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Abstract

We propose a new document vector represen-
tation specifically designed for the document
clustering task. Instead of the traditional term-
based vectors, a document is represented as an�-dimensional vector, where� is the number of
documents in the cluster. The value at each di-
mension of the vector is closely related to the
generation probability based on the language
model of the corresponding document. In-
spired by the recent graph-based NLP methods,
we reinforce the generation probabilities by it-
erating random walks on the underlying graph
representation. Experiments with k-means and
hierarchical clustering algorithms show signif-
icant improvements over the alternative

�� ����
vector representation.

1 Introduction

Document clustering is one of the oldest and most studied
problems of information retrieval (van Rijsbergen, 1979).
Almost all document clustering approaches to date have
represented documents as vectors in abag-of-words vec-
tor space model, where each dimension of a document
vector corresponds to a term in the corpus (Salton and
McGill, 1983). General clustering algorithms are then
applied to these vectors to cluster the given corpus. There
have been attempts to use bigrams or even higher-order n-
grams to represent documents in text categorization, the
supervised counterpart of document clustering, with little
success (Caropreso et al., 2001; Tan et al., 2002).

Clustering can be viewed as partitioning a set of data
objects into groups such that the similarities between the
objects in a same group is high while inter-group simi-
larities are weaker. The fundamental assumption in this
work is thatthe documents that are likely to have been
generated from similar language models are likely to be

in the same cluster. Under this assumption, we propose a
new representation for document vectors specifically de-
signed for clustering purposes.

Given a corpus, we are interested in the generation
probabilities of a document based on the language models
induced by other documents in the corpus. Using these
probabilities, we propose a vector representation where
each dimension of a document vector corresponds to a
document in the corpus instead of a term in the classical
representation. In other words, our document vectors are�-dimensional, where� is the number of documents in
the corpus to be clustered. For the vector� �� of docu-
ment

�	
, the
 th element of� � � is closely related to the

generation probability of
�	

based on the language model
induced by document

�

. The main steps of our method

are as follows:� For each ordered document pair��	 � �
 �
in a given

corpus, we compute the generation probability of�	
from the language model induced by

�

mak-

ing use of language-model approaches in informa-
tion retrieval (Ponte and Croft, 1998).� We represent each document by a vector of its gen-
eration probabilities based on other documents’ lan-
guage models. At this point, these vectors can be
used in any clustering algorithm instead of the tradi-
tional term-based document vectors.� Following (Kurland and Lee, 2005), our new doc-
ument vectors are used to construct the underlying
generation graph; the directed graph where docu-
ments are the nodes and link weights are propor-
tional to the generation probabilities.� We userestricted random walkprobabilities to rein-
force the generation probabilities and discover hid-
den relationships in the graph that are not obvious
by the generation links. Our random walk model
is similar to the one proposed by Harel and Kohen
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(2001) for general spatial data represented as undi-
rected graphs. We have extended their model to the
directed graph case. We use new probabilities de-
rived from random walks as the vector representa-
tion of the documents.

2 Generation Probabilities as Document
Vectors

2.1 Language Models

The language modeling approach to information retrieval
was first introduced by Ponte and Croft (1998) as an al-
ternative (or an improvement) to the traditional

�� � ���
relevance models. In the language modeling framework,
each document in the database defines a language model.
The relevance of a document to a given query is ranked
according to the generation probability of the query based
on the underlying language model of the document. To
induce a (unigram) language model from a document, we
start with the maximum likelihood (ML) estimation of
the term probabilities. For each term� that occurs in a
document� , the ML estimation of� with respect to�
is defined as� � � �� �� � � �� �� � � �� � � �� �� ��  � � �
where�� �� � � �

is the number of occurences of term� in
document� . This estimation is often smoothed based on
the following general formula:� �� �� � � !� � � �� �� � " �# $ ! �� � � �� �% &'� ( )�
where� � � �� �% &'� ( )�

is the ML estimation of� over
an entire corpus which usually� is a member of.

!
is the

general smoothing parameter that takes different forms
in various smoothing methods. Smoothing has two im-
portant roles (Zhai and Lafferty, 2004). First, it accounts
for terms unseen in the document preventing zero prob-
abilities. This is similar to the smoothing effect in NLP
problems such as parsing. Second, smoothing has an

���
-

like effect that accounts for the generation probabilities of
the common terms in the corpus. A common smoothing
technique is to use Bayesian smoothing with the Dirichlet
prior (Zhai and Lafferty, 2004; Liu and Croft, 2004):! � � � � ��

tf ��  � � �� � � ��
tf ��  � � � " *

Here,
*

is the smoothing parameter. Higher values of
*

mean more aggressive smoothing.
Assuming the terms in a text are independent from

each other, the generation probability of a text sequence+
given the document� is the product of the generation

probabilities of the terms of
+

:� �+ �� � � ,� �- � �� �� �
(1)

In the context of information retrieval,
+

is a query
usually composed of few terms. In this work, we are
interested in the generation probabilities of entire docu-
ments that usually have in the order of hundreds of unique
terms. If we use Equation 1, we end up having unnatural
probabilities which are irrepresentably small and cause
floating point underflow. More importantly, longer docu-
ments tend to have much smaller generation probabilities
no matter how closely related they are to the generating
language model. However, as we are interested in the
generation probabilities between all pairs of documents,
we want to be able to compare two different generation
probabilities from a fixed language model regardless of
the target document sizes. This is not a problem in the
classical document retrieval setting since the given query
is fixed, and generation probabilities for different queries
are not compared against each other. To address these
problems, following (Lavrenko et al., 2002; Kurland and
Lee, 2005), we “flatten” the probabilities by normalizing
them with respect to the document size:�

flat�+ �� � � � �+ �� � ./0 /
(2)

where �+ � is the number of terms in
+

. �
flat provides

us with meaningful values which are comparable among
documents of different sizes.

2.2 Using Generation Probabilities as Document
Representations

Equation 2 suggests a representation of the relation-
ship of a document with the other documents in a
corpus. Given a corpus of� documents to cluster,
we form an �-dimensionalgeneration vector1 �� ��2 �� 3 � 2 ��4 � 5 5 5 � 2 ��6 �

for each document
�	

where

2 ��
 � 7 8 if
� � 
 ��

flat��	 ��
 �
otherwise

(3)

We can use these generation vectors in any clustering
algorithm we prefer instead of the classical term-based�� � ���

vectors. The intuition behind this idea becomes
clearer when we consider the underlying directed graph
representation, where each document is a node and the
weight of the link from

�	
to

�

is equal to�

flat��	 ��
 �
.

An appropriate analogy here is the citation graph of sci-
entific papers. The generation graph can be viewed as a
model where documentscite each other. However, un-
like real citations, the generation links are weighted and
automatically induced from the content.

The similarity function used in a clustering algorithm
over the generation vectors becomes a measure of struc-
tural similarity of two nodes in the generation graph.
Work on bibliometrics uses various similarity metrics to
assess the relatedness of scientific papers by looking at
the citation vectors (Boyack et al., 2005). Graph-based
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similarity metrics are also used to detect semantic simi-
larity of two documents on the Web (Maguitman et al.,
2005). Cosine, also the standard metric used in

�� � ���
based document clustering, is one of these metrics. In-
tuitively, the cosine of the citation vectors (i.e. vector of
outgoing link weights) of two nodes is high when they
link to similar sets of nodes with similar link weights.
Hence, the cosine of two generation vectors is a measure
of how likely two documents are generated from the same
documents’ language models.

The generation probability in Equation 2 with a
smoothed language model is never zero. This creates two
potential problems if we want to use the vector of Equa-
tion 3 directly in a clustering algorithm. First, we only
want strong generation links to contribute in the similar-
ity function since a low generation probability is not an
evidence for semantic relatedness. This intuition is sim-
ilar to throwing out the stopwords from the documents
before constructing the

�� � ���
vectors to avoid coinci-

dental similarities between documents. Second, having
a dense vector with lots of non-zero elements will cause
efficiency problems. Vector length is assumed to be a
constant factor in analyzing the complexity of the clus-
tering algorithms. However, our generation vectors are�-dimensional, where� is the number of documents. In
other words, vector size is not a constant factor anymore,
which causes a problem of scalability to large data sets.
To address these problems, we use what Kurland and Lee
(2005) define astop generators: Given a document

�	
,

we consider only9 documents that yield the largest gen-
eration probabilities and discard others. The resultant�-
dimensional vector, denoted1 :�� , has at most9 non-zero
elements, which are the largest9 elements of1 �� . For a
given constant9, with a sparse vector representation, cer-
tain operations (e.g. cosine) on such vectors can be done
in constant time independent of�.

2.3 Reinforcing Links with Random Walks

Generation probabilities are only an approximation of se-
mantic relatedness. Using the underlying directed graph
interpretation of the generation probabilities, we aim to
get better approximations by accumulating the generation
link information in the graph. We start with some defini-
tions. We denote a (directed) graph as; �< � � �

where< is the set of nodes and� = < > < ? @ is the link
weight function. We formally define a generation graph
as follows:

Definition 1 Given a corpusA � B� 3 � �4 � 5 5 5 � �6 C with� documents, and a constant9, thegeneration graphof A
is a directed graph; : �A � � �

, where� ��	 � �
 � � 2 :��
 .

Definition 2 A
�
-step random walkon a graph; �< � � �

that starts at nodeDE F < is a sequence of nodesDE � D 3 � 5 5 5 � DG F < where� �D	 � D 	H 3 � I 8 for all 8 J

� K �
. Theprobabilityof a

�
-step random walk is defined

as L G M3	NE OP� P�Q. where

OP� P�Q . � � �D	 � D 	H 3 �� R �S � �D	 � ( �
ORP is called thetransition probabilityfrom node( to
nodeD .

For example, for a generation graph; :, there are at most9 1-step random walks that start at a given node with
probabilities proportional to the weights of the outgoing
generation links of that node.

Suppose there are three documentsT , U , and
%

in a
generation graph. Suppose also that there are “strong”
generation links fromT to U and U to

%
, but no link

from T to
%

. The intuition says thatT must be semanti-
cally related to

%
to a certain degree although there is no

generation link between them depending on
%

’s language
model. We approximate this relation by considering the
probabilities of 2-step (or longer) random walks fromT
to

%
although there is no 1-step random walk fromT to%

.
Let O GRP denote the probability that an

�
-step random

walk starts at( and ends atD . An interesting property
of random walks is that for a given nodeD , O VRP does not
depend on(. In other words, the probability of a random
walk ending up atD “in the long run” does not depend
on its starting point (Seneta, 1981). This limiting prob-
ability distribution of an infinite random walk over the
nodes is called thestationary distributionof the graph.
The stationary distribution is uninteresting to us for clus-
tering purposes since it gives an information related to the
global structure of the graph. It is often used as a measure
to rank the structural importance of the nodes in a graph
(Brin and Page, 1998). For clustering, we are more inter-
ested in the local similarities inside a “cluster” of nodes
that separate them from the rest of the graph. Further-
more, the generation probabilities lose their significance
during long random walks since they get multiplied at
each step. Therefore, we computeO G for small values of�
. Finally, we define the following:

Definition 3 The
�
-step generation probabilityof docu-

ment
�	

from the language model of
�


:

gen
G ��	 ��
 � � � GWN 3 O W���X�

1 YZ G�� � �genG ��	 �� 3 � �
genG �� 	 ��4 � � 5 5 5 �

genG ��	 ��6 ��
is

the
�
-step generation vectorof document

�	
. We will often

write 1 YZG omitting the document name when we are not
talking about the vector of a specific document.

genG �� 	 � �
 �
is a measure of how likely a random walk

that starts at
�	

will visit
�


in
�

or fewer steps. It helps
us to discover “hidden” similarities between documents
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that are not immediately obvious from 1-step generation
links. Note that when

� � #, 1 YZ 3�� is nothing but1 :��
normalized such that the sum of the elements of the vec-
tor is 1. The two are practically the same representations
since we compute the cosine of the vectors during clus-
tering.

3 Related Work

Our work is inspired by three main areas of research.
First, the success of language modeling approaches to
information retrieval (Ponte and Croft, 1998) is encour-
aging for a similar twist to document representation for
clustering purposes. Second, graph-based inference tech-
niques to discover “hidden” textual relationships like the
one we explored in our random walk model have been
successfully applied to other NLP problems such as sum-
marization (Erkan and Radev, 2004; Mihalcea and Ta-
rau, 2004; Zha, 2002), prepositional phrase attachment
(Toutanova et al., 2004), and word sense disambiguation
(Mihalcea, 2005). Unlike our approach, these methods
try to exploit the global structure of a graph torank the
nodes of the graph. For example, Erkan and Radev (2004)
find the stationary distribution of the random walk on a
graph of sentences to rank the salience scores of the sen-
tences for extractive summarization. Their link weight
function is based on cosine similarity. Our graph con-
struction based on generation probabilities is inherited
from (Kurland and Lee, 2005), where authors used a sim-
ilar generation graph to rerank the documents returned
by a retrieval system based on the stationary distribu-
tion of the graph. Finally, previous research on clustering
graphs with restricted random walks inspired us to clus-
ter the generation graph using a similar approach. Our�
-step random walk approach is similar to the one pro-

posed by Harel and Koren (2001). However, their algo-
rithm is proposed for “spatial data” where the nodes of
the graph are connected by undirected links that are de-
termined by a (symmetric) similarity function. Our con-
tribution in this paper is to use their approach on textual
data by using generation links, and extend the method to
directed graphs.

There is an extensive amount of research on document
clustering or clustering algorithms in general that we can
not possibly review here. After all, we do not present a
new clustering algorithm, but rather a new representation
of textual data. We explain some popular clustering algo-
rithms and evaluate our representation using them in Sec-
tion 4. Few methods have been proposed to cluster doc-
uments using a representation other than the traditional�� ����

vector space (or similar term-based vectors). Us-
ing a bipartite graph of terms and documents and then
clustering this graph based on spectral methods is one of
them (Dhillon, 2001; Zha et al., 2001). There are also
general spectral methods that start with

�� � ���
vectors,

then map them to a new space with fewer dimensions be-
fore initiating the clustering algorithm (Ng et al., 2001).

The information-theoreticclustering algorithms are
relevant to our framework in the sense that they involve
probability distributions over words just like the language
models. However, instead of looking at the word distri-
butions at the individual document level, they make use
of the joint distribution of words and documents. For ex-
ample, given the set of documents[ and the set of words\

in the document collection, Slonim and Tishby (2000)
first try to find a word clustering]\ such that the mutual
information ^ �\ � ]\ �

is minimized (for good compres-
sion) while maximizing thê � ]\ � [ �

(for preserving the
original information). Then the same procedure is used
for clustering documents using the word clusters from the
first step. Dhillon et. al. (2003) propose aco-clustering
version of this information-theoretic method where they
cluster the words and the documents concurrently.

4 Evaluation

We evaluated our new vector representation by compar-
ing it against the traditional

�� � ���
vector space repre-

sentation. We ran k-means, single-link, average-link, and
complete-link clustering algorithms on various data sets
using both representations. These algorithms are among
the most popular ones that are used in document cluster-
ing.

4.1 General Experimental Setting

Given a corpus, we stemmed all the documents, removed
the stopwords and constructed the

�� ����
vector for each

document by using thebow toolkit (McCallum, 1996).
We computed the

���
of each term using the following

formula:

idf �� � � _&2 4 ` �
df�� � a

where� is the total number of documents and df�� �
is

the number of documents that the term� appears in.
We computed flattened generation probabilities (Equa-

tion 2) for all ordered pairs of documents in a corpus,
and then constructed the corresponding generation graph
(Definition 1). We used Dirichlet-smoothed language
models with the smoothing parameter

* � #888, which
can be considered as a typical value used in information
retrieval. While computing the generation link vectors,
we did not perform extensive parameter tuning at any
stage of our method. However, we observed the follow-
ing:� When 9 (number of outgoing links per document)

was very small (less than 10), our methods per-
formed poorly. This is expected with such a sparse
vector representation for documents. However, the
performance got rapidly and almost monotonically
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better as we increased9 until around9 � b8, where
the performance stabilized and dropped after around9 � #88. We conclude that using bounded num-
ber of outgoing links per document is not only more
efficient but also necessary as we motivated in Sec-
tion 2.2.� We got the best results when the random walk pa-
rameter

� � c
. When

� I c
, the random walk goes

“out of the cluster” and1 YZG vectors become very
dense. In other words, almost all of the graph is
reachable from a given node with 4-step or longer
random walks (assuming9 is around 80), which is
an indication of a “small world” effect in generation
graphs (Watts and Strogatz, 1998).

Under these observations, we will only report results us-
ing vectors1 YZ 3, 1YZ4 and1 YZ d with 9 � b8 regardless
of the data set and the clustering algorithm.

4.2 Experiments with k-means

4.2.1 Algorithm

k-means is a clustering algorithm popular for its sim-
plicity and efficiency. It requirese, the number of clus-
ters, as input, and partitions the data set into exactlye
clusters. We used a version of k-means that uses cosine
similarity to compute the distance between the vectors.
The algorithm can be summarized as follows:

1. randomly selecte document vectors as the initial
cluster centroids;

2. assign each document to the cluster whose centroid
yields the highest cosine similarity;

3. recompute the centroid of each cluster. (centroid
vector of a cluster is the average of the vectors in
that cluster);

4. stop if none of the centroid vectors has changed at
step 3. otherwise go to step 2.

4.2.2 Data

k-means is known to work better on data sets in which
the documents are nearly evenly distributed among dif-
ferent clusters. For this reason, we tried to pick such
corpora for this experiment to be able to get a fair com-
parison between different document representations. The
first corpus we used isclassic3,1 which is a collection
of technical paper abstracts in three different areas. We
used two corpora,bbc andbbcsport, that are composed

1ftp://ftp.cs.cornell.edu/pub/smart

of BBC news articles in general and sports news, respec-
tively. 2 Both corpora have 5 news classes each.20news3

is a corpus of newsgroup articles composed of 20 classes.
Table 1 summarizes the corpora we used together with
the sizes of the smallest and largest class in each of them.

Corpus Documents Classes Smallest Largest
classic3 3891 3 1033 1460
bbcsport 737 5 100 265
bbc 2225 5 386 511
20news 18846 20 628 999

Table 1:The corpora used in the k-means experiments.

4.2.3 Results
We used two different metrics to evaluate the results

of the k-means algorithm; accuracy and mutual informa-
tion. Let

_	
be the label assigned to

�	
by the clustering

algorithm, andf 	
be

�	
’s actual label in the corpus. Then,

Accuracy
� � 6	N 3 g �map�_	 � � f 	 ��

whereg �h � i �
equals 1 ifh � i

and equals zero other-
wise. map�_	 �

is the function that maps the output la-
bel set of the k-means algorithm to the actual label set
of the corpus. Given the confusion matrix of the output,
best such mapping function can be efficiently found by
Munkres’s algorithm (Munkres, 1957).

Mutual information is a metric that does not require
a mapping function. Letj � B_3 � _4 � 5 5 5 � _k C be the
output label set of the k-means algorithm, andT �Bf 3 � f 4 � 5 5 5 � f k C be the actual label set of the corpus
with the underlying assignments of documents to these
sets. Mutual information (MI) of these two labelings is
defined as:

MI �j � T � � lm� �� noX �p q �_	 � f
 � �
log4 q �_	 � f
 �q �_	 � � q �f
 �

whereq �_	 �
andq �f
 �

are the probabilities that a docu-
ment is labeled as

_	
andf


by the algorithm and in the
actual corpus, respectively;q �_	 � f
 �

is the probability
that these two events occur at the same time. These val-
ues can be derived from the confusion matrix. We map
the MI metric to ther8 � #s interval by normalizing it with
the maximum possible MI that can be achieved with the
corpus. Normalized MI is defined ast

MI
� MI �j � T �

MI �T � T �
2http://www.cs.tcd.ie/Derek.Greene/

research/datasets.html BBC corpora came in
preprocessed format so that we did not perform the processing
with thebow toolkit mentioned in Section 4.1

3http://people.csail.mit.edu/jrennie/
20Newsgroups
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One disadvantage of k-means is that its performance
is very dependent on the initial selection of cluster cen-
troids. Two approaches are usually used when reporting
the performance of k-means. The algorithm is run mul-
tiple times; then either the average performance of these
runs or the best performance achieved is reported. Re-
porting the best performance is not very realistic since
we would not be clustering a corpus if we already knew
the class labels. Reporting the average may not be very
informative since the variance of multiple runs is usually
large. We adopt an approach that is somewhere in be-
tween. We use “true seeds” to initialize k-means, that is,
we randomlyselecte document vectorsthat belong to
each of the true classesas the initial centroids. This is
not an unrealistic assumption since we initially know the
number of classes,e, in the corpus, and the cost of find-
ing one example document from each class is not usually
high. This way, we also aim to reduce the variance of the
performance of different runs for a better analysis.

Table 2 shows the results of k-means algorithm us-
ing

�� ����
vectors versus generation vectors1YZ 3 (plain

flattened generation probabilities),1 YZ 4 (2-step random
walks), 1YZ d (3-step random walks). Taking advantage
of the relatively larger size and number of classes of
20newscorpus, we randomly divided it into disjoint par-
titions with 4, 5, and 10 classes which provided us with
5, 4, and 2 new corpora, respectively. We named them
4news-1, 4news-2,

5 5 5
, 10news-2for clarity. We ran k-

means with 30 distinct initial seed sets for each corpus.
The first observation we draw from Table 2 is that even1 YZ 3 vectors perform better than the

������
model. This is

particularly surprising given that1 YZ 3 vectors are sparser
than the

�� ����
representation for most documents.4 All1 YZ G vectors clearly outperform

�� � ���
model often by

a wide margin. The performance also gets better (not al-
ways significantly though) in almost all data sets as we in-
crease the random walk length, which indicates that ran-
dom walks are useful in reinforcing generation links and
inducing new relationships. Another interesting observa-
tion is that the confidence intervals are also narrower for
generation vectors, and tend to get even narrower as we
increase

�
.

4.3 Experiments with Hierarchical Clustering

4.3.1 Algorithms

Hierarchical clustering algorithms start with the triv-
ial clustering of the corpus where each document de-
fines a separate cluster by itself. At each iteration, two
“most similar” separate clusters are merged. The algo-
rithm stops after� $ # iterations when all the documents

4Remember that we setu v wx in our experiments which
means that there can be a maximum of 80 non-zero elements
in yz{ |. Most documents have more than 80 unique terms in
them.

are merged into a single cluster.
Hierarchical clustering algorithms differ in how they

define the similarity between two clusters at each merg-
ing step. We experimented with three of the most popular
algorithms using cosine as the similarity metric between
two vectors. Single-link clusteringmerges two clusters
whose most similar members have the highest similarity.
Complete-link clusteringmerges two clusters whose least
similar members have the highest similarity.Average-link
clusteringmerges two clusters that yield the highest av-
erage similarity between all pairs of documents.

4.3.2 Data

Corpus Documents Classes Smallest Largest
Reuters 8646 57 2 3735
TDT2 10160 87 2 1843

Table 3:The corpora used in the hierarchical clustering exper-
iments.

Although hierarchical algorithms are not very efficient,
they are useful when the documents are not evenly dis-
tributed among the classes in the corpus and some classes
exhibit a “hierarchical” nature; that is, some classes in the
data might be semantically overlapping or they might be
in a subset/superset relation with each other. We picked
two corpora that may exhibit such nature to a certain ex-
tent. Reuters-215785 is a collection of news articles from
Reuters. TDT26 is a similar corpus of news articles col-
lected from six news agencies in 1998. They contain doc-
uments labeled with zero, one or more class labels. For
each corpus, we used only the documents with exactly
one label. We also eliminated classes with only one doc-
ument since clustering such classes is trivial. We ended
up with two collections summarized in Table 3.

4.3.3 Results

The output of a hierarchical clustering algorithm is a
treewhere leaves are the documents and each node in the
tree shows a cluster merging operation. Therefore each
subtree represents a cluster. We assume that each class of
documents in the corpus form a cluster subtree at some
point during the construction of the tree. To evaluate the
cluster tree, we use F-measure proposed in (Larsen and
Aone, 1999). F-measure for a class9	

in the corpus and a
subtree)


is defined as} �9	 � )
 � � ~ � � �9	 � )
 � � q �9	 � )
 �� �9	 � )
 � " q �9	 � )
 �
5http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html
6http://www.nist.gov/speech/tests/tdt/

tdt98/index.htm
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Accuracy (�3EE) Normalized Mutual Information (�3EE)
Corpus k G� �	�� ��� . ���� ���� G� �	�� ��� . ���� ����
classic3 3 �� ��� � 3 �4� �� ��4 � E ��� �� ��E � E �3� �� ��� � � ��� �� ��� � 4 ��E �3 �3� � 3��E �d �d� � E ��� �� ��� � � ���
4news-1 4 �4 �d4 � 4 ��E �4 ��� � 3��� �� ��� � 3 �dE �� ��� � � ��� �� ��� � d �d� �� ��� � 3��� �� ��4 � E ��� �� ��� � � ���
4news-2 4 �d ��4 � 4 ��d �� �dd � 4 �3� �E ��� � 3 ��4 �� ��� � � ��� d� �E4 � 4 ��� �� ��� � 3��E �� ��E � 3 ��� �� ��� � ��� �
4news-3 4 �4 �d� � 4 ��3 �� ��� � d �d� �� ��E � d ��� �� ��� � � ��� dd ��� � 4 ��� �3 ��� � d ��d �� �3� � d �E� �� ��� � � ���
4news-4 4 �d �3� � 4 �E� �3 �d� � 3��� �d ��� � 3 ��E �� ��� � � ��� �� �4� � 4 ��� �� ��� � 3�4� �� ��� � E ��E �� �� � � � ���
4news-5 4 �� ��d � d ��� �� �E� � 4 �dd �� ��� � � ��� �E �E� � 3 ��� �4 ��� � d ��E �� ��� � d �4� �3 ��� � 4 ��� �� ��� � � ���
5news-1 5 �� �EE � 4 ��d �d ��3 � 4 �dE �� �d� � 4 ��� �� ��� � � ��� d� ��d � 4 ��� �� ��� � d �3� �E ��� � 4 ��� � � ��� � � ���
5news-2 5 �� ��� � 4 ��� �� �d4 � 4 �3� �4 ��� � 3 ��� �� ��� � � ��� dE ��� � 4 ��� �� �EE � 4 �3� �4 ��� � 3 ��4 �� ��� � ����
5news-3 5 �3 �E� � 4 �d� �d ��� � 4 �3� �� �3� � 4 �3� �� ��� � � ��� �� ��� � 4 ��� �� �E� � 4 �34 �3 �3d � 3 ��� �� ��� � ����
5news-4 5 �E �E� � 4 ��� �E �4E � 3��� �4 ��3 � 3 ��� �� ��� � � ��� �E �E� � 4 ��4 �d ��� � 3��d �� ��� � 3 �d4 �� ��� � ����

bbc 5 �E ��d � 4 ��E �� ��� � 4 ��d �� ��� � 4 ��� �� ��� � � ��� �d �d� � d �4d �� �3� � 4 ��d �� �4E � 4 ��d �� ��� � � ���
bbcsport 5 �� �4� � 4 ��� �� �4� � E ��� �� ��� � E ��4 �� ��� � � ��� �d ��� � d �4� �� ��� � 3�d� �� ��4 � E ��3 �� ��� � � ���

10news-1 10 �E �33 � 4 �dE �� �4E � 4 �34 �� �3� � 3 ��d �� ��� � � ��� d� ��� � 3 ��� �� �43 � 3��� �� ��� � 3 �3� �� ��� � � ���
10news-2 10 �� �34 � 3 ��� �E �E3 � 4 �EE �d �� 3 � 3 ��� �� ��� � � ��� �4 ��� � 3 ��� �E ��� � 3��E �� �4E � 3 �33 �� �� � � ����

20news 20 �3 ��� � 3 �Ed �� ��� � 3�4� �� ��� � 3 �4� �� ��� � � ��� d� �4� � E ��d �4 ��� � E ��� �� �d� � E ��3 �� ��� � � ���
Table 2:Performances of different vector representations using k-means (average of 30 runs� ��� confidence interval).

TDT2 Reuters-21578
Algorithm ��  ¡¢� yz{ | yz{ £ yz {¤ ��  ¡¢� yz{ | yz {£ yz{ ¤
single-link 65.25 82.96 84.22 83.92 59.35 59.37 65.70 66.15

average-link 90.78 93.53 94.04 94.13 78.25 79.17 77.24 81.37
complete-link 29.07 25.04 27.19 34.67 43.66 42.79 45.91 48.36

Table 4:Performances (F-measure¥¦xx) of different vector representations using hierarchical algorithms on two corpora.

where
� �9	 � )
 �

and q �9	 � )
 �
is the recall and the pre-

cision of )

considering the class9	

. Let
+

be the set
of subtrees in the output cluster tree, and

%
be the set

of classes. F-measure of the entire tree is the weighted
average of the maximum F-measures of all the classes:} �% � + � � l:�§ � :� ¨ ©ªW�- } �9 � )�
where� : is the number of documents that belong to class9.

We ran all three algorithms for both corpora. Unlike k-
means, hierarchical algorithms we used are deterministic.
Table 4 summarizes our results. An immediate observa-
tion is that average-link clustering performs much bet-
ter than other two algorithms independent of the data set
or the document representation, which is consistent with
earlier research (Zhao and Karypis, 2002). The high-
est result (shown boldface) for each algorithm and cor-
pus was achieved by using generation vectors. However,
unlike in the k-means experiments,

�� � ���
was able to

outperform1 YZ 3 and 1 YZ4 in one or two cases.1YZ 4
yielded the best result instead of1 YZ d in one of the six
cases.

5 Conclusion

We have presented a language model inspired approach
to document clustering. Our results show that even the
simplest version of our approach with nearly no parame-
ter tuning can outperform traditional

�� ����
models by a

wide margin. Random walk iterations on our graph-based
model have improved our results even more. Based on the
success of our model, we will investigate various graph-
based relationships for explaining semantic structure of
text collections in the future. Possible applications in-
clude information retrieval, text clustering/classification
and summarization.

Acknowledgments

I would like to thank Dragomir Radev for his useful com-
ments. This work was partially supported by the U.S.
National Science Foundation under the following two
grants: 0329043 “Probabilistic and link-based Methods
for Exploiting Very Large Textual Repositories” admin-
istered through the IDM program and 0308024 “Collab-
orative Research: Semantic Entity and Relation Extrac-
tion from Web-Scale Text Document Collections” admin-
istered by the HLT program. All opinions, findings, con-
clusions, and recommendations in this paper are made by
the authors and do not necessarily reflect the views of the
National Science Foundation.

References
Kevin W. Boyack, Richard Klavans, and Katy Börner.

2005. Mapping the backbone of science.Scientometrics,
64(3):351–374.

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-
scale hypertextual web search engine. InProceedings of the

485



7th International World Wide Web Conference, pages 107–
117.

Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebas-
tiani. 2001. A learner-independent evaluation of the use-
fulness of statistical phrases for automated text categoriza-
tion. In Amita G. Chin, editor,Text Databases and Docu-
ment Management: Theory and Practice, pages 78–102. Idea
Group Publishing, Hershey, US.

Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S.
Modha. 2003. Information-theoretic co-clustering. In Pe-
dro Domingos, Christos Faloutsos, Ted SEnator, Hillol Kar-
gupta, and Lise Getoor, editors,Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-03), pages 89–98, New York,
August 24–27. ACM Press.

Inderjit S. Dhillon. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. InProceedings of
the Seventh ACM SIGKDD Conference, pages 269–274.
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