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Abstract

We propose a novel HMM-based framework to

accurately transliterate unseen named entities.

The framework leverages features in letter-
alignment and letter n-gram pairs learned from
available bilingual dictionaries. Letter-classes,
such as vowels/non-vowels, are integrated to
further improve transliteration accuracy. The
proposed transliteration system is applied to
out-of-vocabulary named-entities in statistical
machine translation (SMT), and a significant
improvement over traditional transliteration ap-
proach is obtained. Furthermore, by incor-
porating an automatic spell-checker based on
statistics collected from web search engines,

The work in (Arbabi et al., 1994), to our knowledge, is
the first work on machine transliteration of Arabic names
into English, French, and Spanish. The idea is to vow-
elize Arabic names by adding appropriate vowels and uti-
lizing a phonetic look-up table to provide the spelling in
the target language. Their framework is strictly applica-
ble within standard Arabic morphological rules. Knight
and Graehl (1997) introduced finite state transducers that
implement back-transliteration from Japanese to English,
which was then extended to Arabic-English in (Stalls and
Knight, 1998). Al-Onaizan and Knight (2002) translit-
erated named entities in Arabic text to English by com-
bining phonetic-based and spelling-based models, and re-
ranking candidates with full-name web counts, named en-
tities co-reference, and contextual web counts. Huang
(2005) proposed a specific model for Chinese-English

name transliteration with clusterings of hames’ origins,
and appropriate hypotheses are generated given the ori-
gins. All of these approaches, however, are not based
on a SMT-framework. Technologies developed for SMT
are borrowed in Virga and Khudanpur (2003) and Ab-
dulJaleel and Larkey (2003). Standard SMT alignment
models (Brown et al., 1993) are used to align letter-pairs
within named entity pairs for transliteration. Their ap-
Cross-lingual natural language applications, such as ifroach are generative models for letter-to-letter transla-
formation retrieval, question answering, and machinéons, and the letter-alignment is augmented with heuris-
translation for web-documents (e.g. Google translation§ics. Letter-level contextual information is shown to be
are becoming increasingly important. However, curreritery helpful for transliteration. Oh and Choi (2002)
state-of-the-art statistical machine translation (SMT) sygised conversion units for English-Korean Transliteration;
tems cannot yet translate named-entities which are n&oto et al. (2003) used conversion units, mapping En-
seen during training. New named-entities, such as peglish letter-sequence into Japanese Katakana character
son, organization, and location names are continual§tring. Li et al. (2004) presented a framework allowing
emerging on the World-Wide-Web. To realize effectivedirect orthographical mapping of transliteration units be-
cross-lingual natural language applications, handling outween English and Chinese, and an extended model is
of-vocabulary named-entities is becoming more crucial.Presented in Ekbal et al. (2006).

Named entities (NEs) can be translated via transliter- We propose &lock-leveltransliteration framework, as
ation: mapping symbols from one writing system to anshown in Figure 1, to model letter-level context infor-
other. Letters of the source language are typically transnation for transliteration at two levels. First, we pro-
formed into the target language with similar pronuncipose a bi-stream HMM incorporating letter-clusters to
ation. Transliteration between languages which shateetter model thevowel and non-voweltransliterations
similar alphabets and sound systems is usually not difwith position-information, i.e.jnitial and final, to im-
ficult, because the majority of letters remain the samerove the letter-level alignment accuracy. Second, based
However, the task is significantly more difficult when theon the letter-alignment, we propokatter n-gram(letter-
language pairs are considerably different, for exampleequence) alignment modelbldck to automatically
English-Arabic, English-Chinese, and English-Japaneskearn the mappings from source letter n-grams to target
In this paper, we focus oforward transliteration from letter n-grams. A few features specific for transliterations
Arabic to English. are explored, and a log-linear model is used to combine

transliteration accuracy is further improved.
The proposed system is implemented within
our SMT system and applied to a real transla-
tion scenario from Arabic to English.

1 Introduction
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i NE Blocks {—| A Log-Linear Model for Block Alignment i iS the Englishlettel’ Sequence modebl’responding tO
: H o T T o H’f | the monolingual language models in SMT. In this noisy-
| Ferlo) paln AeI00| |[FOAeInF1e) | el channel schemeP(f{|el) is the key component for
! Fartility Distortior Lexicon i transliteration, in which the transliteration betweeh

ittt ! and f{ can be modeled at either letter-to-letter level, or
Figure 1: Tra_nslitera_tion System Structure. The_ upper-part ietter n-gram transliteration leveblpck-level).
Ithe t""o‘dir_eCt'?”a'I.B"S”eag“ l"]fMM fork).'e.tter‘;.‘]['fg“merf‘t; the  oyr transliteration models are illustrated in Figure 1.
ower-part is a log-linear model for combining different featur . Nt .
functions for block-level transliteration. “We propose a Bi-Stream HMM oP(fi'le7) to infer
letter-to-letter alignments in two directions: Arabic-to-
English (F-to-E) and English-to-Arabic (E-to-F), shown
these features to learn block-level transliteration-pair the upper-part in Figure 1; refined alignment is then
from training data. The proposed transliteration framesbtained. We propose a log-linear model to extract block-
work obtained significant improvements over a strongevel transliterations with additional informative features,
baseline transliteration approach similar to AbdulJaleads illustrated in the lower-part of Figure 1.
and Larkey (2003) and Virga and Khudanpur (2003). _ _ _
The remainder of this paper is organized as follows3 Bi-Stream HMMs for Transliteration
In Sectl_on 2, we formulate the transliteration as age.ne@tandard IBM translation models (Brown et al., 1993)
translation problem; in Section 4, we propose a log-linear . .
. ; . an be used to obtain letter-to-letter translations. How-
alignment model with a local search algorithm to mode} . ;

. S . ever, these models are not directly suitable, because
the letter n-gram translation pairs; in Section 5, exper: . e . . . )
. . . . letter-alignment within NEs is strictly left-to-right. This
iments are presented. Conclusions and discussions are ; . :

iven in Section 6 seguential property is well suited to HMMs (Mogel et al.,
g ’ 1996), in which the jumps from the current aligned posi-

. . . tion can only be forward.
2 Transliteration as Translation y

. . . : .1 Bi-Stream HMMs
Transliteration can be viewed as a special case of transl%—

tion. In this approach, source and target NEs are split intd/€ Propose a bi-stream HMM for letter-alignment within
letter sequences, and each sequence is treateusasido  NE pairs. For the source NE and a target NE{, a bi-
sentenceThe appealing reason of formulating transliterstream HMM is defined as follows:
ation in this way is to utilize advanced alignment models, 7
which share ideas applied also within phrase-based staz( +7|o)— o ‘ s
tistical machine transpl)gtion (Koehn, 2004). pUfiler) ZHp(fjlea])p(ijlceaj p(aslas-), (@)
To apply this approach to transliteration, however,
some unique aspects should be considered. First, lettevherea; mapsf; to the English lettee,,; at the position
should be generated from left to right, without any rew; in the English named entity(a;|a;_1) is the transi-
ordering. Thus, the transliteration models can only exaion probability distribution assuming first-order Markov
cute forward sequential jumps. Second, for unvowelizedependencyp(f;le,, ) is a letter-to-letter translation lex-
languages such as Arabic, a single Arabic letter typicallicon; c;, is the letter cluster off; andp(cy, |cea]_) is a
maps to less than four English letters. Thus, the fertilitgluster level translation lexicon. As mentioned in the
for each letter should be recognized to ensure reasonalaleove, the vowel/non-vowel linguistic features can be uti-
length relevance. Third, the position of the letter withinlized to cluster the letters. The letters from the same clus-
a NE is important. For example, in Arabic, letters sucher tend to share the similar letter transliteration forms.
as “al” at the beginning of the NE can only be translateg(cy, |ce,, ) enables to leverage such letter-correlation in
into “the” or “al”. Therefore position information should the transliteration process.

al‘] Jj=1

be considered within the alignment models. The HMM in Egn. 2 generates two streams of observa-
Incorporating the above considerations, transliteratiotions: the letters together with the letters’ classes follow-
can be formulated as a noisy channel model. fiét= ing the distribution ofp(f;le,,) andp(cy, |Ceaj) at each
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™ transliteration model is to learn high-quality translitera-
u tion blocks from the training data in a unsupervised fash-
ion.
| Right boundary - Specifically, a blockX can be represented by its left
- and right boundaries in the source and target NEs shown
— & Wi - in Figure 2:
g i+l itk
L e X =(f]"eth, 4
Left boundary )
N wheref?*! is the source letter-ngram witfi + 1) letters
ol “l“‘ﬂ' - in source language, and its projectionedf* in the En-

glish NE with left boundary at the position afand right
Figure 2:Block (_)f letters for trgns_literation. A k_)lock is defined boundary at(i + k).

by the left- and right- boundaries in the NE-pair. We formulate theblock extractionas alocal search
problem following the work in Zhao and Waibel (2005):

: i
state, respectively. To be in accordance with the mon(_g-'ven a source_ letter n—grgrf}.’ , search for the‘ pro-
tone nature of the NE's alignment mentioned before, wiécted boundaries of candidate target letter n-geanf
enforce the following constraints in Eqn. 3, so that thé@ccording to a weighted combination of the diverse fea-

transition can only jump forward or stay at the same statéures in dog-linear modedetailed in§4.3. The log-linear
model serves as a performance measure to guide the local

aj—a;—1>0 vie[1,J]. (3) search, which, in our setup, iandomized hill-climbing
to extract bilingual letter n-gram transliteration pairs.

Since the two streams are conditionally independent
given the current state, the extended EM is straighth-1 Features for Block Transliteration
forward, with only small modifications of the standardThree featuresfertility, distortion andlexical transla-
forward-backward algorithm (Zhao et al., 2005), for pation are investigated for inferring transliteration blocks
rameter estimation. from the NE pairs. Each feature corresponds to one as-

I pect of the block within the context of a given NE pair.
3.2 Designing Letter-Classes
Pronunciation is typically highly structured. For in-4-1.1 Letter n-gram Fertility
stance, in English the pronunciation structure o¥¢ The fertility P(¢|e) of a target lettere specifies the
(consonant-vowel-consondris common. By incorpo- probability of generating source letters for translitera-
rating letter classes into the proposed two-stream HMMjon. The fertilities can be easily read-off from the letter-
the models’ expressiveness and robustness can be ialignment, i.e., the output from the Bi-stream HMM.
proved. In this work, we focus on transliteration of Ara-Given letter fertility modelP(¢e; ), a target letter n-gram
bic NEs into English. We define six non—overlappinge{, and a source n-granfy of length.J, we compute a
letter classesvowe| consonantinitial, final, noclass probability of letter n-gram lengttrelevance: P(J|e])
andunknown Initial andfinal classes represent semanticvia a dynamic programming.
markers at the beginning or end of NEs such as “Al” and The probability of generating letters by the English
“wAI” (in romanization form). Noclasssignifies letters letter n-grane{ is defined:
which can be pronounced as both a vowel and a conso-

nant depending on context, for example, the English let- I ! 5
ter “y". The unknownclass is reserved for punctuations P(Jler) = {¢{,J§§}il éi} H Ploies. ©
and letters that we do not have enough linguistic clues for - =t

mapping them to phonemes. The recursively updated cogfj, 7] in dynamic program-
4 Transliteration Blocks ming is defined as follows:

To further leverage the information from the letter- ®lj,i — 1] + log Pnuu(0]e;)

context beyond the letter-classes incorporated in our bi- Blj — 1,5 — 1] + log Py(1]e;)

stream HMM in Eqn. 2, we definletter n-gramswhich Ji] = maz Olj — 2,i— 1] +log Py(2]e;) )
consist ofn consecutive lettersas the basic transliter- ®lj — 3,1 — 1] + log Py (3le;)

ation unit. Ablock is defined as a pair of such letter

n-grams which are transliterations of each other. DumherePx,;(0|e;) is the probability of generating a Null
ing decoding of unseen NEs, transliteration is performelbtter frome;; Py (k=1|e;) is the letter-fertility model of
block-by-block, rather than letter-by-letter. The goal ofgeneratingone source letter frome;; ¢[j, ] is the cost
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so far for generating letters from: consecutive English WhereP(ei/|e§+’“) ~ 1/(k+1) is approximated by a bag-

letters (letter n-gramyi : e1,- - -, e;. of-word unigram. Since named entities are usually rela-
After computing the cost of[.J, I], the probability tively short, this approximation works reasonably well in

P(J|el) is computed for generating the length of thepractice.

source NEf{ from the English NEe! shown in Egn. 5.

With this letter n-gram fertility model, for every block, 4.2 Extended Feature Functions

we can compute a fertility score to estimate how relevargeca ise of the underlying nature of the noisy-channel
the lengths of the transliteration-pairs are. model in our proposed transliteration approach in Section
4.1.2 Distortion of Centers 2, the three base feature functions are extended to cover
When aligning blocks of letters within transliteration 1€ directions both from target-to-source and source-to-
pairs, we expect most of them are close to the diagon#9et T.herefore,.we have in total six feature functpns
due to the monotone alignment nature. Thus, a simpf@r, inferring transliteration blocks from a named entity

position metric is proposed for each block considerin(f]’a'r- _ _ _
the relative positions within NE-pairs. Besides the above six feature functions, we also com-

The center® ;. of the source phras¢j“ with a  pute the average Ietter—alignment Iinks_per blpc!(. We
J count the number of letter-alignment links within the

block, and normalize the number by the length of the

source letter-ngram. Note that, we can refine the letter-

J
length of (I + 1) is simply a normalized relative position
in the source entity defined as follows:

1 i'=j+ 5! alignment by growing the intersections of the two di-

Opatt = 7—— E : (7)  rection letter-alignments from Bi-stream HMM via ad-
J [+1 4~ [+1 .. . . . .

J'=j ditional aligned letter-pairs seen in the union of the two.

In a way, this approach is similar to those of refining the

define the expected corresponding relative center for efrd-1evel alignment for SMT in (Och and Ney, 2003).

ery source letterf;, using the lexicalized position score This step is shown in the upper-partin Elgure 1.
as follows: Overall, our proposed feature functions cover rela-

(k) tively different aspects for transliteration blocks: the

_ L Zz’/:@ i" - P(fjlew) g) block level length relevance probability in Eqn. 5, lexical
k41 5089 pfoleq) translation equivalence, and positions’ distortion from a
whereP(f;|e;) is the letter translation lexicon estimated92"53'a" distribution in Eqn. 8’. in both (_jlrecuo_ns_; and
the average number of letter-alignment links within the

in 1BM Models 1~5. i is the position index, which block. Also, these feature functions are positive and
is weighted by the letter-level translation probabilities; ' ' P

; ) o bounded within0, 1]. Therefore, it is suitable to apply a
the term ofy_;* P(f;|eir) provides a normalization so o, 1] PRY

that th Zt:Zd ter is within th fthe t log-linear model (ing4.3) to combine theveightedindi-
atthe expected center 1s wi Lnk he range ot ne ar9¢lqual strengths from the proposed feature functions for
length. The expected center fgf™" is simply the aver-

£ thes i better modeling the quality of the candidate translitera-
age of thed .+« (f1): tion blocks. This log-linear model will serve as a per-
4+l formance measure in a local-searchh4 for inferring
@itk = 1 Z @ejiﬂ(fj') (9) transliteration blocks.

J'=J

For the center of English letter-phragg™, we first

Oitk (f7)

. . 4.3 Log-Linear Transliteration Model
Given the estimated centers 6f.;+. and© i+, we g

can compute how close they are via the probability of/e Propose a log-linear model to combine the seven fea-
P(®+1|®,+1). In our case, because of the mono-Jlure functions irg4.1 with proper weights as in Eqn. 11:

tone alignment nature of transliteration pairs, a simple

M
gaussian model is employed to enforce that the point Pr(X|e, f)= exp(zm:}\;\mqﬁm(X,ei)) ,
(©i+k, © s+1) is Not far away from the diagonal. 2xry Py AmOm (X', 1))
; ; ' T (11)
4.1.3 Letter Lexical Transliteration where ¢,,(X, e, f) are the real-valued bounded feature

Similar to IBM Model-1 (Brown et al., 1993), we use functions corresponding to the seven models introduced
a “bag-of-letter” generative model within a block to ap-in §4.1. The log-linear model’s parameters are the
proximate the lexical transliteration equivalence: weights{\,, } associated with each feature function.
Gt itk With hand-labeled datg,\,,} can be learnt via gen-
P(fitheitky= P(fy/|es)Plei|eit®), (10) eralized iterative scaling algorithm (GIS) (Darroch and
! H Z ! Ratcliff, 1972) or improved iterative scaling (11S) (Berger

jr=ji'=i
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et al., 1996). However, as these algorithms are computa-Overall, given the parallel NE pairs, we can train the
tionally expensive, we apply an alternative approach usetter level translation models in both directions via the
ing a simplex down-hill algorithm to optimize the weightsBi-stream HMM in Eqn. 2. From the letter-alignment,
toward better F-measure of block transliterations. Eaclwe can build the letter translation lexicons and fertility
feature function corresponds to one dimension in the sintables. With these tables, the base feature functions are
plex, and the local optimum only happens at a vertex adhen computed for each candidate block, and the features
the simplex. Simplex-downhill has several advantagesire combined in the log-linear model in Egn. 11. Given
it is an efficient approach for optimizing multi-variablesa named-entity pair in the training data, we rank all the
given some performance measure. We compute the Fansliteration blocks by the scores using the log-linear
measure against a gold-standard block set extracted frambdel. This step is shown in the lower-part in Figure 1.
hand-labeled letter-alignment.

To build gold-standard blocks from hand-labeled4.5 Decoding Unseen NEs
letter-alignment, we propose théock transliteration co-

; _ S The decoding of NEs is an extension to the noisy-channel
herencein a two-stage fashion. First is the forward pro-

o _ " scheme in Eqn. 1. In our configurations for NE translit-
jection: for_each candidate source Ietter-ngrﬁ_jﬁ ' eration, the extracted transliteration blocks are used. Our
seargh fo_r itsleft-moste; and ng_ht-most Er prOjected letter ngram is a standard letter-ngram model trained us-
positions in thetarget NE according to the given letter- e sril M toolkit (Stolcke, 2002). To transliterate the
alignment. Second is the bagkward prOJECtIOH'Z for the,nseen NEs, the decoder (Hewavitharana et al., 2005) is
target letter-gram; , search for itdeft-mostfy andright- . fiired for monotone decoding. It loads the transliter-
most f,+ projected positions in theourceNE. Now if 40 hlocks and the letter-ngram LM, and it decodes the
i'2j andr'<j t: l.e. f{ is contained WITT the source \nseen Arabic named entities with block-based translit-
letter-ngramf;/ ™", then this blockX = (fj.l sef)isde-  eration from left to right.

fined ascoherentfor the aligned pairs(fj.*", ef) . We

accept coherenX as gold-standard blocks. This block5  Experiments

transliteration coherence is generally sound for extracting

the gold-blocks mostly because of the the monotone lef6.1 The Data

to-right nature of the letter-alignment for transllteratlonwe have 74,887 bilingual geographic names from

A related coherence assumption can be found in (FOfDCZOOSGOLNGA 11,212 bilingual person names
2002), where their assumption on phrase-pairs for stg- LDCZOOSGOQ, and’ about 6,000 bilingual names
tistical machine translation is shown to be somewhat r&yiracted from the I’BAMAdictiona’ry In total. there are
strictive for SMT. This is mainly because the word align-92 099 NE pairs. We split them intc.> three p;artS' 91 459
me_nt IS ofte_nnon—monqt_on,e especially fqr Iangguge- airs as the training dataset, 100 pairs as the development
pairs from dn‘f_erent families such as Arabic-English ancEataset, and 540 unique NE pairs as the held-out dataset.
Chinese-English. An additional test set is collected from the TIDES 2003
4.4 Aligning Letter-Blocks: a Local Search Arabic-English machine translation evaluation test set.
I - . The 663 sentences contain 286 unique words, which were
Aligning the blocks within NE pairs can be formulated_not covered by the available training data. From this set

as alocal search given the heuristic function defined II’]funtranslated words, we manually labeled the entities of
Eqn. 11. To be more specific: given a Arabic Ietter-ngranﬁJ ! ’ nualy L
ersons, locations and organizations, giving a total7of

3+ - :
/ r algorithm rches for th t translation care. .
J; 7, ouralgo searches for the best translation ca unique un-translated NEs. The BAMA toolkit was used

did'ateej”“ in the target named entities. In ourimplemeny, s manize the Arabic words. Some names from this test
tation, we use stochastic hill-climbing with Eqn. 11 as th ot 5re shown in Figure 1.

performance measure. Down-hill moves are accepted to
allow one or two left and right null letters to be attacheq,
itk . . r
toe; " to expand the table of transliteration-blocks.
To make the local search more effective, we normal
ize the letter translation lexican f|e) within the parallel
entity pair as in:

These untranslated NEs make up only a very small

action of all words in the test set. Therefore, having

correct transliterations would give only small improve-

ments in terms of BLEU (Papineni et al., 2002) and NIST

scores. However, successfully translating these unknown

NEs is very crucial for cross-lingual distillation tasks or
P(fle) guestion-answering based on the MT-output.

—_ (12)

2 =1 Pfyle) The corpus is provided as FOUO (for official use only) in
. the DARPA-GALEproject

In this way, the distribution oP(f|e) is sharperand more 2| pc2004L02: Buckwalter Arabic Morphological Ana-

focused in the context of an entity pair. lyzer version 2.0

P(fle) =
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Table 1: Test Set Examples. Table 2: Transliteration accuracy for different translitera-

Arabic BADLA Reference tion models.
:lj g;;;: gf : E;; System | Accuracy
S b fhytsdxr Weizsacker Baseline| 39.18%
Ty wildHmbny al-Dahmani L-Block | 41.24%
JpRe 1o eylwygyr Zellweger LCBE 46.39%
LS LS vhlesyn Thalsin

components remained the same as in the baseline system.
To evaluate the transliteration performance, we use The LCBE system is an extension to both the baseline

edit-distancebetween the hypothesis against a referencand the L-Block system. The key difference in LCBE
set. This is to count the number of insertions, deleis that our proposed bi-stream HMM in Eqn. 2 was ap-
tions, and substitutions required to correct the hypottplied in both directions with extended letter-classes. The
esis to match the given reference. An edit-distance @¢esulting combined alignment was used together with all
zero is a perfect match. However, NEs typically havéeatures of the L-Block system to guide the local-search
more than one correct variant. For example, the Arabitr extracting the blocks. The same procedure of decod-
name “mHmd” (in romanized form) can be transliteratedng was then carried out for the unseen NEs using the
as Muhammad or Mohammed; both are considered &tracted blocks.
correct transliterations. Ideally, we want to have all vari- To build the letter language model for the decoding
ants as reference transliterations. To enable our transljgrocess, we first split the English entities into charac-
eration evaluation to be more informative given only onders; additionajposition indicators‘ _begin” and “end”
reference, edit-distance of one between hypothesis amere added to the begin and end position of the named-
reference is considered to be an acceptable match.  entity; “_middle” was added between the first name and

last name. A letter-trigram language model with SRI LM
5.2 Comparison of Transliteration Models toolkit (Stolcke, 2002) was then built using the target side
l;nglish) of NE pairs tagged with the above position in-

proposed framework in Figure.1: the baseline Block sy ormation.

tem, a system in which we use a log-linear combination 2Pl 2 shows that the baseline system gives an accu-
of alignment features as described;i3, we call the the "aCy 0f 39.18%, while the extended systems L-Block and
L-Block system, and finally a system, which also useSCBE give 41.24% and 46.39%, respectively. These re-
the bi-stream HMM alignment model as described3n sqlts show that the additional features besides _the letter-
This last system will be denoted LCBE system. alignment are helpful. The L-Block system, which uses

The baseline is based on the refined Ietter—alignmen‘"’?ese features, outperforr_ns the baseline system signifi-
from the two directions of IBM-Model-4, trained with a cantly by 2.1% absolute in accuracy. The results also
scheme ofi>h54% using GIZA++ (Och ahd Ney, 2004) show that the bi-stream HMM alignment, which uses not

The final alignment was obtained by growing the interONly the letters but also the letter-classes, leads to signif-

sections between Arabic-to-English (AE) and Englishlca_nt improvement. [t outperforms the L-Block system,
to-Arabic (EA) alignments with additional aligned Ietter-Wh'Ch does not leverage the letter-classes and monotone
pairs seen in the union. This is to compensate for th%llgnment, by 4.1
inherent asymmetry in alignment models. Blocks (letter- . .

ngram pairs) were collected directly from the refined5'3 Incorporation of Spell Checking

letter-alignment, using the same algorithm as describeédur spelling-checker is based on the suggested word-
in §4.3 for extracting gold-standard letter blocks. There iforms from web search engines for ambiguous candi-
no length restrictions to the letter-ngram extracted in oullates. We collected web statistics frequency for both the
system. All the blocks were then scored using relativeroposed transliteration candidates from our system, and
frequencies and lexical scores in both directions, similaalso the suggested candidates from web-search engines.
to the scoring of phrase-pairs in SMT (Koehn, 2004).  All the candidates were re-ranked by their frequencies.

In the L-Block system additional feature functions as Figure 3 shows the performances on the held-out set,
defined in§4.1 were computed on top of the letter-levelusing system LCBE augmented with a spell-checker
alignment obtained from the baseline system. A log{LCBE+Spel), with varying sizes of N-best hypotheses
linear model combining these features was learned witists. The held-out set contains 540 unique named entity
the gold-blocks described §#.3. Transliteration blocks pairs. We show accuracy when exact match is requested
were extracted using the local-seargh4. The other and when an edit distances of one is allowed.

We compare the performance of three systems within oj

5% absolute.
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. Table 3: Transliteration examples between LCBE+Spell
and Google web translation.
8.9
6.8 Source Reference LCBE+Spell Google
7 0.7 s Sumnaye Sumaye Somai
E * St § 3% Hazumitsu Hazumitsu Hazoumitzo
3 0.6 2o Yalahow Ylahu Elaho
g el Nilkbakht Nkbakht Nkbacht
8.5 el Milulas Mikulag Mikoias
=gl e g Eumaratunga EKumaratunga Kumaratung
a.4 LCBE-8 Edit 1 Ol Hamdan Hamdan Hamedan
LCBE+Spell-8 Edit —+— ol gl gl Mazandaran Mazandaran Mazandaran
8.3 LCBE+Spell-1 Edit —#— | daiiae Sig Wickremasinghe ‘Wikramsinghe The Ekermsingh
8.2 ) LCIBE—llEd.iJI; _E._

1 2 3 4 5 ] 7 8 9 18
H-best candidates

6 Conclusions and Discussions
Figure 3: Transliteration accuracy of LCBE and LCBE+Spell
models for 540 named entity pairs in the held-out set. In this paper we proposed a novel transliteration model.

e —_— Viewing transliteration as a translation task we adopt
alignment and decoding techniques used in a phrase-
based statistical machine translation system to work on
0.65 | ] letter sequences instead of word sequences. To improve
the performance we extended the HMM alignment model
into a bi-stream HMM alignment by incorporating letter-
8.55 ] classes into the alignment process. We also showed that a
block-extraction approach, which uses a log-linear com-
bination of multiple alignment features, can give signif-

RAccuracy

8.45 | : icant improvements in transliteration accuracy. Finally,
LCBE —+— . .,
pal LCBE+Spell —+— spell-checking based on work occurrence statistics ob-
: 1 2 3 4 5 6 7 8 9 18 tained from the web gave an additional boost in translit-
N-best candidates eration accuracy.

Fiqure 4: Transliteration ; ¢ N-best hvooth for The goal for this work is to improve the quality of ma-
LCgBE and LCaBéLSepae;Fmo%Cgll; iiut:r):eoMT-_Os?festépect) €588 Chine translation, esp. when used in cross-lingual infor-
' mation retrieval and distillation tasks, by incorporating
Figure 4 shows the performances in the unseen test 8¢ Proposed framework to handle unknown words. Fig-
of LCBE and LCBE+Spell, with varying sizes of N-bestUré 5 gives an example of the difference named entity
hypotheses lists. LCBE+Spell reaches 52% accuracy Hansliteration can make. Shown are the original SMT
1-best hypothesis. In the 5-best and 10-best cases, the 8¢Stem output, the translation when the proposed transilit-
curacies of LCBE+Spell system archive the highest pefration models are used to translat_e the unknown _named-
formances with 66% and 72.16% respectively. The spelfNtItEs, and the reference translation. A comparison of
checker increases the 1-best accuracy by 11.12% and i o SMT outputs indicates that integrating the pro-
10-best accuracy by 7.69%. All these improvements afosed transliteration model into our machine translation
statistically significant. These results are also comparabR/Stem can significantly improve translation utility.

to other state-of-the-art statistical Arabic name transliter-
ation systems such as (Al-Onaizan and Knight, 2002).
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(Google). Table 3 shows transliteration examples from

our best system in comparison with Google (as in June

20, 2006§. The Google system achieved 45.36% accuReferences
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Arabic source sentence:

sad B4 pli feaindd 520 yall 2l jell ) jaa
uy|)u95&)mh‘ms;|dmﬁagdu|)é

w F

g Al bale p Al 2Dl aales uedh dame e s,
SMT hypothesis:

in colombo 4 janvary 1997 | the xinhua / warned by the prime
minister { UNK “iiewa 59 Jadl ) SV pedi ) chaitperson
{UNK 7= ke o 1 pulldl } cautioned the destruction of the
peace process sponsored by norway .

SMT with tihe proposed franstiteration model:

in colombao 4 january 1997 | the xinhua / warned by the prime
minister Srilankan Ranil Wikramsinghe chairperson
Chandrika Kumaratunga cautioned the destruction of the
peace process sponsored by norway .

Reference translation:

Colombo 04/01 (Xinhua) Sri Lankcan Prime Minister Ranil
Wickremagsinghe warned the country's President Chandrilca
Kumaramnga of the consecquences of destroying the peace
process sponsored by the Norwegians.

Figure 5: Incorporation of the transliteration model to our

SMT System.
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