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Abstract 

This paper presents a solution to the prob-
lem of matching personal names in Eng-
lish to the same names represented in 
Arabic script.  Standard string comparison 
measures perform poorly on this task due 
to varying transliteration conventions in 
both languages and the fact that Arabic 
script does not usually represent short 
vowels.  Significant improvement is 
achieved by augmenting the classic 
Levenshtein edit-distance algorithm with 
character equivalency classes.  

1 Introduction to the problem 

Personal names are problematic for all language 
technology that processes linguistic content, espe-
cially in applications such as information retrieval, 
document clustering, entity extraction, and transla-
tion.  Name matching is not a trivial problem even 
within a language because names have more than 
one part, including titles, nicknames, and qualifiers 
such as Jr. or II.  Across documents, instances of 
the name might not include the same name parts, 
and within documents, the second or third mention 
of a name will often have only one salient part.  In 
multilingual applications, the problem is compli-
cated by the fact that when a name is represented 
in a script different from its native script, there 
may be several alternative representations for each 
phoneme, leading to large number of potential 
variants for multi-part names. 

A good example of the problem is the name of 
the current leader of Libya.  In Arabic, there is 
only one way to write the consonants and long 

vowels of any person’s name, and the current 
leader of Libya’s name in un-vocalized Arabic text 
can only be written as معمر القذافي.  In English, 
his name has many common representations.  Ta-
ble 1 documents the top five hits returned from a 
web search at www.google.com, using various 
English spellings of the name.   

 
       Version            Occurrences 
Muammar Gaddafi  43,500 
Muammar Qaddafi  35,900 
Moammar Gadhafi  34,100 
Muammar Qadhafi  15,000 
Muammar al Qadhafi 11,500 
 

Table 1.  Qadhafy’s names in English 
 

Part of this variation is due to the lack of an 
English phoneme corresponding to the Standard 
Arabic phoneme /q/.  The problem is further com-
pounded by the fact that in many dialects spoken in 
the Arabic-speaking world, including Libya, this 
phoneme is pronounced as [g]. 

The engineering problem is how one reliably 
matches all versions of a particular name in lan-
guage A to all possible versions of the same name 
in language B.  Most solutions employ standard 
string similarity measures, which require the 
names to be represented in a common character 
set.  The solution presented here exploits translit-
eration conventions in normalization procedures 
and equivalence mappings for the standard Leven-
shtein distance measure.  

2 Fuzzy string matching 

The term fuzzy matching is used to describe 
methods that match strings based on similarity 
rather than identity.  Common fuzzy matching 
techniques include edit distance, n-gram matching, 
and normalization procedures such as Soundex.  
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This section surveys methods and tools currently 
used for fuzzy matching.   

2.1 Soundex 

 Patented in 1918 by Odell and Russell the 
Soundex algorithm was designed to find spelling 
variations of names.  Soundex represents classes of 
sounds that can be lumped together.  The precise 
classes and algorithm are shown below in figures 1 
and 2.  

 
Code:   0 1         2       3       4     5      6 
Letters: aeiouy bp    cgjkq   dt      l    mn     r 
 hw fv     sxz 

Figure 1: Soundex phonetic codes 

 
1. Replace all but the first letter of the string by its 

phonetic code. 
2. Eliminate any adjacent repetitions of codes. 
3. Eliminate all occurrences of code 0, i.e. eliminate 

all vowels. 
4. Return the first four characters of the resulting 

string. 
5. Examples: Patrick = P362, Peter  = P36, Peterson = 

P3625 
Figure 2: The Soundex algorithm 

 
The examples in figure 2 demonstrate that 

many different names can appear to match each 
other when using the Soundex algorithm. 

2.2 Levenshtein  Edit Distance 

The Levenshtein algorithm is a string edit-
distance algorithm.  A very comprehensive and 
accessible explanation of the Levenshtein algo-
rithm is available on the web at 
http://www.merriampark.com/ld.htm.    

The Levenshtein algorithm measures the edit 
distance where edit distance is defined as the num-
ber of insertions, deletions or substitutions required 
to make the two strings match.  A score of zero 
represents a perfect match.  

With two strings, string s of size m and string t 
of size n, the algorithm has O(nm) time and space 
complexity.  A matrix is constructed with n rows 
and m columns.  The function e(si,tj) where si is a 
character in the string s, and tj is a character in 
string t returns a 0 if the two characters are equal 
and a 1 otherwise.  The algorithm can be repre-
sented compactly with the recurrence relation 
shown in figure 3. 

 
Figure 3. Recurrence relation for Levenshtein edit distance  

 
A simple “fuzzy-match” algorithm can be cre-

ated by dividing the Levenshtein edit distance 
score by the length of the shortest (or longest) 
string, subtracting this number from one, and set-
ting a threshold score that must be achieved in or-
der for the strings to be considered a match.  In this 
simple approach, longer pairs of strings are more 
likely to be matched than shorter pairs of strings 
with the same number of different characters.   

2.3 Editex 

The Editex algorithm is described by Zobel and 
Dart (1996).  It combines a Soundex style algo-
rithm with Levenshtein by replacing the e(si,tj) 
function of Levenshtein with a function r(si,tj).  
The function r(si,tj) returns 0 if the two letters are 
identical, 1 if they belong to the same letter group 
and 2 otherwise.  The full algorithm with the letter 
groups is shown in figures 4 and 5.  The Editex 
algorithm neutralizes the h and w.  This shows up 
in the algorithm description as d(si-1,si).  It is the 
same as r(si,tj), with two exceptions.  It compares 
letters of the same string rather than letters from 
the different strings.  The other difference is that if 
si-1 is h or w, and si-1≠si, then d(si-1,si) is one. 

 
Figure 4: Recurrence relation for Editex edit distance 

   0        1     2      3   4    5    6     7        8      9 

for each i from 0 to |s| 
 for each j from 0 to |t| 

levenshtein(0; 0) = 0 
levenshtein(i; 0) = i 
levenshtein(0;j) = j 
levenshtein (i;j) = 

 min[levenshtein (i − 1; j) + 1; 
levenshtein(i; j − 1) + 1; 
levenshtein(i − 1; j − 1) + 
e(si; tj )] 

for each i from 0 to |s| 
 for each j from 0 to |t| 

editex(0; 0) = 0 
editex(i; 0) = editex(i − 1; 0) + d(si−1; si) 
editex(0; j) = editex(0; j − 1) + d(tj−1; tj ) 
editex(i; j) = min[editex (i − 1; j) +  

d(si−1; si); 
ediext(i; j − 1) + d(tj−1; tj); 
editex(i − 1; j − 1) + r(si; tj )] 
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aeiouy   bp   ckq  dt   lr  mn  gj   fpv    sxz   csz 

Figure 5: Editex letter groups 

Zobel and Dart (1996) discuss several en-
hancements to the Soundex and Levenshtein string 
matching algorithms.  One enhancement is what 
they call “tapering.”  Tapering involves weighting 
mismatches at the beginning of the word with a 
higher score than mismatches towards the end of 
the word.  The other enhancement is what they call 
phonometric methods, in which the input strings 
are mapped to pronunciation based phonemic rep-
resentations.  The edit distance algorithm is then 
applied to the phonemic representations of the 
strings.   

Zobel and Dart report that the Editex algorithm 
performed significantly better than alternatives 
they tested, including Soundex, Levenshtein edit 
distance, algorithms based on counting common n-
gram sequences, and about ten permutations of 
tapering and phoneme based enhancements to as-
sorted combinations of Soundex, n-gram counting 
and Levenshtein.  

2.4 SecondString 

SecondString, described by Cohen, Ravikumar 
and Fienberg (2003) is an open-source library of 
string-matching algorithms implemented in Java.  
It is freely available at the web site 
http://secondstring.sourceforge.net.   

The SecondString library offers a wide assort-
ment of string matching algorithms, both those 
based on the “edit distance” algorithm, and those 
based on other string matching algorithms.  Sec-
ondString also provides tools for combining 
matching algorithms to produce hybrid-matching 
algorithms, tools for training on string matching 
metrics and tools for matching on tokens within 
strings for multi-token strings.  

3  Baseline task 

An initial set of identical names in English and 
Arabic script were obtained from 106 Arabic texts 
and 105 English texts in a corpus of newswire arti-
cles.  We extracted 408 names from the English 
language articles and 255 names from the Arabic 
language articles.  Manual cross-script matching 
identified 29 names common to both lists.    

For a baseline measure, we matched the entire 
list of names from the Arabic language texts 

against the entire list of English language names 
using algorithms from the SecondString toolkit.  
The Arabic names were transliterated using the 
computer program Artrans produced by Basis 
(2004).  

For each of these string matching metrics, the 
matching threshold was empirically set to a value 
that would return some matches, but minimized 
false matches.  The Levenshtein “edit-distance” 
algorithm returns a simple integer indicating the 
number of edits required to make the two strings 
match.  We normalized this number by using the 

formula 






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
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−

ts
tsnLevenshtei ),(1 , where any pair 

of strings with a fuzzy match score less than 0.875 
was not considered to be a match.  The intent of 
dividing by the length of both names is to mini-
mize the weight of a mismatched character in 
longer strings. 

For the purposes of defining recall and preci-
sion, we ignored all issues dealing with the fact 
that many English names correctly matched more 
than one Arabic name, and that many Arabic 
names correctly matched more than one English 
name.  The number of correct matches is the num-
ber of correct matches for each Arabic name, 
summed across all Arabic names having one or 
more matches.  Recall R is defined as the number 
of correctly matched English names divided by the 
number of available correct English matches in the 
test set.  Precision P is defined as the total number 
of correct names returned by the algorithm divided 
by the total number of names returned.  The F-

score is
( )

RP
PR
+

⋅2 . 

Figure 5 shows the results obtained from the 
four algorithms that were tested.  Smith-Waterman 
is based on Levenshtein edit-distance algorithm, 
with some parameterization of the gap score.  
SLIM is an iterative statistical learning algorithm 
based on a variety of estimation-maximization in 
which a Levenshtein edit-distance matrix is itera-
tively processed to find the statistical probabilities 
of the overlap between two strings.  Jaro is a type 
n-gram algorithm which measures the number and 
the order of the common characters between two 
strings. Needleman-Wunsch from Cohen et al.’s 
(2003) SecondString Java code library is the Java 
implementation referred to as “Levenshtein edit 
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distance” in this report.  The Levenshtein algo-
rithms clearly out performed the other metrics.   

 
Algorithm Recall Precision F-score 
Smith Waterman 14/29 14/18 0.5957 
SLIM 3/29 3/8 0.1622 
Jaro 8/29 8/11 0.4 
NeedlemanWunsch  19/29 19/23 0.7308 

Figure 5: Comparison of string similarity metrics 

4 Motivation of enhancements  

One insight is that each letter in an Arabic 
name has more than one possible letter in its Eng-
lish representation.  For instance, the first letter of 
former Egyptian president Gamal Abd Al-Nasser’s 
first name is written with the Arabic letter  جـ, 
which in most other dialects of Arabic is pro-
nounced either as [δΖ] or [Ζ], most closely resem-
bling the English pronunciation of the letter “j”.  
As previously noted, قـ has the received pronun-
ciation of [q], but in many dialects it is pronounced 
as [g], just like the Egyptian pronunciation of Nas-
ser’s first name Gamal.  The conclusion is that 
there is no principled way to predict a single repre-
sentation in English for an Arabic letter. 

Similarly, Arabic representations of non-native 
names are not entirely predictable.  Accented syl-
lables will be given a long vowel, but in longer 
names, different writers will place the long vowels 
showing the accented syllables in different places.  
We observed six different ways to represent the 
name Milosevic in Arabic.  

The full set of insights and “real-world” knowl-
edge of the craft for representing foreign names in 
Arabic and English is summarized in figure 6.  
These rules are based on first author Dr. Andrew 
Freeman’s1 experience with reading and translating 
Arabic language texts for more than 16 years. 

1) The hamza (ء) and the ‘ayn (ع) will 
often appear in English language texts 
as an apostrophe or as the vowel that 
follows. 

2) Names not native to Arabic will have a 
long vowel or diphthong for accented 
syllables represented by “w,” “y” or “A.  

3) The high front un-rounded diphthong 
(“i,” “ay”, “igh”) found in non-Arabic 
names will often be represented with an 
alif-yaa (ايـ) sequence in the Arabic 

                                                           
1 Dr. Freeman’s PhD dissertation was on Arabic dialectology.  

script. 
4) The back rounded diphthongs, (ow, au, 

oo) will be represented with a single 
“waw” in Arabic. 

5) The Roman scripts letters “p” and “v” 
are represented by “b” and “f” in Arabic.  
The English letter “x” will appear as the 
sequence “ks” in Arabic  

6) Silent letters, such as final “e” and in-
ternal “gh” in English names will not 
appear in the Arabic script. 

7) Doubled English letters will not be rep-
resented in the Arabic script. 

8) Many Arabic names will not have any 
short vowels represented. 

9) The “ch” in the English name “Richard” 
will be represented with the two charac-
ter sequence “t” (ت) and “sh” (ش).  The 
name “Buchanan” will be represented in 
Arabic with the letter “k” (ك). 

Figure 6: Rules for Arabic and English representations 

5 Implementation of the enhancements 

5.1 Character Equivalence Classes (CEQ):  

The implementation of the enhancements has 
six parts.  We replaced the comparison for the 
character match in the Levenshtein algorithm with 
a function Ar(si, tj ) that returns zero if the character 
tj from the English string is in the match set for the 
Arabic character si;, otherwise it returns a one.   

 

 
Figure 7: Cross linguistic Levenshtein 

 
String similarity measures require the strings to 

have the same character set, and we chose to use 
transliterated Arabic so that investigators who 
could not read Arabic script could still view and 
understand the results.  The full set of transliterated 
Arabic equivalence classes is shown in Figure 8.  
The set was intentionally designed to handle Ara-
bic text transliterated into either the Buckwalter 

for each i from 0 to |s| 
for each j from 0 to |t| 

levenshtein(0; 0) = 0 
levenshtein(i; 0) = i 
levenshtein(0;j) = j 
levenshtein (i;j) = 
min 
   [levenshtein (i − 1; j) + 1; 
   levenshtein(i; j − 1) + 1; 
   levenshtein(i − 1; j − 1) + Ar(si; tj )] 
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transliteration (Buckwalter, 2002) or the default 
setting of the transliteration software developed by 
Basis Technology (Basis, 2004). 

5.2 Normalizing the Arabic string 

The settings used with the Basis Artrans trans-
literation tool transforms certain Arabic letters into 
English digraphs with the appropriate two charac-
ters from the following set: (kh, sh, th, dh).  The 
Buckwalter transliteration method requires a one-
to-one and recoverable mapping from the Arabic 
script to the transliterated script.  We transformed 
these characters into the Basis representation with 
regular expressions.  These regular expressions are 
shown in figure 9 as perl script. 

Translit-
eration 

English equivalence class Arabic 
letter 

'  ',a ,A,e,E,i,I,o,O,u,U  ء 
| ',a ,A,e ,E,i ,I,o ,O,u ,U آ 
> ',a ,A,e ,E,i ,I,o ,O,u ,U أ 
& ',a ,A,e ,E,i ,I,o ,O,u ,U ؤ 
< ',a ,A,e ,E,i ,I,o ,O,u ,U إ 
} ',a ,A,e ,E,i ,I,o ,O,u ,U ئ 
A ',a ,A,e ,E,i ,I,o ,O,u ,U ا 
b b ,B,p ,P,v,V ب 
p a ,e ة 
+ a ,e ة 
t t,T ت 
v t ,T ث 
j j,J,g,G جـ 
H h, H حـ 
x k, K خـ  
d d, D د 
* d, D ذ 
r r, R ر 
z z, Z ز 
s s, S,c, C س 
$ s, S ش 
S s, S ص 
D d, D ض 
T t, T ط 
Z z, Z,d, D ظ  
E ',`,c,a,A,e,E,i,I,o,O,u,U ع 
` ',`,c,a,A,e,E,i,I,o,O,u,U ع 
g g, G غ  
f f, F,v, V ف 
q q, Q, g, G,k, K ق  
k k, K,c, C,S, s ك 
l l, L ل  
m m, M م  
n n, N ن  
h h, H هـ 
w w, W,u, u,o, O, 0 و  
y y, Y, i, I, e, E, ,j, J ي 
Y a, A,e, E,i, I, o,O,u, U ى 
a a, e َـ 

i i, e ِـ  
u u, o ُـ 

Figure 8: Arabic to English character equivalence sets 

 

 
Figure 9. Normalizing the Arabic 

5.3 Normalizing the English string 

Normalization enhancements were aimed at 
making the English string more closely match the 
transliterated form of the Arabic string.  These cor-
respond to points 2 through 7 of the list in Figure 
6.  The perl code that implemented these transfor-
mations is shown in figure 10.  

Figure 10. Normalizing the English 

5.4 Normalizing the vowel representations  

Normalization of the vowel representations is 
based on two observations that correspond to 
points 2 and 8 of Figure 6.  Figure 11 shows some 
English names represented in Arabic transliterated 
using the Buckwalter transliteration method. 

Name in English Name in Arabic Arabic  
transliteration 

Bill Clinton بيل كلينتون byl klyntwn 

Colin Powell كولين باول kwlyn bAwl 

$s2 =~ s/(a|e|i|A|E|I)(e|i|y)/y/g; 
# hi dipthongs go to y in Arabic 

$s2 =~ s/(e|a|o)(u|w|o)/w/g;  
 # lo dipthongs go to w in Arabic 
$s2 =~ s/(P|p)h/f/g;  # ph -> f in Arabic 
$s2 =~ s/(S|s)ch/sh/g; # sch is sh 
$s2 =~ s/(C|c)h/tsh/g; # ch is tsh or k ,  

# we catch the "k" on the pass 
$s2 =~ s/-//g; # eliminate all hyphens 
$s2 =~ s/x/ks/g; # x->ks in Arabic 
$s2 =~ s/e( |$)/$1/g; # the silent final e  
$s2 =~ s/(\S)\1/$1/g; # eliminate duplicates 
$s2 =~ s/(\S)gh/$1/g; # eliminate silent gh  
$s2 =~ s/\s//g;  # eliminate white space 
$s2 =~ s/(\.|,|;)//g; # eliminate punctuation

$s1 =~ s/\$/sh/g; #  normalize Buckwalter 
$s1 =~ s/v/th/g; # normalize Buckwalter 
$s1 =~ s/\*/dh/g; # normalize Buckwalter 
$s1 =~ s/x/kh/g; # normalize Buckwalter 
$s1 =~ s/(F|K|N|o|~)//g; #  remove case vowels,  

# the shadda and the sukuun 
$s1 =~ s/\'aa/\|/g; # normalize basis w/  

# Buckwalter madda 
$s1 =~ s/(U|W|I|A)/A/g; # normalize  hamza 
$s1 =~ s/_//; # eliminate underscores 
$s1 =~ s/\s//g; # eliminate white space 
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Richard Cheney ريتشارد تشيني rytshArd 
tshyny 

Figure 11. English names as represented in Arabic 

All full, accented vowels are represented in the 
Arabic as a long vowel or diphthong.  This vowel 
or diphthong will appear in the transliterated un-
vocalized text as either a “w,” “y” or “A.”  Unac-
cented short vowels such as the “e” found in the 
second syllable of “Powell” are not represented in 
Arabic.  Contrast figure 11 with the data in figure 
12. 

 
Name in 
Arabic 

Arabic  
transliteration 

Name in English 

مصطفى 
 الشيخ ديب

mSTfY Alshykh 
dyb 

Mustafa al Sheikh 
Deeb 

 mHmd EATf Muhammad Atef محمد عاطف
 Hsny mbArk Hosni Mubarak حسني مبارك

Figure 12. Arabic names as represented in English 

The Arabic only has the lengtheners “y”, “w”, 
or “A” where there are lexically determined long 
vowels or diphthongs in Arabic.  The English rep-
resentation of these names must contain a vowel 
for every syllable.  The edit-distance score for 
matching “Muhammad” with “mHmd” will fail 
since only 4 out of 7 characters match.  Lowering 
the match threshold will raise the recall score while 
lowering the precision score.  Stripping all vowels 
from both strings will raise the precision on the 
matches for Arabic names in English, but will 
lower the precision for English names in Arabic. 

 Figure 13.  Algorithm for retaining matching vowels  
 
The algorithm presented in figure 13 retains 

only those vowels that are represented in both 

strings.  The algorithm is a variant of a sorted file 
merge. 

5.5 Normalizing “ch” representations with a 
separate pass 

This enhancement requires a separate pass.  The 
name “Buchanan” is represented in Arabic as “by-
wkAnAn” and “Richard” is “rytshArd.”  Thus, 
whichever choice the software makes for the cor-
rect value of the English substring “ch,” it will 
choose incorrectly some significant number of 
times.  In one pass, every “ch” in the English string 
gets mapped to “tsh.”  In a separate pass, every 
“ch” in the English string is transformed into a “k.” 

5.6 Light Stemming 

The light stemming performed here was to re-
move the first letter of the transliterated Arabic 
name if it matched the prefixes “b,” “l” or “w” and 
run the algorithm another time if the match score 
was below the match threshold but above another 
lower threshold.  The first two items are preposi-
tions that attach to any noun.  The third is a con-
junction that attaches to any word.  Full stemming 
for Arabic is a separate and non-trivial problem. 

6 Results 

The algorithm with all enhancements was im-
plemented in perl and in Java.  Figure 14 presents 
the results of the enhanced algorithm on the origi-
nal baseline as compared with the baseline algo-
rithm.  The enhancements improved the F-score by 
22%.   

Algorithm Recall Precision F-score 
Baseline  19/29 19/23 0.7308 
Enhancements 29/29 29/32 0.9508 

Figure 14. Enhanced edit distance on original data set 

6.1 Results with a larger data set 

After trying the algorithm out on a couple more 
“toy” data sets with similar results, we used a more 
realistic data set, which I will call the TDT data 
set.  This data set was composed of 577 Arabic 
names and 968 English names that had been manu-
ally extracted from approximately 250 Arabic and 
English news articles on common topics in a NIST 
TDT corpus.  There are 272 common names.  The 
number of strings on the English side that correctly 

For  each i from 0 to min(|Estring|, |Astring|),  
each j from 0 to min(|Estring|, |Astring|) 
if Astringi equals Estringj 
       Outstringi = Estringi increment i and j 
if vowel(Astringi) and vowel(Estringj) 
       Outstringi = Estringi increment i and j 
if  not vowel(Astringi) and vowel(Estringj) 
       increment j but not i 
       if j < |Estring| 
           Outstringi = Estring; increment i and j 
otherwise 
      Outstringi = Estringi; increment i and j 

Finally if there is anything left of Estring,  
strip all vowels from what is left 
append Estring to end of Outstring
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match an Arabic language string is 591.  The actual 
number of matches in the set is 641, since many 
Arabic strings match to the same set of English 
names.  For instance, “Edmond Pope” has nine 
variants in English and six variants in Arabic.  This 
gives 36 correct matches for the six Arabic spell-
ings of Edmond Pope. 

We varied the match threshold for various 
combinations of the described enhancements.  The 
plots of the F-score, precision and recall from these 
experiments using the TDT data set are shown in 
figures 15, 16, and 17. 

7 Discussion 

Figure 15 shows that simply adding the “char-
acter equivalency classes” (CEQ) to the baseline 
algorithm boosts the F-score from around 48% to 
around 72%.  Adding all other enhancements to the 
baseline algorithm, without adding CEQ only im-
proves the f-score marginally.  Combining these 
same enhancements with the CEQ raises the f-
score by roughly 7% to almost 80%.   

When including CEQ, the algorithm has a peak 
performance with a threshold near 85%.  When 
CEQ is not included, the algorithm has a peak per-
formance when the match threshold is around 70%.  
The baseline algorithm will declare that the strings 
match at a cutoff of 70%.  Because we are normal-
izing by dividing by the lengths of both strings, 
this allows strings to match when half of their let-
ters do not match.  The CEQ forces a structure 
onto which characters are an allowable mismatch 
before the threshold is applied.  This apparently 
leads to a reduction in the number allowable mis-
matches when the match threshold is tested.  

The time and space complexity of the baseline 
Levenshtein algorithm is a function of the length of 
the two input strings, being |s| * |t|.  This makes the 
time complexity (N2) where N is the size of the 
average input string.  The enhancements described 
here add to the time complexity.  The increase is 
an average two or three extra compares per charac-
ter and thus can be factored out of any equation.  
The new time complexity is K(|s|*|t|) where K >= 
3. 

What we do here is the opposite of the approach 
taken by the Soundex and Editex algorithms.  They 
try to reduce the complexity by collapsing groups 
of characters into a single super-class of characters.  
The algorithm here does some of that with the 

steps that normalize the strings.  However, the 
largest boost in performance is with CEQ, which 
expands the number of allowable cross-language 
matches for many characters. 

One could expect that increasing the allowable 
number of matches would over-generate, raising 
the recall while lowering the precision.   

Referring to Figure 8, we see that’s ome Arabic 
graphemes map to overlapping sets of characters in 
the English language strings.   

Arabic جـ can be realized, as either [j] or [g], 

and one of the reflexes in English for Arabic ق can 
be [g] as well.  How do we differentiate the one 
from the other?  Quite simply, the Arabic input is 
not random data.  Those dialects that produce ق as 
a [g] will as a rule not produce جـ as [g] and vice 
versa.  The Arabic pronunciation of the string de-
termines the correct alternation of the two charac-
ters for us as it is written in English.  On a string-
by-string basis, it is very unlikely that the two rep-
resentations will conflict.  The numbers show that 
by adding CEQ, the baseline algorithm’s recall at 
threshold of 72.5%, goes from 57% to around 67% 
at a threshold of 85% for Arabic to English cross-
linguistic name matching.  Combining all of the 
enhancements raises the recall at a threshold of 
85%, to 82%.  As previously noted, augmenting 
the baseline algorithm with all enhancements ex-
cept CEQ, does improve the performance dramati-
cally.  CEQ combines well with the other 
enhancements.   

It is true that there is room for a lot improve-
ment with an f-score of 80%.  However, anyone 
doing cross-linguistic name matches would proba-
bly benefit by implementing some form of the 
character equivalence classes detailed here. 
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Figure 15: F-score by match threshold
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Figure 16: Recall by threshold
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Figure 17: Precision by threshold
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