
Proceedings of NAACL HLT 2007, pages 364–371,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

A Log-linear Block Transliteration Model based on Bi-Stream HMMs

Bing Zhao, Nguyen Bach, Ian Lane,and Stephan Vogel
{bzhao, nbach, ianlane, vogel}@cs.cmu.edu

Language Technologies Institute
School of Computer Science, Carnegie Mellon University

Abstract

We propose a novel HMM-based framework to
accurately transliterate unseen named entities.
The framework leverages features in letter-
alignment and letter n-gram pairs learned from
available bilingual dictionaries. Letter-classes,
such as vowels/non-vowels, are integrated to
further improve transliteration accuracy. The
proposed transliteration system is applied to
out-of-vocabulary named-entities in statistical
machine translation (SMT), and a significant
improvement over traditional transliteration ap-
proach is obtained. Furthermore, by incor-
porating an automatic spell-checker based on
statistics collected from web search engines,
transliteration accuracy is further improved.
The proposed system is implemented within
our SMT system and applied to a real transla-
tion scenario from Arabic to English.

1 Introduction

Cross-lingual natural language applications, such as in-
formation retrieval, question answering, and machine
translation for web-documents (e.g. Google translation),
are becoming increasingly important. However, current
state-of-the-art statistical machine translation (SMT) sys-
tems cannot yet translate named-entities which are not
seen during training. New named-entities, such as per-
son, organization, and location names are continually
emerging on the World-Wide-Web. To realize effective
cross-lingual natural language applications, handling out-
of-vocabulary named-entities is becoming more crucial.

Named entities (NEs) can be translated via transliter-
ation: mapping symbols from one writing system to an-
other. Letters of the source language are typically trans-
formed into the target language with similar pronunci-
ation. Transliteration between languages which share
similar alphabets and sound systems is usually not dif-
ficult, because the majority of letters remain the same.
However, the task is significantly more difficult when the
language pairs are considerably different, for example,
English-Arabic, English-Chinese, and English-Japanese.
In this paper, we focus onforward transliteration from
Arabic to English.

The work in (Arbabi et al., 1994), to our knowledge, is
the first work on machine transliteration of Arabic names
into English, French, and Spanish. The idea is to vow-
elize Arabic names by adding appropriate vowels and uti-
lizing a phonetic look-up table to provide the spelling in
the target language. Their framework is strictly applica-
ble within standard Arabic morphological rules. Knight
and Graehl (1997) introduced finite state transducers that
implement back-transliteration from Japanese to English,
which was then extended to Arabic-English in (Stalls and
Knight, 1998). Al-Onaizan and Knight (2002) translit-
erated named entities in Arabic text to English by com-
bining phonetic-based and spelling-based models, and re-
ranking candidates with full-name web counts, named en-
tities co-reference, and contextual web counts. Huang
(2005) proposed a specific model for Chinese-English
name transliteration with clusterings of names’ origins,
and appropriate hypotheses are generated given the ori-
gins. All of these approaches, however, are not based
on a SMT-framework. Technologies developed for SMT
are borrowed in Virga and Khudanpur (2003) and Ab-
dulJaleel and Larkey (2003). Standard SMT alignment
models (Brown et al., 1993) are used to align letter-pairs
within named entity pairs for transliteration. Their ap-
proach are generative models for letter-to-letter transla-
tions, and the letter-alignment is augmented with heuris-
tics. Letter-level contextual information is shown to be
very helpful for transliteration. Oh and Choi (2002)
used conversion units for English-Korean Transliteration;
Goto et al. (2003) used conversion units, mapping En-
glish letter-sequence into Japanese Katakana character
string. Li et al. (2004) presented a framework allowing
direct orthographical mapping of transliteration units be-
tween English and Chinese, and an extended model is
presented in Ekbal et al. (2006).

We propose ablock-leveltransliteration framework, as
shown in Figure 1, to model letter-level context infor-
mation for transliteration at two levels. First, we pro-
pose a bi-stream HMM incorporating letter-clusters to
better model thevowel and non-vowel transliterations
with position-information, i.e.,initial and final, to im-
prove the letter-level alignment accuracy. Second, based
on the letter-alignment, we proposeletter n-gram(letter-
sequence) alignment models (block) to automatically
learn the mappings from source letter n-grams to target
letter n-grams. A few features specific for transliterations
are explored, and a log-linear model is used to combine

364

Figure 1:Transliteration System Structure. The upper-part is
the two-directional Bi-Stream HMM for letter-alignment; the
lower-part is a log-linear model for combining different feature
functions for block-level transliteration.

these features to learn block-level transliteration-pairs
from training data. The proposed transliteration frame-
work obtained significant improvements over a strong
baseline transliteration approach similar to AbdulJaleel
and Larkey (2003) and Virga and Khudanpur (2003).

The remainder of this paper is organized as follows.
In Section 2, we formulate the transliteration as a general
translation problem; in Section 4, we propose a log-linear
alignment model with a local search algorithm to model
the letter n-gram translation pairs; in Section 5, exper-
iments are presented. Conclusions and discussions are
given in Section 6.

2 Transliteration as Translation

Transliteration can be viewed as a special case of transla-
tion. In this approach, source and target NEs are split into
letter sequences, and each sequence is treated as apseudo
sentence. The appealing reason of formulating transliter-
ation in this way is to utilize advanced alignment models,
which share ideas applied also within phrase-based sta-
tistical machine translation (Koehn, 2004).

To apply this approach to transliteration, however,
some unique aspects should be considered. First, letters
should be generated from left to right, without any re-
ordering. Thus, the transliteration models can only exe-
cute forward sequential jumps. Second, for unvowelized
languages such as Arabic, a single Arabic letter typically
maps to less than four English letters. Thus, the fertility
for each letter should be recognized to ensure reasonable
length relevance. Third, the position of the letter within
a NE is important. For example, in Arabic, letters such
as “al” at the beginning of the NE can only be translated
into “the” or “al”. Therefore position information should
be considered within the alignment models.

Incorporating the above considerations, transliteration
can be formulated as a noisy channel model. LetfJ

1 =

f1f2...fJ denote the source NE withJ letters, eI
1 =

e1e2...eI be an English transliteration candidate withI
letters. According to Bayesian decision rule:

êI
1=arg max

{eI
1}

P (eI
1|fJ

1)= arg max
{eI

1}
P (fJ

1 |eI
1)P (eI

1), (1)

whereP (fJ
1 |eI

1) is theletter translation modelandP (eI
1)

is the Englishletter sequence modelcorresponding to
the monolingual language models in SMT. In this noisy-
channel scheme,P (fJ

1 |eI
1) is the key component for

transliteration, in which the transliteration betweeneI
1

andfJ
1 can be modeled at either letter-to-letter level, or

letter n-gram transliteration level (block-level).
Our transliteration models are illustrated in Figure 1.

We propose a Bi-Stream HMM ofP (fJ
1 |eI

1) to infer
letter-to-letter alignments in two directions: Arabic-to-
English (F-to-E) and English-to-Arabic (E-to-F), shown
in the upper-part in Figure 1; refined alignment is then
obtained. We propose a log-linear model to extract block-
level transliterations with additional informative features,
as illustrated in the lower-part of Figure 1.

3 Bi-Stream HMMs for Transliteration

Standard IBM translation models (Brown et al., 1993)
can be used to obtain letter-to-letter translations. How-
ever, these models are not directly suitable, because
letter-alignment within NEs is strictly left-to-right. This
sequential property is well suited to HMMs (Vogel et al.,
1996), in which the jumps from the current aligned posi-
tion can only be forward.

3.1 Bi-Stream HMMs

We propose a bi-stream HMM for letter-alignment within
NE pairs. For the source NEfJ

1 and a target NEeI
1, a bi-

stream HMM is defined as follows:

p(fJ
1 |eI

1)=
∑

aJ
1

J∏

j=1

p(fj |eaj)p(cfj |ceaj
)p(aj |aj−1), (2)

whereaj mapsfj to the English lettereaj at the position
aj in the English named entity.p(aj |aj−1) is the transi-
tion probability distribution assuming first-order Markov
dependency;p(fj |eaj) is a letter-to-letter translation lex-
icon; cfj is the letter cluster offj andp(cfj |ceaj

) is a
cluster level translation lexicon. As mentioned in the
above, the vowel/non-vowel linguistic features can be uti-
lized to cluster the letters. The letters from the same clus-
ter tend to share the similar letter transliteration forms.
p(cfj |ceaj

) enables to leverage such letter-correlation in
the transliteration process.

The HMM in Eqn. 2 generates two streams of observa-
tions: the letters together with the letters’ classes follow-
ing the distribution ofp(fj |eaj) andp(cfj |ceaj

) at each

365

Figure 2:Block of letters for transliteration. A block is defined
by the left- and right- boundaries in the NE-pair.

state, respectively. To be in accordance with the mono-
tone nature of the NE’s alignment mentioned before, we
enforce the following constraints in Eqn. 3, so that the
transition can only jump forward or stay at the same state:

aj−aj−1≥0 ∀j ∈ [1, J]. (3)

Since the two streams are conditionally independent
given the current state, the extended EM is straight-
forward, with only small modifications of the standard
forward-backward algorithm (Zhao et al., 2005), for pa-
rameter estimation.

3.2 Designing Letter-Classes

Pronunciation is typically highly structured. For in-
stance, in English the pronunciation structure of “cvc”
(consonant-vowel-consonant) is common. By incorpo-
rating letter classes into the proposed two-stream HMM,
the models’ expressiveness and robustness can be im-
proved. In this work, we focus on transliteration of Ara-
bic NEs into English. We define six non-overlapping
letter classes:vowel, consonant, initial , final, noclass,
andunknown. Initial andfinal classes represent semantic
markers at the beginning or end of NEs such as “Al” and
“wAl” (in romanization form). Noclasssignifies letters
which can be pronounced as both a vowel and a conso-
nant depending on context, for example, the English let-
ter “y”. The unknownclass is reserved for punctuations
and letters that we do not have enough linguistic clues for
mapping them to phonemes.

4 Transliteration Blocks

To further leverage the information from the letter-
context beyond the letter-classes incorporated in our bi-
stream HMM in Eqn. 2, we defineletter n-grams, which
consist ofn consecutive letters, as the basic transliter-
ation unit. A block is defined as a pair of such letter
n-grams which are transliterations of each other. Dur-
ing decoding of unseen NEs, transliteration is performed
block-by-block, rather than letter-by-letter. The goal of

transliteration model is to learn high-quality translitera-
tion blocks from the training data in a unsupervised fash-
ion.

Specifically, a blockX can be represented by its left
and right boundaries in the source and target NEs shown
in Figure 2:

X = (f j+l
j , ei+k

i), (4)

wheref j+l
j is the source letter-ngram with(l + 1) letters

in source language, and its projection ofei +k
i in the En-

glish NE with left boundary at the position ofi, and right
boundary at(i + k).

We formulate theblock extractionas a local search
problem following the work in Zhao and Waibel (2005):
given a source letter n-gramf j+l

j , search for the pro-

jected boundaries of candidate target letter n-gramei +k
i

according to a weighted combination of the diverse fea-
tures in alog-linear modeldetailed in§4.3. The log-linear
model serves as a performance measure to guide the local
search, which, in our setup, israndomized hill-climbing,
to extract bilingual letter n-gram transliteration pairs.

4.1 Features for Block Transliteration

Three features:fertility, distortion, and lexical transla-
tion are investigated for inferring transliteration blocks
from the NE pairs. Each feature corresponds to one as-
pect of the block within the context of a given NE pair.

4.1.1 Letter n-gram Fertility

The fertility P (φ|e) of a target lettere specifies the
probability of generatingφ source letters for translitera-
tion. The fertilities can be easily read-off from the letter-
alignment, i.e., the output from the Bi-stream HMM.
Given letter fertility modelP (φ|ei), a target letter n-gram
eI
1, and a source n-gramfJ

1 of lengthJ , we compute a
probability of letter n-gram lengthrelevance:P (J |eI

1)
via a dynamic programming.

The probability of generatingJ letters by the English
letter n-grameI

1 is defined:

P (J |eI
1) = max

{φI
1,J=

∑I
i=1 φi}

I∏

i=1

P (φi|ei). (5)

The recursively updated costφ[j, i] in dynamic program-
ming is defined as follows:

φ[j, i] = max





φ[j, i− 1] + log PNull(0|ei)
φ[j − 1, i− 1] + log Pφ(1|ei)
φ[j − 2, i− 1] + log Pφ(2|ei)
φ[j − 3, i− 1] + log Pφ(3|ei)

, (6)

wherePNull(0|ei) is the probability of generating a Null
letter fromei; Pφ(k=1|ei) is the letter-fertility model of
generatingone source letter fromei; φ[j, i] is the cost

366

so far for generatingj letters fromi consecutive English
letters (letter n-gram)ei

1 : e1, · · · , ei.
After computing the cost ofφ[J, I], the probability

P (J |eI
1) is computed for generating the length of the

source NEfJ
1 from the English NEeI

1 shown in Eqn. 5.
With this letter n-gram fertility model, for every block,
we can compute a fertility score to estimate how relevant
the lengths of the transliteration-pairs are.

4.1.2 Distortion of Centers
When aligning blocks of letters within transliteration

pairs, we expect most of them are close to the diagonal
due to the monotone alignment nature. Thus, a simple
position metric is proposed for each block considering
the relative positions within NE-pairs.

The center̄ fj+l
j

of the source phrasef j+l
j with a

length of(l + 1) is simply a normalized relative position
in the source entity defined as follows:

¯fj+l
j

=
1

l + 1

j′=j+l∑

j′=j

j′

l + 1
. (7)

For the center of English letter-phraseei+k
i , we first

define the expected corresponding relative center for ev-
ery source letterfj′ using the lexicalized position score
as follows:

¯ei+k
i

(fj′) =
1

k + 1
·
∑(i+k)

i′=i i′ · P (fj′ |ei′)∑(i+k)
i′=i P (fj′ |ei′)

, (8)

whereP (fj′ |ei) is the letter translation lexicon estimated
in IBM Models 1∼5. i is the position index, which
is weighted by the letter-level translation probabilities;
the term of

∑i+k
i′=i P (fj′ |ei′) provides a normalization so

that the expected center is within the range of the target
length. The expected center forei+k

i is simply the aver-
age of thē ei+k

i
(fj′):

¯ei+k
i

=
1

l + 1

j+l∑

j′=j

¯ei+k
i

(fj′) (9)

Given the estimated centers of̄fj+l
j

and¯ei+k
i

, we

can compute how close they are via the probability of
P (¯fj+l

j
|¯ei+k

i
). In our case, because of the mono-

tone alignment nature of transliteration pairs, a simple
gaussian model is employed to enforce that the point
(¯ei+k

i
,¯fj+l

j
) is not far away from the diagonal.

4.1.3 Letter Lexical Transliteration
Similar to IBM Model-1 (Brown et al., 1993), we use

a “bag-of-letter” generative model within a block to ap-
proximate the lexical transliteration equivalence:

P (f j+l
j |ei+k

i)=
j+l∏

j′=j

i+k∑

i′=i

P (fj′ |ei′)P (ei′ |ei+k
i), (10)

whereP (ei′ |ei+k
i) ' 1/(k+1) is approximated by a bag-

of-word unigram. Since named entities are usually rela-
tively short, this approximation works reasonably well in
practice.

4.2 Extended Feature Functions

Because of the underlying nature of the noisy-channel
model in our proposed transliteration approach in Section
2, the three base feature functions are extended to cover
the directions both from target-to-source and source-to-
target. Therefore, we have in total six feature functions
for inferring transliteration blocks from a named entity
pair.

Besides the above six feature functions, we also com-
pute the average letter-alignment links per block. We
count the number of letter-alignment links within the
block, and normalize the number by the length of the
source letter-ngram. Note that, we can refine the letter-
alignment by growing the intersections of the two di-
rection letter-alignments from Bi-stream HMM via ad-
ditional aligned letter-pairs seen in the union of the two.
In a way, this approach is similar to those of refining the
word-level alignment for SMT in (Och and Ney, 2003).
This step is shown in the upper-part in Figure 1.

Overall, our proposed feature functions cover rela-
tively different aspects for transliteration blocks: the
block level length relevance probability in Eqn. 5, lexical
translation equivalence, and positions’ distortion from a
gaussian distribution in Eqn. 8, in both directions; and
the average number of letter-alignment links within the
block. Also, these feature functions are positive and
bounded within[0, 1]. Therefore, it is suitable to apply a
log-linear model (in§4.3) to combine theweightedindi-
vidual strengths from the proposed feature functions for
better modeling the quality of the candidate translitera-
tion blocks. This log-linear model will serve as a per-
formance measure in a local-search in§4.4 for inferring
transliteration blocks.

4.3 Log-Linear Transliteration Model

We propose a log-linear model to combine the seven fea-
ture functions in§4.1 with proper weights as in Eqn. 11:

Pr(X|e, f)=
exp(

∑M
m=1 λmφm(X, e, f))∑

{X′} exp(
∑M

m=1 λmφm(X ′, e, f))
,

(11)
whereφm(X, e, f) are the real-valued bounded feature
functions corresponding to the seven models introduced
in §4.1. The log-linear model’s parameters are the
weights{λm} associated with each feature function.

With hand-labeled data,{λm} can be learnt via gen-
eralized iterative scaling algorithm (GIS) (Darroch and
Ratcliff, 1972) or improved iterative scaling (IIS) (Berger

367

et al., 1996). However, as these algorithms are computa-
tionally expensive, we apply an alternative approach us-
ing a simplex down-hill algorithm to optimize the weights
toward better F-measure of block transliterations. Each
feature function corresponds to one dimension in the sim-
plex, and the local optimum only happens at a vertex of
the simplex. Simplex-downhill has several advantages:
it is an efficient approach for optimizing multi-variables
given some performance measure. We compute the F-
measure against a gold-standard block set extracted from
hand-labeled letter-alignment.

To build gold-standard blocks from hand-labeled
letter-alignment, we propose theblock transliteration co-
herencein a two-stage fashion. First is the forward pro-
jection: for each candidate source letter-ngramf j+n

j ,
search for itsleft-mostel and right-most er projected
positions in thetarget NE according to the given letter-
alignment. Second is the backward projection: for the
target letter-gramer

l , search for itsleft-mostfl′ andright-
mostfr′ projected positions in thesourceNE. Now if
l′≥j andr′≤j+n, i.e. fr

l is contained within the source
letter-ngramf j+n

j , then this blockX = (f j+n
j , er

l) is de-

fined ascoherentfor the aligned pairs:(f j+n
j , er

l) . We
accept coherentX as gold-standard blocks. This block
transliteration coherence is generally sound for extracting
the gold-blocks mostly because of the the monotone left-
to-right nature of the letter-alignment for transliteration.
A related coherence assumption can be found in (Fox,
2002), where their assumption on phrase-pairs for sta-
tistical machine translation is shown to be somewhat re-
strictive for SMT. This is mainly because the word align-
ment is oftennon-monotone, especially for langauge-
pairs from different families such as Arabic-English and
Chinese-English.

4.4 Aligning Letter-Blocks: a Local Search

Aligning the blocks within NE pairs can be formulated
as a local search given the heuristic function defined in
Eqn. 11. To be more specific: given a Arabic letter-ngram
f j+l

j , our algorithm searches for the best translation can-

didateei+k
i in the target named entities. In our implemen-

tation, we use stochastic hill-climbing with Eqn. 11 as the
performance measure. Down-hill moves are accepted to
allow one or two left and right null letters to be attached
to ei+k

i to expand the table of transliteration-blocks.
To make the local search more effective, we normal-

ize the letter translation lexiconp(f |e) within the parallel
entity pair as in:

P̂ (f |e) =
P (f |e)∑J

j′=1 P (fj′ |e)
. (12)

In this way, the distribution of̂P (f |e) is sharper and more
focused in the context of an entity pair.

Overall, given the parallel NE pairs, we can train the
letter level translation models in both directions via the
Bi-stream HMM in Eqn. 2. From the letter-alignment,
we can build the letter translation lexicons and fertility
tables. With these tables, the base feature functions are
then computed for each candidate block, and the features
are combined in the log-linear model in Eqn. 11. Given
a named-entity pair in the training data, we rank all the
transliteration blocks by the scores using the log-linear
model. This step is shown in the lower-part in Figure 1.

4.5 Decoding Unseen NEs

The decoding of NEs is an extension to the noisy-channel
scheme in Eqn. 1. In our configurations for NE translit-
eration, the extracted transliteration blocks are used. Our
letter ngram is a standard letter-ngram model trained us-
ing the SriLM toolkit (Stolcke, 2002). To transliterate the
unseen NEs, the decoder (Hewavitharana et al., 2005) is
configured for monotone decoding. It loads the transliter-
ation blocks and the letter-ngram LM, and it decodes the
unseen Arabic named entities with block-based translit-
eration from left to right.

5 Experiments

5.1 The Data

We have 74,887 bilingual geographic names from
LDC2005G01-NGA, 11,212 bilingual person names
from LDC2005G021, and about 6,000 bilingual names
extracted from the BAMA2 dictionary. In total, there are
92,099 NE pairs. We split them into three parts: 91,459
pairs as the training dataset, 100 pairs as the development
dataset, and 540 unique NE pairs as the held-out dataset.

An additional test set is collected from the TIDES 2003
Arabic-English machine translation evaluation test set.
The 663 sentences contain 286 unique words, which were
not covered by the available training data. From this set
of untranslated words, we manually labeled the entities of
persons, locations and organizations, giving a total of97
unique un-translated NEs. The BAMA toolkit was used
to romanize the Arabic words. Some names from this test
set are shown in Figure 1.

These untranslated NEs make up only a very small
fraction of all words in the test set. Therefore, having
correct transliterations would give only small improve-
ments in terms of BLEU (Papineni et al., 2002) and NIST
scores. However, successfully translating these unknown
NEs is very crucial for cross-lingual distillation tasks or
question-answering based on the MT-output.

1The corpus is provided as FOUO (for official use only) in
theDARPA-GALEproject

2LDC2004L02: Buckwalter Arabic Morphological Ana-
lyzer version 2.0

368

Table 1: Test Set Examples.

To evaluate the transliteration performance, we use
edit-distancebetween the hypothesis against a reference
set. This is to count the number of insertions, dele-
tions, and substitutions required to correct the hypoth-
esis to match the given reference. An edit-distance of
zero is a perfect match. However, NEs typically have
more than one correct variant. For example, the Arabic
name “mHmd” (in romanized form) can be transliterated
as Muhammad or Mohammed; both are considered as
correct transliterations. Ideally, we want to have all vari-
ants as reference transliterations. To enable our translit-
eration evaluation to be more informative given only one
reference, edit-distance of one between hypothesis and
reference is considered to be an acceptable match.

5.2 Comparison of Transliteration Models

We compare the performance of three systems within our
proposed framework in Figure.1: the baseline Block sys-
tem, a system in which we use a log-linear combination
of alignment features as described in§4.3, we call the the
L-Block system, and finally a system, which also uses
the bi-stream HMM alignment model as described in§3.
This last system will be denoted LCBE system.

The baseline is based on the refined letter-alignment
from the two directions of IBM-Model-4, trained with a
scheme of15h545 using GIZA++ (Och and Ney, 2004).
The final alignment was obtained by growing the inter-
sections between Arabic-to-English (AE) and English-
to-Arabic (EA) alignments with additional aligned letter-
pairs seen in the union. This is to compensate for the
inherent asymmetry in alignment models. Blocks (letter-
ngram pairs) were collected directly from the refined
letter-alignment, using the same algorithm as described
in §4.3 for extracting gold-standard letter blocks. There is
no length restrictions to the letter-ngram extracted in our
system. All the blocks were then scored using relative
frequencies and lexical scores in both directions, similar
to the scoring of phrase-pairs in SMT (Koehn, 2004).

In the L-Block system additional feature functions as
defined in§4.1 were computed on top of the letter-level
alignment obtained from the baseline system. A log-
linear model combining these features was learned with
the gold-blocks described in§4.3. Transliteration blocks
were extracted using the local-search§4.4. The other

Table 2: Transliteration accuracy for different translitera-
tion models.

System Accuracy
Baseline 39.18%
L-Block 41.24%
LCBE 46.39%

components remained the same as in the baseline system.
The LCBE system is an extension to both the baseline

and the L-Block system. The key difference in LCBE
is that our proposed bi-stream HMM in Eqn. 2 was ap-
plied in both directions with extended letter-classes. The
resulting combined alignment was used together with all
features of the L-Block system to guide the local-search
for extracting the blocks. The same procedure of decod-
ing was then carried out for the unseen NEs using the
extracted blocks.

To build the letter language model for the decoding
process, we first split the English entities into charac-
ters; additionalposition indicators“ begin” and “end”
were added to the begin and end position of the named-
entity; “ middle” was added between the first name and
last name. A letter-trigram language model with SRI LM
toolkit (Stolcke, 2002) was then built using the target side
(English) of NE pairs tagged with the above position in-
formation.

Table 2 shows that the baseline system gives an accu-
racy of 39.18%, while the extended systems L-Block and
LCBE give 41.24% and 46.39%, respectively. These re-
sults show that the additional features besides the letter-
alignment are helpful. The L-Block system, which uses
these features, outperforms the baseline system signifi-
cantly by 2.1% absolute in accuracy. The results also
show that the bi-stream HMM alignment, which uses not
only the letters but also the letter-classes, leads to signif-
icant improvement. It outperforms the L-Block system,
which does not leverage the letter-classes and monotone
alignment, by 4.15% absolute.

5.3 Incorporation of Spell Checking

Our spelling-checker is based on the suggested word-
forms from web search engines for ambiguous candi-
dates. We collected web statistics frequency for both the
proposed transliteration candidates from our system, and
also the suggested candidates from web-search engines.
All the candidates were re-ranked by their frequencies.

Figure 3 shows the performances on the held-out set,
using system LCBE augmented with a spell-checker
(LCBE+Spell), with varying sizes of N-best hypotheses
lists. The held-out set contains 540 unique named entity
pairs. We show accuracy when exact match is requested
and when an edit distances of one is allowed.

369

Figure 3:Transliteration accuracy of LCBE and LCBE+Spell
models for 540 named entity pairs in the held-out set.

Figure 4: Transliteration accuracy of N-best hypotheses for
LCBE and LCBE+Spell models it the MT-03 test set.

Figure 4 shows the performances in the unseen test set
of LCBE and LCBE+Spell, with varying sizes of N-best
hypotheses lists. LCBE+Spell reaches 52% accuracy in
1-best hypothesis. In the 5-best and 10-best cases, the ac-
curacies of LCBE+Spell system archive the highest per-
formances with 66% and 72.16% respectively. The spell-
checker increases the 1-best accuracy by 11.12% and the
10-best accuracy by 7.69%. All these improvements are
statistically significant. These results are also comparable
to other state-of-the-art statistical Arabic name transliter-
ation systems such as (Al-Onaizan and Knight, 2002).

5.4 Comparison with the Google Web Translation

We finally compared our best system with the
state-of-the-art Arabic-English Google Web Translation
(Google). Table 3 shows transliteration examples from
our best system in comparison with Google (as in June
20, 2006)3. The Google system achieved 45.36% accu-
racy for the 1-best hypothesis, which is comparable to
the results when using the LCBE transliteration system,
while LCBE+Spell archived 52%.

3http://www.google.com/translatet

Table 3: Transliteration examples between LCBE+Spell
and Google web translation.

6 Conclusions and Discussions

In this paper we proposed a novel transliteration model.
Viewing transliteration as a translation task we adopt
alignment and decoding techniques used in a phrase-
based statistical machine translation system to work on
letter sequences instead of word sequences. To improve
the performance we extended the HMM alignment model
into a bi-stream HMM alignment by incorporating letter-
classes into the alignment process. We also showed that a
block-extraction approach, which uses a log-linear com-
bination of multiple alignment features, can give signif-
icant improvements in transliteration accuracy. Finally,
spell-checking based on work occurrence statistics ob-
tained from the web gave an additional boost in translit-
eration accuracy.

The goal for this work is to improve the quality of ma-
chine translation, esp. when used in cross-lingual infor-
mation retrieval and distillation tasks, by incorporating
the proposed framework to handle unknown words. Fig-
ure 5 gives an example of the difference named entity
transliteration can make. Shown are the original SMT
system output, the translation when the proposed translit-
eration models are used to translate the unknown named-
entities, and the reference translation. A comparison of
the two SMT outputs indicates that integrating the pro-
posed transliteration model into our machine translation
system can significantly improve translation utility.

Acknowledgment

This work was partially supported by grants from
DARPA (GALE project) and NFS (Str-Dust project).

References

Nasreen AbdulJaleel and Leah Larkey. 2003. Statistical
transliteration for English-Arabic cross language informa-
tion retrieval. In Proceedings of the 12th International
Conference on Information and Knowledge Management,
New Orleans, LA, USA, November.

370

Figure 5: Incorporation of the transliteration model to our
SMT System.

Yaser Al-Onaizan and Kevin Knight. 2002. Machine translit-
eration of names in Arabic text. InProceedings of ACL
Workshop on Computational Approaches to Semitic Lan-
guages, Philadelphia, PA, USA.

Mansur Arbabi, Scott M. Fischthal, Vincent C. Cheng, and
Elizabeth Bart. 1994. Algorithms for Arabic name translit-
eration. In IBM Journal of Research and Development,
volume 38(2), pages 183–193.

Adam L. Berger, Vincent Della Pietra, and Stephen A.
Della Pietra. 1996. A maximum entropy approach to
natural language processing. InComputational Linguistics,
volume 22 of1, pages 39–71, March.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. InComputa-
tional Linguistics, volume 19(2), pages 263–331.

J.N. Darroch and D. Ratcliff. 1972. Generalized iterative
scaling for log-linear models. InAnnals of Mathematical
Statistics, volume 43, pages 1470–1480.

Asif Ekbal, S. Naskar, and S. Bandyopadhyay. 2006. A modi-
fied joint source channel model for machine transliteration.
In Proceedings of COLING/ACL, pages 191–198, Australia.

Heidi J. Fox. 2002. Phrasal cohesion and statistical machine
translation. In Proc. of the Conference on Empirical
Methods in Natural Language Processing, pages 304–311,
Philadelphia, PA, July 6-7.

Isao Goto, Naoto Kato, Noriyoshi Uratani, and Terumasa
Ehara. 2003. Transliteration considering context informa-
tion based on the maximum entropy method. InProceedings
of MT-Summit IX, New Orleans, Louisiana, USA.

Sanjika Hewavitharana, Bing Zhao, Almut Silja Hildebrand,
Matthias Eck, Chiori Hori, Stephan Vogel, and Alex Waibel.
2005. The CMU statistical machine translation system
for IWSLT2005. In The 2005 International Workshop on
Spoken Language Translation.

Fei Huang. 2005. Cluster-specific name transliteration. In
Proceedings of the HLT-EMNLP 2005, Vancouver, BC,
Canada, October.

Kevin Knight and Jonathan Graehl. 1997. Machine transliter-
ation. InProceedings of the Conference of the Association
for Computational Linguistics (ACL), Madrid, Spain.

Philipp Koehn. 2004. Pharaoh: a beam search decoder for
phrase-based smt. InProceedings of the Conference of
the Association for Machine Translation in the Americans
(AMTA), Washington DC, USA.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source-
channel model for machine transliteration. InProceedings
of 42nd ACL, pages 159–166, Barcelona, Spain.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models. In
Computational Linguistics, volume 1:29, pages 19–51.

Franz J. Och and Hermann Ney. 2004. The alignment template
approach to statistical machine translation. InComputa-
tional Linguistics, volume 30, pages 417–449.

Jong-Hoon Oh and Key-Sun Choi. 2002. An English-Korean
transliteration model using pronunciation and contextual
rules. InProceedings of COLING-2002, pages 1–7, Taipei,
Taiwan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. InProc. of the 40th Annual Conf. of the
Association for Computational Linguistics (ACL 02), pages
311–318, Philadelphia, PA, July.

Bonnie Stalls and Kevin Knight. 1998. Translating names
and technical terms in Arabic text. InProceedings of the
COLING/ACL Workshop on Computational Approaches to
Semitic Languages, Montreal, Quebec, Canada.

Andreas Stolcke. 2002. SRILM – An extensible language
modeling toolkit. InProc. Intl. Conf. on Spoken Language
Processing, volume 2, pages 901–904, Denver.

Paola Virga and Sanjeev Khudanpur. 2003. Transliteration
of proper names in cross-lingual information retrieval. In
Proceedings of the ACL Workshop on Multi-lingual Named
Entity Recognition, Edmonton, Canada.

Stephan. Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM based word alignment in statistical machine
translation. InProc. The 16th Int. Conf. on Computational
Lingustics, (COLING-1996), pages 836–841, Copenhagen,
Denmark.

Bing Zhao and Alex Waibel. 2005. Learning a log-linear
model with bilingual phrase-pair features for statistical
machine translation. InProceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, Jeju Island,
Korean, October.

Bing Zhao, Eric P. Xing, and Alex Waibel. 2005. Bilingual
word spectral clustering for statistical machine translation.
In Proceedings of the ACL Workshop on Building and Using
Parallel Texts, pages 25–32, Ann Arbor, Michigan, June.

371

