcea
et al., 2006) also evaluate their method in terms of
paraphrase recognition using binary judgments. We
view our task as somewhat different than paraphrase
recognition. First, our task is not symmetric: we do
not expect the target definition to be a paraphrase we denote link functions usingi, ..., \m to

of the subject's free response. Second, because Wemmarize different types of interactions between
§eek_sen5|t|ve measures of !ear_nlng, we want to digzords. Each\,, (w;, w;) represents a specific type
tinguish a range of semantic differences beyond & jexical or semantic relation or constraint between
binary yes/no decision. w; andw;. For each link\,,, we also define a
weight~,,, that gives the strength of the relationship
betweenw; andw; for that link.
We start by describing relations between pairs of Our goal is to predict the likelihood of a target
terms using a general probability distribution. Thesédefinition D given a test responsk consisting of
pairs can then combine into a graph, which we caterms{wy ... wy} drawn from a common vocabu-
apply to define a semantic distance between termdary V. We are thus interested in the conditional dis-
_ o tribution p(D | R). We start by defining a simple
3.1 Relations between individual words model that can combine the link functions in a gen-
One way to model word-to-word relationships is useral purpose way to produce the conditional distribu-
ing a mixture of links, where each link defines a partion p(w;|w;) given arbitrary termsv; andw;. We
ticular type of relationship. In a graph, this may bause a log-linear model of the general form
represented by a pair of nodes being joined by mul-
tiple weighted edges, with each edge correspond-
ing to a different link type. Our link-based model
is partially based on one defined by (Toutanova et
al., 2004) for prepositional attachment. We allown the next sections we show how to combine the
directed edges because some relationships such&géimate of individual pairg(w;|w;) into a larger
hypernyms may be asymmetric. The following ar@raph of term relations, which will enable us to cal-
examples of different types of links. culate the desireg(D | R).

Free association A relation defined by the fact
that a person is likely to give one word as a free-
association response to the other.
Example:disasterandfear. Our data was ob-
tained from the Univ. of South Florida associa-
tion database (Nelson et al., 1998).

3 Statistical Text Similarity Model

L
pluilug) = oo S m(An(wiwg) ()
m=0

1. Stemming Two words are based on common3-2 Combining term relations using graphs
morphology. Example:stemand stemming Graphs provide one rich model for representing mul-
We used Porter stemming (Porter, 1980). tiple word relationships. They can be directed or

undirected, and typically use nodes of words, with

word labels at the vertices, and edges denoting word

: relationships. In this model, the dependency be-

Example: quaff and drink.  Our synonyms yeen two words represents a single inference step

came from WordNet (Miller, 1995). in which the label of the destination word is inferred

from the source word. Multiple inference steps may
then be chained together to perform longer-range in-
ference about word relations. In this way, we can in-

fer the similarity of two terms without requiring di-

4. Hyper- and hyponyms Relations such asX rect evidence for the relations between that specific
is a kind ofY”, as obtained from Wordnet or pair. Using the link functions defined in Section 3.1,
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2. Synonyms and near-synonyms Two words
share practically all aspects of meaning.

3. Co-occurrence Both words tend to appear to-
gether in the same contexts.
Example:politics andelection



we imagine a generative process where an authorwhere we identifyw andd; with their corresponding
creates a short text ¢f words as follows. indices into the vocabulary. The overall probabil-
ity p(d;|w) of generating a definition termd; given
a wordw is therefore

P(d;|lw Py.(d;|w -« o w
Stepi: Given we have chosen; 1, then with prob- ) Z ldifw) )(kz_o Jud
ability 1 — o output the wordv; _; and reset the (6)
process to step 0. Otherwise, with probability The walk continuation probabilitye can be
«, sample a new word; according to the dis- viewed as a penalty for long chains of inference. In

Step 0: Choose an initial wordvg with probabil-
ity P(wo|A). (If we have already generated
words, stop.)

tribution: practice, to perform the random walk steps we re-
place the infinite sum of Eqg. 6 with a small number
P(wilwi—1) = = exp Z Ao (8) A (Wi, wi—1) of steps (up to 5) on a sparse representation of the

adjacency graph. We obtained effective link weights
(2)  ~,,(:) empirically using held-out data. For simplic-
whereZ is the normalization quantity. ity we assume that the samads used across all link
dtypes, but further improvement may be possible by
extending the model to use link-specific decays
Fine-tuning these parameter estimation methods is a
of future work.

This conditional probability may be interprete
as a mixture model in which a particular link type
Am/(.) is chosen with probabilityy,, () at timestep
i. Note that the mixture is allowed to change at eacBUPIect
timestep. For simplicity, we limit the number of

such changes by grouping the timesteps of the wal

into three stages: early, middle and final. The fundn 0ur study the reference definition for the target
tion I'(i) defines how timestep maps to stage, word consisted of the target word, a rare synonym,
wheres € {0, 1,2}, and we now refer toy,, (s) in- @ more frequent synonym, and a short glossary- I_|k_e
stead ofy,,, (i). definition phrase. For example, the reference defini-

Suppose we have a definitioP consisting of tion for abscondwas

terms{d;}. For each link type\,,(.) we define a  abscond:; absquatulate; escape; to leave quickly
transition matrixC(D, m) based on the definition and secretly and hide oneself, often to avoid arrest
D. The reasorD influences the transition matrix or prosecution.

is that some link types, such as proximity and co-
occurrence, are context-specific. Each stades
an overall transition matrix’(D, s) as the mixture
of the individualC'(D, m), as follows.

?i<.3 Using the model for definition scoring

In general, we define the score of a respoRse
with respect to a definitiorD as the probability
that the definition is generated by the response, or
p(D|R). Equivalently, we can score lyg p(D|R)
since thelog function is monotonic. So making the

= m(s)C(D,m) (3) simplifying assumption that the ternas € D are

= exchangable (the bag-of-words assumption), and
Combining the stages ovér steps into a single taking logarithms, we have:

transition matrix, which we denot@”, we have
logp(D|R) =log [ p(dilR)

k
- H C(D,T(i)) (4) “ep
4 —Zlog 1—a Zak(]knd
We denote thei, j) entry of a matrixA* by A% . dieD
Then for a particular termd;, the probability that a @)

chain reachesd; afterk steps, starting at wora is :
P g Suppose that the response to be scorearigrom

Py(dilw) = (1 — a)a*Cf 4 (5) the cops|n practical terms, Eq. 7 means that for our
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example, we “light up” the nodes in the graph cor- | Score| Meaning

responding taun, from, theand copsby assigning 0 Completely wrong

some initial probability, and the graph is then “run” 1 Some partial aspect is correct

using the transition matrig’ according to Eq. 7. In 2 One major aspect, or more than ohe
this study, the initial node probabilities are set to val- minor aspect, is correct

ues proportional to thif values of the correspond- 3 Covers all aspects correctly

ing term, so that?(d;) = ii?;%}). After m steps,

the probabilities at the nodes for each term in the Table 1: Scale for human definition judgements.
reference definitiorR are read off, and their log-

arithms summed. Similar to an AND calculation, Response Human

we calculate a product of sums over the graph, so Score
that responses reflecting multiple aspects of the tar- depart secretly 3
get definition are rewarded more highly than a very quietly make away, escape 3
strong prediction for only a single definition term. to flee, run away 2
flee 2
4 Evaluation to get away with 1
to steal or take 0

We first describe our corpus of gold standard human
judgments. We then explain the different text sim- .
L ) Table 2: Examples of human scores of responses for
ilarity methods and baselines we computed on th
: . . _ the target woragbscond
corpus responses. Finally, we give an analysis an
discussion of the results.
trained by the authors using one set of 10 example

4.1 Corpus instances and two training sessions of 30 instances

We obtained a set of 734 responses to definition pr@ach. Between the two training sessions, one of the
duction tests from a word learning experiment at tha@uthors met with the coders to discuss the ratings
University of Pittsburgh (Bolger et al., 2006). Inand refine the rating guidelines. After training, the
totaL 72 target WordS, selected by the same grou@pthors selected the two coders who had the best
were used in the experiment. In this experimeninter-coder agreement on the 60 training instances.
subjects were asked to learn the meaning of targéhese two coders then labeled the final test set of
words after seeing them used in a series of conte®b4 instances. Our third coding was obtained from
sentences. We set aside 70 responses for trainir@j) initial coding created by an expert in the Univer-
leaving 664 responses in the final test dataset. Sty of Pittsburgh Psychology department and then

Each response instance was coded using the scaf§usted by one of the authors to resolve a small
shown in Table 1, and a sample set of subject rélumber of internal inconsistencies, such as when the
sponses and scores is shown in Table 2. The targéme response to the same target had been given a
word was treated as having several key aspects @ifferent score.
meaning. The coders were instructed to judge a re- Inter-coder agreement was measured using lin-
sponse according to how well it covered the variougar weighted kappa, a standard technique for or-
aspects of the target definition. If the response coinal scales. Weighted kappa scores for all three
ered all aspects of the target definition, but also incoder pairs are shown in Table 3. Overall, agree-
cluded extra irrelevant information, this was treate@nent ranged from moderate (0.64) to good (0.72).
as a partial match at the discretion of the coders. ]

We obtained three codings of the final dataseﬁ'2 Baseline Methods
The first two codings were obtained using an inWe computed three baselines as reference points for
dependent group, the QDAP Center at the Univetewer and upper performance bounds.
sity of Pittsburgh. Initially, five human coders, with Random. The response items were assigned la-
varying degrees of general coding experience, wel®ls randomly.
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Coder pair| Weighted 4.3 Methods
Kappa o .
In addition to the baseline methods, we also ran the
1,2 0.68 following three algorithms over the responses.
i’ z 833 Markov chains (“Markov”). This is the method
d : described in Section 3. A maximum of 5 random

walk steps were used, with a walk continuation

Table 3: Weighted kappa inter-ratgr_ reliability forprobability of 0.8. Each walk step used a mixture of
:jhrtee ?u(;?sjn't coders on our definition r(':‘Sponsﬁ/nonym, stem, co-occurrence, and free-association
ataset ( items). links. The link weights were trained on a small set

of held-out data.

Method Spearman. Ran Latent Semantic Analysis (LSA). LSA (Lan-
Correlation dauer et al., 1998) is a corpus-based unsupervised
Random 0.3661 technique that uses dimensionality reduction to clus-
Cosine 0.4731 ter terms according to multi-order co-occurrence re-
LSA 0.4868 lations. In these experiments, we obtained LSA-
Markov 0.6111 based similarity scores between responses and target
LSA + Markov 0.6365 definitions using the software running on the Univer-
Human 0.8744 sity of Colorado LSA Web site (LSA site, 2006). We

used the pairwise text passage comparison facility,
Table 4: Ability of methods to match human rankingusing the maximum 300 latent factors and a general
of responses, as measured by Spearman rank corBglish corpus (Grade 1 — first-year college).
lation (corrected for ties). Although LSA and the Markov chain approach
are based on different principles, we chose to ap-
. . ply LSA to this new response-scoring task and cor-
Human choice of label. We include a method pus because LSA has been widely used as a text se-

that, givenan item and a human label from one of thﬁ'nantic similarity measure for other tasks and shown
coders, simply returns a label of the same item frorgé)Od performance (Foltz et al., 1998)

a different coder, with results repeated and averag LSA+Markov. To test the effectiveness of com-
over all coders. This gives an indication of an Uppetr)ining WO différent — and possibly complemen-

bound.base'zd 'on.huma'm per.forma.nce'. , tary — approaches to response scoring, we created
Cosine similarity using tf.idf weighting. Cosine 5 normalized, weighted linear combination of the
similarity is a widely-used text similarity method | sa and Markov scores. with the model combina-

for tasks where the passages being compared Gf5p, weight being derived from cross-validation on a
ten have significant direct word overlap. We reprepqiq-out dataset.

sent response items and reference definitions as vec-

tors of terms usingf.idf weighting, a standard tech- 4.4 Results
nique from information retrieval (Salton and Buck-
ley, 1997) that combines term frequendf) (ith
term specificity i[df). A good summary of arguments

for usingidf can be found in (Robertson, 2004). To™~ . )
computeidf, we used frequencies from a standard First, we measured how well each scoring method

100-million-word corpus of written and spoken En-VaS able to rank response items by similarity to the

glish L. We included a minimal semantic similar- target definition. To FIothis,we calculat(_ad the Spear-
ity component by applying Porter stemming (Porten’,nan Rar_1k Correlation (correcte_d for ties) between
1980) on terms. the rankmg based on the scoring method and the

ranking based on the human-assigned scores, aver-
aged over all sets of target word responses.

1The British National Corpus (Burnage and Dunlop, 1992); ) i
using American spelling conversion. Table 4 summarizes the ranking results. For

We measured the effectiveness of each scoring
method from two perspectives: ranking quality, and
label accuracy.
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Method Label error (RMS) 5 Discussion
Topl [ Top3
Random 1.4954| 1.6643
Cosine 0.8194| 1.0540
LSA 0.8009| 0.9965
Markov 0.7222| 0.7968
LSA + Markov | 1.1111| 1.0650
Human 0.1944| 0.4167

Even though definition scoring may seem more
straightforward than other automated learning as-
sessment problems, human performance was still
significantly above the best automated methods in
our study, for both ranking and label accuracy. There
are certain additions to our model which seem likely
to result in further improvement.

One of the most important is the ability to identify
Table 5: Root mean squared error (RMSE) of laphrases or colloguial expressions. Given the short
bel(s) for top-ranked item, and top-three items fOfengih of a response, these seem critical to handle
all 77 words in the dataset. properly. For exampletp get away with something

is commonly understood to meaacretly guilty not

a physical action. Yet the near-identical phrase
overall quallty of ranking, the Markov method hadget away from Somethin‘geans Something very dif-
significantly better performance than the other auderent when phrases and idioms are considered.
tomated methodsp( < 2.38¢7°). LSA gave a  Despite the gap between human and automated
small, but not significant, improvement in overallperformance, the current level of accuracy of the
rank quality over the cosine baseliné. The sim- Markov chain approach has already led to some
ple combination of LSA and Markov resulted in apromising early results in word learning research.
slightly higher but statistically insignificant differ- gqor example, in a separate study of incremental
ence p < 0.253). word learning (Frishkoff et al., 2006), we used our

Second, we examined the ability of each methofneasure to track increments in word knowledge
to find the most accurate responses — that is, the ra&Cross multiple trials. Each trial consisted of a sin-
sponses with the highest human label on averagedle passage that was eitr@rpportive— containing
for a given target word. To do this, we calculated th&lues to the meaning of unfamiliar words — or not
Root Mean Squared Error (RMSE) of the label assupportive. In this separate study, broad learning ef-
signed to the top item, and the top three items. THi&cts identified by our measure were consistent with
results are shown in Table 5. For top-item deteceffects found using manually-scored pre- and post-
tion, our Markov model had the lowest RMS errortests. Our automated method also revealed a pre-
(0.7222) of the automated methods, but the differiously unknown interaction between trial spacing,
ences from Cosine and LSA were not statisticalljhe proportion of supportive contexts per word, and
significant, while differences for all three from Ran-feader skill.
dom and Human baselines were significant. For In future applications, we envision using our auto-
the top three items, the difference between Markothated measure to allow a form of feedback for intel-

(0.7968) and LSA (0.9965) was significant at thdigent language tutors, so that the system can auto-
p < 0.03 level. matically adapt its behavior based on the student’s

) . test responses. With some adjustments, the same
Comparing the overall rank accuracy with top-

. h bined LSA + Mark h (icoring model described in this study may also be
Item accuracy, the combine + Markov metho pplied to the problem of finding supportive contexts

was significantly worse at finding the three bestfOr students.
quality responses (RMSE of 1.0650) than Markov

(0.7968) or LSA (0.9965) alone. The reasons fog Conclusions
this require further study.

We presented results for both automated and hu-

man performance of an important task for language

“All statistical significance results reported here used tpigaming gppllcatlons: s_c_orl_ng definition responses.

Wilcoxon Signed-Ranks test. We described a probabilistic model of text seman-
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tic similarity that uses Markov chains on a graph ofs. Frishkoff, K. Collins-Thompson, J. Callan, and C.
term relations to perform a kind of semantic smooth- Perfetti. 2007.  The Nature of Incremental Word
ing. This model incorporated both corpus-based and -€&/ing: Context Quality, Spacing Effects, and Skl

' Differences in Meaning Acquisition Across Multiple
knowledge-based resources to compute text seman-ontexts. (In preparation.)
tic similarity. We measured the effectiveness of both ' y H i g
our method and LSA compared to cosine and rafd- Héllman. K. Collins-Thompson, J. Callan and M. Es-

) ) . kanazi. 2006. Classroom Success of an Intelligent Tu-

dom baselines, using a new corpus of human judg- oring System for Lexical Practice and Reading Com-
ments on definition responses from a language learn-prehensionlCSLP 2006
ing experiment. Our method outperformed thelf S. Jayaraman and A. Lavie Multi-Engine Ma-
cosine similarity baseline in ranking quality and in - chine Translation Guided by Explicit Word Matching.
ability to find high-scoring definitions. Because EAMT 2005
LSA and our Markov chain method are based OB « Landauer. PW. Foltz. and D. Laham. 1998. An
different approaches and resources, it is difficult to |ntroduction to Latent Semantic Analysi®iscourse
draw definitive conclusions about performance dif- Processes,25:259-284.
ferencgs between the-tv.\/(-) metho.ds. . LSA Web Site. http://lsa.colorado.edu

Looking beyond definition scoring, we believe au- ' _
tomated methods for assessing word learning hateMani and M.T. Maybury (Eds.) 1999. Advances in

. L Automatic Text Summarization. MIT Press.
great potential as a new scientific tool for language
learning researchers, and as a key component of iR- Mihalcea, C. Corley, and C. Strapparava. 2006.
telligent tutoring systems that can adapt to students. Corpus-based and Knowledge-based Measures of Text
Semantic SimilarityAAAI 2006
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