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Abstract

We present a novel method for creating Asti-
mates for structured search problems. In our ap-
proach, we project a complex model onto multiple
simpler models for which exact inference is effi-
cient. We use an optimization framework to es-
timate parameters for these projections in a way
which bounds the true costs. Similar to Klein and
Manning (2003), we then combine completion es-
timates from the simpler models to guide search
in the original complex model. We apply our ap-
proach to bitext parsing and lexicalized parsing,
demonstrating its effectiveness in these domains.

}@cs.berkeley.edu

Like Klein and Manning (2003), we focus on
search problems where there are multiple projec-
tions or “views” of the structure, for example lexical
parsing, in which trees can be projected onto either
their CFG backbone or their lexical attachments. We
use general optimization techniques (Boyd and Van-
denberghe, 2005) to approximately factor a model
over these projections. Solutions to the projected
problems vyield heuristics for the original model.
This approach is flexible, providing either admissi-
ble or nearly admissible heuristics, depending on the

details of the optimization problem solved. Further-
more, our approach allows a modeler explicit control
Inference tasks in NLP often involve searching foover the trade-off between the tightness of a heuris-
an optimal output from a large set of structured outtic and its degree of inadmissibility (if any). We de-
puts. For many complex models, selecting the higrscribe our technique in general and then apply it to
est scoring output for a given observation is slow otwo concrete NLP search tasks: bitext parsing and
even intractable. One general technique to increatxicalized monolingual parsing.

efficiency while preserving optimality is Asearch

(Hart et al., 1968); however, successfully using A2 General Approach

search is challenging in practice. The design of ad-

missible (or nearly admissible) heuristics which aré\/l_any inference problems in NLP can be solved

both effective (close to actual completion costs) anWIth agenda-based methods, in which we incremen-

also efficient to compute is a difficult, open prob-tallyllloUIId hypot_ktlﬁses forllargler |te]LnS b){[_comlblrt'nng
lem in most domains. As a result, most work Onsma €r ones with some local configurational struc-

search has focused on non-optimal methods, suEWe' We can formalize such tasks as gr.aph search
as beam search or pruning based on approxim oblems, where states encapsulate partial hypothe-

models (Collins, 1999), though in certain cases a es and edges combine or extend them locafigr

missible heuristics are known (Och and Ney, 200 xample, in HMM decoding, the states are anchored

Zhang and Gildea, 2006). For example, Klein ant beli’_ €.9. VB[[Ii;éand edgc_ers6correspond to hidden
Manning (2003) show a class of projection-baséd A ransitions, e.g. VB[] __> _[ ) N
The search problem is to find a minimal cost path

estimates, but their application is limited to models

which have a very restrictive kind of score decomIrom the start state to a goal state, where the path

position. In this work, we broaden their projection-COSt IS the sum of the costs of the edges in the path.
based technique to give*Aestimates for models

which do not factor in this restricted way.

1 Introduction

In most complex tasks, we will in fact have a hypergraph,
but the extension is trivial and not worth the added notation.
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Figure 1: Example cost factoring: In (a), each cell of the matrix is a local configuration composed of two projections (the row and
column of the cell). In (b), the top matrix is an example cost matrix, which specifies the cost of each local configuration. The
bottom matrix represents our factored estimates, where each entry is the sum of configuration projections. For this example, the
actual cost matrix can be decomposed exactly into two projections. In (c), the top cost matrix cannot be exactly decomposed along
two dimensions. Our factored cost matrix has the property that each factored cost estimate is below the actual configuration cost.
Although our factorization is no longer tight, it still can be used to produce an admissible heuristic.

For probabilistic inference problems, the cost of athe original problem (see sections 3 and 4).

edge is typically a negative log probability which de- In defining projections, we have not yet dealt with
pends only on some local configuration type. Fothe projected scoring function. Suppose that the
instance, in PCFG parsing, the (hyper)edges refetost of local configurations decomposes along pro-
ence anchored spangiXj], but the edge costs de-jections as well. In this case,

pend only on the local rule typ&¥ — Y Z. We will

useaq to refer to a local configuration and us

to refer to its cost. Because edge costs argl)sensi- c(a) = Zci(a) VaeA (1)
tive only to local configurations, the cost of a path =

is 3°, c(a). A* search requires laeuristic function  whereA is the set of local configurations arga)
which is an estimaté(s) of thecompletion costthe represents the cost of configuratieunder projec-
cost of a best path from stateo a goal. tion ;. A toy example of such a cost decomposi-

In this work, following Klein and Manning tionin the context of a Markov process over two-part
(2003), we consider problems wiftrojectionsor states is shown in figure 1(b), where the costs of the
“views,” which define mappings to simpler state angoint transitions equal the sum of costs of their pro-
configuration spaces. For instance, suppose that yextions. Under the strong assumption of equation
are using an HMM to jointly model part-of-speech(1), Klein and Manning (2003) give an admissible
(POS) and named-entity-recognition (NER) taggingA* bound. They note that the cost of a path decom-
There might be one projection onto the NER composes as a sum of projected path costs. Hence, the
ponent and another onto the POS component. Fdollowing is an admissible additive heuristic (Felner
mally, a projectionr is a mapping from states to et al., 2004),
some coarser domain. A state projection induces
projections of edges and of the entire graglir).

We are particularly interested in search problems
with multiple projections{ny,...,n,} where each
projection,r;, has the following properties: its statewherer}(s) denote the optimal completion costs in
projections induce well-defined projections of thehe projected search graph(G). That is, the com-
local configurationsr;(a) used for scoringandthe  pletion cost of a state bounds the sum of the comple-
projected search problem admits a simpler infeion costs in each projection.
ence. For instance, the POS projection in our NER- In virtually all cases, however, configuration costs
POS HMM is a simpler HMM, though the gainswill not decompose over projections, nor would we
from this method are greater when inference in thexpect them to. For instance, in our joint POS-NER
projections have lower asymptotic complexity tharask, this assumption requires that the POS and NER

?
h(s)=>_ hi(s) )
=1
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transitions and observations be generated indepeie think of our unknown factored costs as a block
dently. This independence assumption undermine®gctor¢ = [¢1, .., ¢¢|, where vector; is composed
the motivation for assuming a joint model. In theof the factored costsp;(a), for each configuration
central contribution of this work, we exploit the pro-a € A. We can then find admissible factored costs
jection structure of our search problem without makby solving the following optimization problem,
ing any assumption about cost decomposition.

Rather than assuming decomposition, we propose  minimize ||7|| 4)
to find scores¢ for the projected configurations ¢

) T T ¢
which arepointwise admissible such thaty, = c(a) — Z 6:(a),Va € A
=1

¢
> ¢i(a) < cla),Ya € A (3) Yo >0,Va e A
i=1

We can think of each, as the amount by which
he cost of configuration exceeds the factored pro-

jection estimates (the pointwise"Aap). Requirin
pointwise admissibley;'s we can again apply theJ ! I (the pointwise Aap) quiiring

heuristi ) ¢ i 2 A e of @ > 0 insures pointwise admissibility. Minimiz-
euristic recipe of equation (2). An example Oing the norm of they, variables encourages tighter

factored projection costs are shown in figure 1(_C)00unds; indeed if~|| — 0, the solution corresponds
where no e>?aCt decomp03|t|9n exists, t.)Ut a pom{—o an exact factoring of the search problem. In the
wise admissible lower bound is easy to find. case where we minimize the 1-normaarnorm, the
Claim. If a set of factored projection costs problem above reduces to a linear program, which

Here, ¢;(a) represents a factored projection cost o{
m;i(a), the m; projection of configuratiom. Given

{¢1,..., ¢} satisfy pointwise admissibility, thencan be solved efficiently for a large number of vari-
the heuristic from (2) is an admissible Aeuristic.  ables and constrainfs.

Proof. Assumeas, ..., a; are configurations used Viewing our procedure decision-theoretically, by
to optimally reach the goal from state Then, minimizing the norm of the pointwise gaps we are
. effectively choosing a loss function which decom-

hi(s) = Y ela) 2 D" dilay) poses along configuration types and takes the form

j=1 j=1i=1 of the norm (i.e. linear or squared losses). A com-

¢ ‘o plete investigation of the alternatives is beyond the
- ; (; ‘bi(a")) Z ;h (5) = hs) scope of this work, but it is worth pointing out that

in the end we will care only about the gap on entire
[J  structures, not configurations, and individual config-
uration factored costs need not even be pointwise ad-

sibility. The second inequality follows because eacﬁmSS'bIe for the overall heuristic to be admissible.

inner sum is a completion cost for projected problem N?;'CG :chat th%InulmbeIr of ?onstrtglntshﬂ, the
m; and thereforéy! (s) lower bounds it. Intuitively, number of possible local configurations. or many

we can see two sources of slack in such projectio?learCh problems, enumerating the possible configu-

heuristics. First, there may be slack in the pointWiS4[;*ations Is r.]Ot. fegsible, and ther_efore neither is solv-
admissible scores. Second, the best paths in the pll89 an opt|m|zat|on_prob_lem W'th aII_ of thes_e con-
jections will be overly optimistic because they haveStramf[S' we de"?" W.'th this eruatlon n apply'ng our
been decoupled (see figure 5 for an example of dé@chmqug to Iexmahzgd parsm.g.models (section 4).
coupled best paths in projections). Spmt_ahmes, W_e_ might be willing to trade search
optimality for efficiency. In our approach, we can
2.1 Finding Factored Projections for explicitly make this trade-off by designing an alter-
Non-Factored Costs native optimization problem which allows for slack

The firstinequality follows from pointwise admis-

\N_e can fl.nd' factored C'OS@@) V\_’h'_Ch ?re point- We used the MOSEK package (Andersen and Andersen,
wise admissible by solving an optimization problem2000).
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in the admissibility constraints. We solve the follow-contrast, monolingual CFG parsing requires time
ing soft version of problem (4): O(n?) in the length of the sentence.

minimize |5 + Cly | (5) 31 A Parsing
¢ Alternatively, we can search for an optimal parse

guided by a heuristic. The states irf Aitext pars-
ing are rooted bispans, denotéd[i, j| :: Y [k,I].
States represent a joint parse over subsparisof

wherey™ = max{0,~} andy~ = max{0, —y} wsand[k, ] of w; rooted by the nonterminal§ and
represent the componentwise positive and negative respectively.
elements ofy respectively. Each, > 0 represents ~ Given a WSGG, the algorithm prioritizes a state
a configuration where our factored projection esti(or edge)e by the sum of its inside cosly(e) (the
mate is not pointwise admissible. Since this situa?egative log of its inside probability) and its outside
tion may result in our heuristic becoming inadmisestimateh(e), or completion cost. We are guaran-
sible if used in the projected completion costs, wéeed the optimal parse if our heurisfi¢e) is never
more heavily penalize overestimating the cost by the@reater thamg(e), the true outside cost ef

14
such that,y, = ¢(a) — Z ¢i(a),Va € A

i=1

constantC. We now consider a heuristic combining the com-
pletion costs of the monolingual projections @f
2.2 Bounding Search Error and guarantee admissibility by enforcing point-wise

In the case where we allow pointwise inadmissibiladmissibility. Each state = X [i,j] = Y [k, 1]

ity, i.e. variablesy,, we can bound our search er-Projects a pair of monolingual rooted spans. The
ror. Supposey.,, = maxgc4v, and thatL* is heuristic we propose sums independent outside costs
the length of the longest optimal solution for theof these spans in each monolingual projection.
original problem. Thena(s) < i™(s) 4 Lt h(e) = os(X [i. 7)) +an(Y [k. 1)

Vs € S§. This e-admissible heuristic (Ghallab and

Allard, 1982) bounds our search error by, .3 These monolingual outside scores are computed rel-
ative to a pair of monolingual WCFG grammafs

3 Bitext Parsing andg; given by splitting each synchronous rule
In bitext parsing, one jointly infers a synchronous . X (5) (@ 8
phrase structure tree over a sentence and its L y® v o

translationw, (Melamed et al., 2004; Wu, 1997).. .

) N . into its componentss(r) = X — af andm(r) =
Bitext parsing is a natural candidate task for Oul, 5 and weighting them via o timizeg,(r) and
approximate factoring technique. A synchronous 0 ghting P "

tree projects monolingual phrase structure trees onibd(r)’ respect_lvel)_?. -
. To learn pointwise admissible costs for the mono-
each sentence. However, the costs assigned h)

a weighted synchronous grammar (WSG) do |¥gual grammars, we formulate the following opti-

not typically factor into independent monolingualmlzatlon problent.
WCFGs. We can, however, produce a useful surro-  minimize ||v|;

gate: a pair of monolingual WCFGs with structures 7P, Pt

projected byG and weights that, when combined,  such thaty, = c(r) — [¢s(r) + ¢u(r)]

underestimate the costs Gf for all synchronous rules € G
Parsing optimally relative to a synchronous gram- bs > 0,6 > 0,7 >0

mar using a dynamic program requires tién®)

in the length of the sentence (Wu, 1997). This high 5AII inside and outside costs are Viterbi, not summed. _
Note that we need only parse each sentence (monolin-

degree of complexity makes exhaustive bitext Parually) once to compute the outside probabilities for every span.

ing infeasible for all but the shortest sentences. In °The stated objective is merely one reasonable choice
— among many possibilities which require pointwise admissibil-
3This bound may be very loose f is large. ity and encourage tight estimates.
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Figure 2: The gap between the heuristic (left) and true comple- (b)
tion cost (right) comes from relaxing the synchronized problem traduccion

to independent subproblems and slack in the factored models. funcionan i:-

a

veces

Figure 2 diagrams the two bounds that enforce thigigure 3: (a) A tree-to-tree transducer rule. (b) An example
admissibility of h(¢). For any outside cosig(e), training sentence pair that yields rule (a).
there is a corresponding optimal completion struc-
ture o underG, which is an outer shell of a syn- timization heuristic. Theexhaustivecurve shows
chronous treeo projects monolingual completions edge expansions using the null heuristic. The in-
os ando; which have well-defined costs (os) and  termediate result, labeleinglish only used only
ct(o;) under Gy and G; respectively. Their sum the English monolingual outside score as a heuris-
cs(0s) + c¢(oy) will underestimatexg(e) by point-  tic. Similar results using only Spanish demonstrate
wise admissibility. that both projections contribute to parsing efficiency.
Furthermore, the heuristic we compute underestall three curves in figure 4 represent running times
mates this sum. Recall that the monolingual outsidgr finding the optimal parse.

scorea (X [i, j]) is the minimal costs for any com-  7a3ng and Gildea (2006) offer a different heuris-
pletion of the edge. Henceys(X [i,j]) < ¢s(0s)  tic for A* parsing of ITG grammars that provides a
anday (X [k, 1]) < ei(or). Admissibility follows. forward estimate of the cost of aligning the unparsed
wordsin both sentences. We cannot directly apply

this technique to our grammar because tree-to-tree

We demonstrate our technique using the Symansducers only align non-terminals. Instead, we
chronous grammar formalism of tree-to-tree transsgp, augment our synchronous grammar model to in-
ducers (Knight and Graehl, 2004). In each weightegl,ge 4 lexical alignment component, then employ
rule, an aligned pair of nonterminals generates tWggth heuristics. We learned the following two-stage
ordered lists of children. The non-terminals in €aclenerative model: a tree-to-tree transducer generates
list must align one-to-one to the non-terminals in thgees whose leaves are parts of speech. Then, the
other, while the terminals are placed freely on eithef,ords of each sentence are generated, either jointly
side. Figure 3(a) shows an example rule. from aligned parts of speech or independently given
Following Galley et al. (2004), we learn a gram-g || alignment. The cost of a complete parse un-
mar by projecting English syntax onto a foreign langer this new model decomposes into the cost of the

guage via word-level alignments,.as in figure 37(b)-_synchronous tree over parts of speech and the cost
We parsed 1200 English-Spanish sentences Usigggenerating the lexical items.

a grammar learned from 40,000 sentence pairs of
the English-Spanish Europarl corplisFigure 4(a)
shows that A expands substantially fewer state
while searching for the optimal parse with oojp-

3.2 Experiments

Given such a model, both our optimization heuris-
tic and the lexical heuristic of Zhang and Gildea
S(2006) can be computed independently. Crucially,
the sum of these heuristics is still admissible. Re-
"The bilingual corpus consists of translation pairs with fixedsults appear in figure 4(b). Both heuristidex{-
relative frequencies. . . .
mance, but their surpt+lexsubstantially improves

8Rare words were replaced with their parts of speech to limi '
the memory consumption of the parser. upon either one.
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Figure 4: (a) Parsing efficiency results with optimization heuristics show that both component projections constrain the problem.
(b) Including a lexical model and corresponding heuristic further increases parsing efficiency.

4 Lexicalized Parsing Collins (1999), though simplef

We next apply our technique to lexicalized pars4.1 Choosing Constraints and Handling
ing (Charniak, 1997; Collins, 1999). In lexical- Unseen Dependencies

ized parsing, the local configurations are lexicalize
rules of the formX [h,t] — Y1, t'] Z[h,t], where
h, t, b/, andt’ are the head word, head tag, ar
gument word, and argument tag, respectively.
willuser = X — Y Z to refer to the CFG back-
bone of a lexicalized rule. As in Klein and Man-
ning (2003), we view each lexicalized rulé, as

?Ideally we would like to be able to solve the op-
timization problem in (4) for this task. Unfortu-
nately, exhaustively listing all possible configura-
tions (lexical rules) yields an impractical number of
constraints. We therefore solve a relaxed problem in
which we enforce the constraints for only a subset
having a CFG projectionr.(¢) = r, and a de- of the poss_ible config_urations4’ C A. Once we
pendency projections,(¢) — (h,t, ', ¢')(see fig- startd_ropplng con_strglms, we can no longer guaran-
tee pointwise admissibility, and therefore there is no

9 . . 2
ure 5)° Broadly, the CFG projection encodes Conreason not to also allow penalized violations of the

stituency structure, while the dependency projection . . .
y P y proj constraints we do list, so we solve (5) instead.

encodes lexical selection, and both projections aré .
To generate the set of enforced constraints, we

asymptotically more efficient than the original prob-. " . . )
ymp y g P first include all configurations observed in the gold

lem. Klein and Manning (2003) present a faCtore(%lrainin trees. We then sample novel configurations
model where the CFG and dependency projections 9 ' b 9

are generated independently (though with compatl—y choosmg_(X, h, t) from the training distribution

ble bracketing): and _then using the model .to generate the rest of_the
configuration. In our experiments, we ended up with

P(Y[h,t)Z[W ] | X[h,1]) = (6) 434,329 observed configurations, and sampled the
P(YZ|X)P(H ¥|t, h) same number of novel configurations. Our penalty

multiplier C' was 10.

In this work, we explore the following non-factored ~EVen if we supplement our training set with many

model, which allows correlations between the CFGample configurations, we will still see new pro-
and dependency projections: jected dependency configurations at test time. It is

therefore necessary to generalize scores from train-
P(Y[n,t]Z[W ¥ | X[h,t]) = P(YZ|X,t,h) (7) ing configurations to unseen ones. We enrich our
PW|t, Z, 1 h) P(W|t',t, Z, 1, h) procedure by expressing the projected configuration
costs as linear functions of features. Specifically, we

This model is broadly representative of the sucdefine feature vectorg.(r) and fq(h,t,h't") over
cessful lexicalized models of Charniak (1997) anéhe CFG and dependency projections, and intro-

®We assume information about the distance and direction of °All probability distributions for the non-factored model are
the dependency is encoded in the dependency tuple, but we oragttimated by Witten-Bell smoothing (Witten and Bell, 1991)
it from the notation for compactness. where conditioning lexical items are backed off first.
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Figure 5: Lexicalized parsing projections. The figure in (a) is the optimal CFG projection solution and the figure in (b) is the
optimal dependency projection solution. The tree in (c) is the optimal solution for the original problem. Note that the sum of the
CFG and dependency projections is a lower bound (albeit a fairly tight one) on actual solution cost.

duce corresponding weight vectars andwy. The tored model of Klein and Manning (2003), we can
weight vectors are learned by solving the followingalso compare our reconstructed bound to the known

optimization problem: tight bound which would result from solving the
o e o pointwise admissible problem in (4) with all con-
minimize 7=+ Cllyv i (8) straints. As figure 6 shows, the exact factored

heuristic does outperform our approximate factored
heuristic, primarily because of many looser, backed-
e = c(t) — [we fo(r) +wg fa(h,t, W, t')] off cost estimates for unseen dependency tuples. For
for¢ = (r,h,t, 0, t') e A the non-factored model, we compared our approxi-

mate factored heuristic to one which only bounds the

Our CFG feature vector has only indicator featureg.r projection as suggested by Klein and Manning
for the specific rule. However, our dependency fea(2003). They suggest

ture vector consists of an indicator feature of the tu-

ple (h,t, 7', ') (including direction), an indicator of ¢e(r) = min  c(f)
the part-of-speech typg, t') (also including direc- teAme(O)=r
tion), as well as a bias feature.

such that, w. > 0,wg > 0

where we obtain factored CFG costs by minimizing
over dependency projections. As figure 6 illustrates,

this CFG only heuristic is substantially less efficient

We tes.ted.our appr.oximate projectiop hguristic %than our heuristic which bounds both projections.
two lexicalized parsing models. The first is the fac- Since our heuristic is no longer guaranteed to be

tored quel of Klein and Manni_ng (2003), gliVenadmissible, we evaluated its effect on search in sev-
by equation (6), and the second is the non-factoreéjral ways. The first is to check for search errors,

model described in equation (7). Bqth _mOdelﬁvhere the model-optimal parse is not found. In the
use the same parent.-annotated head-b_marmed C,'égse of the factored model, we can find the optimal
backbon(? anq a basic dependency projection Wh'%rse using the exact factored heuristic and compare
models direction, but not dlstancg or valeri¢e. . itto the parse found by our learned heuristic. In our
In each case, we cpmpared Asing OUr approxi- - o set, the approximate projection heuristic failed
mate projection heuristics to exhaustive search. V\{S return the model optimal parse in less than 1% of

measure efficiency in terms of the number of ®X3entences. Of these search errors, none of the costs

pagde: hypothesss ]Eedgesdgopped); shee fti)g&?e EiNere more than 0.1% greater than the model optimal
In both settings, the factored"Aapproach substan- cost in negative log-likelihood. For the non-factored

tially outperforms exhaustive search. For the facr'nodel, the model optimal parse is known only for

“The CFG and dependency projections correspond to trghorter sentences which can be parsed exhaustively.
Fz%oF?g_PA and DEP-BASIC settings in Klein and Manningor these sentences up to length 15, there were no
2A|l models are trained on section 2 through 21 of the En-Se?rCh_ errors. _W_e can also Ch.eCk fqr violations of
glish Penn treebank, and tested on section 23. pointwise admissibility for configurations encoun-

4.2 Experimental Results
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Figure 6: Edges popped by exhaustive versus factoredearch. The chart in (a) is using the factored lexicalized model from
Klein and Manning (2003). The chart in (b) is using the non-factored lexicalized model described in section 4.

tered during search. For both the factored and nomuthor and a Microsoft new faculty fellowship to the
factored model, less than 2% of the configurationthird author.
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