
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 415–422,
New York, June 2006.c©2006 Association for Computational Linguistics

Towards Spoken-Document Retrieval for the Internet:
Lattice Indexing For Large-Scale Web-Search Architectures

Zheng-Yu Zhou∗, Peng Yu, Ciprian Chelba+, and Frank Seide
∗Chinese University of Hong Kong, Shatin, Hong Kong

Microsoft Research Asia, 5F Beijing Sigma Center, 49 Zhichun Road, 100080 Beijing
+Microsoft Research, One Microsoft Way, Redmond WA 98052

zyzhou@se.cuhk.edu.hk, {rogeryu,chelba,fseide }@microsoft.com

Abstract

Large-scale web-search engines are generally
designed for linear text. The linear text repre-
sentation is suboptimal for audio search, where
accuracy can be significantly improved if the
search includes alternate recognition candi-
dates, commonly represented as word lattices.
This paper proposes a method for indexing
word lattices that is suitable for large-scale
web-search engines, requiring only limited
code changes.
The proposed method, called Time-based
Merging for Indexing (TMI), first converts the
word lattice to a posterior-probability represen-
tation and then merges word hypotheses with
similar time boundaries to reduce the index
size. Four alternative approximations are pre-
sented, which differ in index size and the strict-
ness of the phrase-matching constraints.
Results are presented for three types of typi-
cal web audio content, podcasts, video clips,
and online lectures, for phrase spotting and rel-
evance ranking. Using TMI indexes that are
only five times larger than corresponding linear-
text indexes, phrase spotting was improved over
searching top-1 transcripts by 25-35%, and rel-
evance ranking by 14%, at only a small loss
compared to unindexed lattice search.

1 Introduction
Search engines have become the essential tool for find-
ing and accessing information on the Internet. The re-
cent runaway success of podcasting has created a need
for similar search capabilities to find audio on the web.
As more news video clips and even TV shows are offered
for on-demand viewing, and educational institutions like
MIT making lectures available online, a need for audio
search arises as well, because the most informative part

of many videos is its dialogue.
There is still a significant gap between current web au-

dio/video search engines and the relatively mature text
search engines, as most of today’s audio/video search en-
gines rely on the surrounding text and metadata of an au-
dio or video file, while ignoring the actual audio content.
This paper is concerned with technologies for searching
the audio content itself, in particular how to represent the
speech content in the index.

Several approaches have been reported in the litera-
ture for indexing spoken words in audio recordings. The
TREC (Text REtrieval Conference) Spoken-Document
Retrieval (SDR) track has fostered research on audio-
retrieval of broadcast-news clips. Most TREC bench-
marking systems use broadcast-news recognizers to gen-
erate approximate transcripts, and apply text-based infor-
mation retrieval to these. They achieve retrieval accuracy
similar to using human reference transcripts, and ad-hoc
retrieval for broadcast news is considered a “solved prob-
lem” (Garofolo, 2000). Noteworthy are the rather low
word-error rates (20%) in the TREC evaluations, and that
recognition errors did not lead to catastrophic failures due
to redundancy of news segments and queries. However, in
our scenario, unpredictable, highly variable acoustic con-
ditions, non-native and accented speaker, informal talk-
ing style, and unlimited-domain language cause word-
error rates to be much higher (40-60%). Directly search-
ing such inaccurate speech recognition transcripts suffers
from a poor recall.

A successful way for dealing with high word error rates
is the use of recognition alternates (lattices) (Saraclar,
2004; Yu, 2004; Chelba, 2005). For example, (Yu, 2004)
reports a 50% improvement of FOM (Figure Of Merit) for
a word-spotting task in voice-mails, and (Yu, HLT2005)
adopted the approach for searching personal audio collec-
tions, using a hybrid word/phoneme lattice search.

Web-search engines are complex systems involving
substantial investments. For extending web search to au-
dio search, the key problem is to find a (approximate)

415



representation of lattices that can be implemented in a
state-of-the-art web-search engine with as little changes
as possible to code and index store and without affecting
its general architecture and operating characteristics.

Prior work includes (Saraclar, 2004), which proposed
a direct inversion of raw lattices from the speech recog-
nizer. No information is lost, and accuracy is the same
as for directly searching the lattice. However, raw lattices
contain a large number of similar entries for the same spo-
ken word, conditioned on language-model (LM) state and
phonetic cross-word context, leading to inefficient usage
of storage space.

(Chelba, 2005) proposed a posterior-probability based
approximate representation in which word hypotheses are
merged w.r.t. word position, which is treated as a hidden
variable. It easily integrates with text search engines, as
the resulting index resembles a normal text index in most
aspects. However, it trades redundancy w.r.t. LM state
and context for uncertainty w.r.t. word position, and only
achieves a small reduction of index entries. Also, time
information for individual hypotheses is lost, which we
consider important for navigation and previewing.

(Mangu, 2000) presented a method to align a speech
lattice with its top-1 transcription, creating so-called
“confusion networks” or “sausages.” Sausages are a par-
simonious approximation of lattices, but due to the pres-
ence of null links, they do not lend themselves naturally
for matching phrases. Nevertheless, the method was a key
inspiration for the present paper.

This paper is organized as follows. The next section
states the requirements for our indexing method and de-
scribes the overall system architecture. Section 3 intro-
duces our method, and Section 4 the results. Section 5
briefly describes a real prototype built using the approach.

2 Indexing Speech Lattices, Internet Scale
Substantial investments are necessary to create and oper-
ate a web search engine, in software development and op-
timization, infrastructure, as well as operation and main-
tainance processes. This poses constraints on what can
practically be done when integrating speech-indexing ca-
pabilities to such an engine.

2.1 Requirements
We have identified the following special requirements for
speech indexing:

• realize best possible accuracy – speech alternates
must be indexed, with scores;

• provide time information for individual hits – to fa-
cilitate easy audio preview and navigation in the UI;

• encode necessary information for phrase matching –
phrase matching is a basic function of a search en-
gine and an important feature for document ranking.

This is non-trivial because boundaries of recognition
alternates are generally not aligned.

None of these capabilities are provided by text search
engines. To add these capabilities to an existing web en-
gine, we are facing practical constraints. First, the struc-
ture of the index store cannot be changed fundamentally.
But we can reinterpret existing fields. We also assume
that the index attaches a few auxiliary bits to each word
hit. E.g., this is done in (early) Google (Brin, 1998) and
MSN Search. These can be used for additional data that
needs to be stored.

Secondly, computation and disk access should remain
of similar order of magnitude as for text search. Extra
CPU cycles for phrase-matching loops are possible as
long as disk access remains the dominating factor. The
index size cannot be excessively larger than for indexing
text. This precludes direct inversion of lattices (and un-
fortunately also the use of phonetic lattices).

Last, while local code changes are possible, the over-
all architecture and dataflow cannot be changed. E.g.,
this forbids the use of a two-stage method as in (Yu,
HLT2005).

2.2 Approach
We take a three-step approach. First, following (Chelba,
2005), we use a posterior-probability representation, as
posteriors are resilient to approximations and can be
quantized with only a few bits. Second, we reduce the in-
herent redundancy of speech lattices by merging word hy-
potheses with same word identity and similar time bound-
aries, hence the name “Time-based Merging for Indexing”
(TMI). Third, the resulting hypothesis set is represented
in the index by reinterpreting existing data fields and re-
purposing auxiliary bits.

2.3 System Architecture
Fig. 1 shows the overall architecture of a search engine
for audio/video search. At indexing time, a media de-
coder first extracts the raw audio data from different for-
mats of audio found on the Internet. A music detector
prevents music from being indexed. The speech is then
fed into a large-vocabulary continuous-speech recognizer
(LVCSR), which outputs word lattices. The lattice in-
dexer converts the lattices into the TMI representation,
which is then merged into the inverted index. Available
textual metadata is also indexed.

At search time, all query terms are looked up in the in-
dex. For each document containing all query terms (deter-
mined by intersection), individual hit lists of each query
term are retrieved and fed into a phrase matcher to iden-
tify full and partial phrase hits. Using this information,
the ranker computes relevance scores. To achieve accept-
able response times, a full-scale web engine would split
this process up for parallel execution on multiple servers.
Finally the result presentation module will create snippets

416



media

decoder

speech

stream

speech

recognizer

index

lookup

result 

page

query

audio

stream

result

presentation

indexing

search
inverted

index

wave

stream lattice

indexer

speech

lattice

TMI 

representation

meta

data

text

indexer

ranker

time 

information

doc

list

phrase

match

hit

information

hit

list

music

detector

Figure 1: System Architecture.

for the returned documents and compose the result page.
In audio search, snippets would contain time information
for individual word hits to allow easy navigation and pre-
view.

3 Time-based Merging for Indexing
Our previous work (Yu, IEEE2005) has shown that in a
word spotting task, ranking by phrase posteriors is in the-
ory optimal if (1) a search hit is considered relevant if the
query phrase was indeed said there, and (2) the user ex-
pects a ranked list of results such that the accumulative
relevance of the top-n entries of the list, averaged over
a range ofn, is maximized. In the following, we will
first recapitulate the lattice notation and how phrase pos-
teriors are calculated from the lattice. We then introduce
time-based merging, which leads to an approximate rep-
resentation of the original lattice. We will describe two
strategies of merging, one by directly clustering word hy-
potheses (arc-based merging) and one by grouping lattice
nodes (node-based merging).

3.1 Posterior Lattice Representation
A lattice L = (N ,A, nstart, nend) is a directed acyclic
graph (DAG) withN being the set of nodes,A is the
set of arcs, andnstart, nend ∈ N being the unique ini-
tial and unique final node, respectively. Nodes represent
times and possibly context conditions, while arcs repre-
sent word or phoneme hypotheses.1

Each noden ∈ N has an associated timet[n] and
possibly an acoustic or language-model context condi-
tion. Arcs are 4-tuplesa = (S[a], E[a], I[a], w[a]). S[a],
E[a] ∈ N denote the start and end node of the arc.I[a]
is the word identity. Last,w[a] shall be a weight as-
signed to the arc by the recognizer. Specifically,w[a] =
pac(a)1/λ · PLM(a) with acoustic likelihoodpac(a), LM
probabilityPLM, and LM weightλ.

1Alternative definitions of lattices are possible, e.g. nodes
representing words and arcs representing word transitions.

In addition, we definepaths π = (a1, · · · , aK) as
sequencesof connected arcs. We use the symbolsS,
E, I, and w for paths as well to represent the respec-
tive properties for entire paths, i.e. the path start node
S[π] = S[a1], path end nodeE[π] = E[aK ], path la-
bel sequenceI[π] = (I[a1], · · · , I[aK ]), and total path
weightw[π] =

∏K
k=1 w[ak].

Based on this, we definearc posteriorsParc[a] and
node posteriorsPnode[n] as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

; Pnode[n] =
αn · βn

αnend

,

with forward-backward probabilitiesαn, βn defined as:

αn =
∑

π:S[π]=nstart∧E[π]=n

w[π] ; βn =
∑

π:S[π]=n∧E[π]=nend

w[π]

αn andβn can be conveniently computed using the well-
known forward-backward recursion, e.g. (Wessel, 2000).

With this, an alternative equivalent representation is
possible by using word posteriors as arc weights. The
posterior lattice representation stores four fields with
each edge:S[a], E[a], I[a], andParc[a], and two fields
with each node:t[n], andPnode[a].

With the posterior lattice representation, the phrase
posterior of query stringQ is computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK ):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK ]
Pnode[S[a2]] · · ·Pnode[S[aK ]]

. (1)

This posterior representation is lossless. Its advantage is
that posteriors are much more resiliant to approximations
than acoustic likelihoods. This paves the way for lossy
approximations aiming at reducing lattice size.

3.2 Time-based Merging for Indexing
First, (Yu, HLT2005) has shown that node posteriors can
be replaced by a constant, with no negative effect on

417



search accuracy. This approximation simplifies the de-
nominator in Eq. 1 topK−1

node .
We now merge all nodes associated with the same time

points. As a result, the connection condition for two arcs
depends only on the boundary time point. This operation
gave the name Time-based Merging for Indexing.

TMI stores arcs with start and end time, while dis-
carding the original node information that encoded de-
pendency on LM state and phonetic context. This form
is used, e.g., by (Wessel, 2000). Lattices are viewed as
sets ofitemsh = (ts[h], dur[h], I[h], P [h]), with ts[h]
being the start time,dur[h] the time duration,I[h] the
word identity, andP [h] the posterior probability. Arcs
with same word identity and time boundaries but differ-
ent start/end nodes are merged together, their posteriors
being summed up.

These item sets can be organized in an inverted index,
similar to a text index, for efficient search. A text search
engine stores at least two fields with each word hit: word
position and document identity. For TMI, two more fields
need to be stored: duration and posterior. Start times can
be stored by repurposing the word-position information.
Posterior and duration go into auxiliary bits. If the index
has the ability to store side information for documents,
bits can be saved in the main index by recording all time
points in a look-up table, and storing start times and du-
rations as table indices instead of absolute times. This
works because the actual time values are only needed for
result presentation. Note that the TMI index is really an
extension of a linear-text index, and the same code base
can easily accomodate indexing both speech content and
textual metadata.

With this, multi-word phrase matches are defined as
a sequence of itemsh1...hK matching the query string
(Q = (I[h1], · · · , I[hK ])) with matching boundaries
(ts[hi] + dur[hi] = ts[hi+1]). The phrase posterior is
calculated (using the approximate denominator) as

P (∗, ts, Q, te, ∗|O) ≈
∑ P [h1] · · ·P [hK ]

pK−1
node

, (2)

summing over all item sequences withts = ts[h1] and
te = ts[hK ] + dur[hK ].

Regular text search engines can not directly support
this, but the code modification and additional CPU cost
is small. The major factor is disk access, which is still
linear with the index size.

We call this index representation “TMI-base.” It pro-
vides a substantial reduction of number of index entries
compared to the original lattices. However, it is obviously
an approximative representation. In particular, there are
now conditions under which two word hypotheses can be
matched as part of a phrase that were not connected in
the original lattice. This approximation seems sensible,
though, as the words involved are still required to have

Table 1: Test corpus summary.
test set dura- #seg- #keywords WER

tion ments (#multi-word) [%]
podcasts 1.5h 367 3223 (1709) 45.8
videos 1.3h 341 2611 (1308) 50.8
lectures 169.6h 66102 96 (74) 54.8

precisely matching word boundaries. In fact it has been
shown that this representation can be used for direct word-
error minimization during decoding (Wessel, 2000).

For further reduction of the index size, we are now re-
laxing the merging condition. The next two sections will
introduce two alternate ways of merging.

3.3 Arc-Based Merging
A straightforward way is to allow tolerance of time
boundaries. Practically, this is done by the following
bottom-up clustering procedure:

• collect arcs with same word identity;
• find the arca∗ with the best posterior, set the result-

ing item time boundary same asa∗;
• merge all overlapping arcsa satisfying t[S[a∗]] −
41 ≤ t[S[a]] ≤ t[S[a∗]] +41 andt[E[a∗]]−41 ≤
t[E[a]] ≤ t[E[a∗]] +41;

• repeat with remaining arcs.

We call this method “TMI-arc” to denote its origin from
direct clustering of arcs.

Note that the resulting structure can generally not be
directly represented as a lattice anymore, as formally con-
nected hypotheses now may have slightly mismatching
time boundaries. To compensate for this, the item connec-
tion condition in phrase matching needs to be relaxed as
well: ts[hi+1]−41 ≤ ts[hi]+dur[hi] ≤ ts[hi+1]+41.

The storage cost for each TMI-arc item is same as for
TMI-base, while thenumberof items will be reduced.

3.4 Node-Based Merging
An alternative way is to group ranges of time points,
and then merge hypotheses whose time boundaries got
grouped together.

The simplest possibility is to quantize time points into
fixed intervals, such as 250 ms. Hypotheses are merged
if their quantized time boundaries are identical. This
method we call “TMI-timequant.”

Besides reducing index size by allowing more item
merging, TMI-timequant has another important property:
since start times and duration are heavily quantized, the
number of bits used for storing the information with the
items in the index can be significantly reduced.

The disadvantage of this method is that loops are fre-
quently being generated this way (quantized duration of
0), providing sub-optimal phrase matching constraints.

To alleviate for this problem, we modify the merging
by forbidding loops to be created: Two time points can be

418



Table 2: Lattice search accuracy on different dataset.
setup best path raw lattice
keywords all sing. mult. all sing. mult.

Phrase spotting, FOM[%]
podcasts 55.0 59.9 50.1 69.5 74.7 64.2
videos 47.0 50.6 43.0 64.4 67.4 61.1
lectures 65.5 69.5 47.1 77.0 80.8 58.8

Relevance ranking, mAP[%]
lectures 52.6 52.7 52.6 61.6 66.4 60.2

grouped together if (1) their difference is below a thresh-
old (like 250 ms); and (2) if there is no word hypothesis
starting and ending in the same group. As a refinement,
the second point is relaxed by a pruning threshold in that
hypotheses with posteriors below the threshold will not
block nodes merging.

Amongst the manifold of groupings that satisfy these
two conditions, the one leading to the smallest number of
groups is considered the optimal solution. It can be found
using dynamic programming:

• line up all existing time boundaries in ascending or-
der,ti < ti+1, i = 1, · · · , N ;

• for each time pointti, find out the furthest time point
that it can be grouped with given the constraints, de-
noting its index asT [ti];

• set group countC[t0] = 1; C[ti] = ∞, i > 0;
• set backpointerB[t0] = −1; B[ti] = ti, i > 0;
• for i = 1, · · · , N :

– for j = i+1, · · · , T [ti]: if C[tj+1] > C[ti]+1:
∗ C[tj+1] = C[ti] + 1;
∗ B[tj+1] = ti;

• trace back and merge nodes:
– setk = N , repeat untilk = −1:

∗ group time points fromB[tk] to tk−1;
∗ k = B[tk].

This method can be applied to the TMI-base represen-
tation, or alternatively directly to the posterior lattice. In
this case, the above algorithm needs to be adapted to op-
erate on nodes rather than time points. The above method
is called “TMI-node.”

If, as mentioned before, times and durations are stored
as indexes into a look-up table, TMI-node is highly space
efficient. In most cases, the index difference between end
and start point is 1, and in practical terms, the index dif-
ference can be capped by a small number below 10.

4 Results
4.1 Setup
We have evaluated our system on three different corpora,
in an attempt to represent popular types of audio currently
found on the Internet:
• podcasts: short clips ranging from mainstream me-

dia like ABC and CNN to non-professionally pro-
duced edge content;

• video clips, acquired from MSN Video;
• online lectures: a subset of the MIT iCampus lecture

collection (Glass, 2004).

In relation to our goal of web-scale indexing, the pod-
cast and video sets are miniscule in size (about 1.5 hours
each). Nevertheless they are suitable for investigating the
effectiveness of the TMI method w.r.t. phrase spotting
accuracy. Experiments on relevance ranking were con-
ducted only on the much larger lecture set (170 hours).

For the iCampus lecture corpus, the same set of queries
was used as in (Chelba, 2005), which was collected from
a group of users. Example keywords arecomputer science
andcontext free grammar. On the other two sets, an au-
tomatic procedure described in (Seide, 2004) was used to
select keywords. Example keywords areplayoffs, beach
Florida, andAmerican Express financial services.

A standard speaker-independent trigram LVCSR sys-
tem was used to generate raw speech lattices. For video
and podcasts, models were trained on a combination of
telephone conversations (Switchboard), broadcast news,
and meetings, downsampled to 8 kHz, to accomodate for
a wide range of audio types and speaking styles. For lec-
tures, an older setup was used, based on a dictation engine
without adaptation to the lecture task. Due to the larger
corpus size, lattices for lectures were pruned much more
sharply. Word error rates (WER) and corpus setups are
listed in Table 1. It should be noted that the word-error
rates vary greatly within the podcast and video corpora,
ranging from 30% (clean broadcast news) to over 80%
(accented reverberated speech with a cheering crowd).

Each indexing method is evaluated by a phrase spotting
task and a document retrieval task.

4.1.1 Phrase Spotting

We use the “Figure Of Merit” (FOM) metric defined by
NIST for word-spotting evaluations. In its original form,
FOM is the detection/false-alarm curve averaged over the
range of [0..10] false alarms per hour per keyword. We
generalized this metric to spotting of phrases, which can
be multi-word or single-word. A multi-word phrase is
matched if all of its words match in order.

Since automatic word alignment can be troublesome
for long audio files in the presence of errors in the ref-
erence transcript, we reduced the time resolution of the
FOM metric and used the sentence as the basic time unit.
A phrase hit is considered correct if an actual occurence
of the phrase is found in the same sentence. Multiple hits
of the same phrase within one sentence are counted as a
single hit, their posterior probabilities being summed up
for ranking.

The segmentation of the audio files is based on the ref-
erence transcript. Segments are on average about 10 sec-
onds long. In a real system, sentence boundaries are of
course unknown, but previous experiments have shown

419



Table 3: Comparison of different indexing methods. Only results for multi-words queries are shown, because results
for single-word queries are identical across lattice-indexing methods (approximately identical in the case of pruning.)

dataset podcasts videos lectures
FOM [%] size FOM [%] size FOM [%] mAP [%] size

bestpath 50.1 1.1 43.0 1.0 47.1 52.6 1.0
raw lattice 64.2 527.6 61.1 881.7 58.8 60.2 23.3
Pnode = const 64.3 527.6 61.1 881.7 58.8 60.3 23.3

no pruning
TMI-base 65.3 55.2 62.6 78.8 58.8 60.2 7.7
TMI-arc 62.9 16.1 58.5 20.7 57.9 60.1 4.4
TMI-timequant 66.7 15.4 64.2 19.5 58.8 60.3 4.5
TMI-node 66.5 20.7 63.4 27.6 58.7 59.7 4.4
PSPL 68.9 182.0 66.2 212.0 58.7 61.0 21.2

pruned to about 5 entries per spoken word
TMI-base 62.1 5.6 54.1 5.1 57.0 60.3 4.5
TMI-arc 60.7 4.6 53.6 5.0 57.9 60.1 4.4
TMI-timequant 63.1 4.7 57.1 5.1 58.8 60.3 4.5
TMI-node 63.7 4.6 57.7 5.1 58.7 59.7 4.4
PSPL 57.3 6.0 49.8 5.8 53.6 61.0 4.4

that the actual segmentation does not have significant im-
pact on the results.

4.1.2 Relevance Ranking
The choice and optimization of a relevance ranking for-

mula is a difficult problem that is beyond the scope of this
paper. We chose a simple document ranking method as
described in (Chelba, 2005):

Given queryQ = (q1, · · · , qL), for each document
D, expected term frequencies (ETF) of all sub-strings
Q[i,j] = (qi, · · · , qj) are calculated:

ETF(Q[i,j]|D)=
∑
ts,te

P (∗, ts, Q[i,j], te, ∗|O, D) (3)

A document is returned if all query words are present. The
relevance score is calculated as

S(D, Q)=
L∑

i=1

L∑

j=i

wj−i log[1+ETF(Q[i,j]|D)] (4)

where the weightsw` have the purpose to give higher
weight to longer sub-strings. They were chosen asw` =
1 + 1000 · `, no further optimization was performed.

Only the lecture set is used for document retrieval eval-
uation. The whole set consists of 169 documents, with an
average of 391 segments in each document. The eval-
uation metric is the mean average precision (mAP) as
computed by the standardtrec_eval package used by
the TREC evaluations (NIST, 2005). Since actual rele-
vance judgements were not available for this corpus, we
use the output of a state-of-the-art text retrieval engine on
the ground truth transcripts as the reference. The idea is
that if human judgements are not available, the next best
thing to do is to assess how close our spoken-document
retrieval system gets to a text engine applied to reference

transcripts. Although one should take the absolute mAP
scores with a pinch of salt, we believe that comparing the
relative changes of these mAP scores is meaningful.

4.2 Lattice Search and Best Path Baseline
Table 2 lists the word spotting and document retrieval re-
sult of direct search in the original raw lattice, as well
as for searching the top-1 path. Results are listed sepa-
rately for single- and multi-word queries. For the phrase-
spotting task, a consistent about 15% improvement is
observed on all sets, re-emphasizing the importance of
searching alternates. For document retrieval, the accuracy
(mAP) is also significantly improved from 53% to 62%.

4.2.1 Comparing Indexing Methods
Table 3 compares different indexing methods with re-

spect to search accuracy and index size. We only show
results for multi-words queries results, as it can be shown
that results for single-word queries must be identical. The
index size is measured as index entries per spoken word,
i.e. it does not reflect that different indexing methods may
require different numbers of bits in the actual index store.

In addition to four types of TMI methods, we include
an alternative posterior-lattice indexing method in our
comparison called PSPL (position-specific posterior lat-
tices) (Chelba, 2005). A PSPL index is constructed by
enumerating all paths through a lattice, representing each
path as a linear text, and adding each text to the index,
each time starting over from word position 1. Each word
hypothesis on each path is assigned the posterior proba-
bility of the entire path. Instances of the same word oc-
curing at the same text position are merged, accumulating
their posterior probabilities. This way, each index entry
represents the posterior probability that a word occurs at
a particular position in the actual spoken word sequence.
PSPL is an attractive alternative to the work presented in

420



0

2

4

6

8

10

12

14

16

18

20

48 53 58 63 68

Phrase Spotting Accuracy (Figure Of Merit [%])
(a) podcasts

in
d

ex
 e

n
tr

ie
s 

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

42 47 52 57 62

Phrase Spotting Accuracy (Figure Of Merit [%])
(b) videos

in
d

ex
 e

n
tr

ie
s 

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

40 45 50 55 60

Phrase Spotting Accuracy (Figure Of Merit [%])
(c) lectures

in
d

ex
 e

n
tr

ie
s 

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

52 54 56 58 60 62 64
Relevance Ranking Accuracy (mAP [%])

(d) lectures

in
d

ex
 e

n
tr

ie
s 

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

Figure 2: Index size vs. accuracy for different pruning thresholds for word-spotting on (a) podcasts, (b) videos, (c)
lectures, and (d) relevance ranking for lectures.

this paper because it continues to use the notion of a word
position instead of time, with the advantage that exist-
ing implementations of phrase-matching conditions apply
without modification.

The results show that, comparing with the direct raw-
lattice search, all indexing methods have only slight im-
pact on both word spotting and document retrieval accu-
racies. Against our expectation, in many casesimproved
accuracies are observed. These are caused by creating ad-
ditonal paths compared to the original lattice, improving
recall. It is not yet clear how to exploit this in a systematic
manner.

W.r.t. storage efficiency, the TMI merging methods
have about 5 times less index entries than the original lat-
tice for lectures (and an order of magnitude less for pod-
casts and videos that were recognized with rather waste-
ful pruning thresholds). This can be further improved by
pruning.

4.2.2 Pruning
Index size and accuracy can be balanced by pruning

low-scoring index entries. Experiments have shown that
the optimal pruning strategy differs slightly from method
to method. For the TMI set, the index is pruned by remov-
ing all entries with posterior probabilities below a certain
fixed threshold. In addition, for TMI-node we enforce
that the best path is not pruned. For PSPL, an index entry
at a particular word position is removed if its posterior is
worse by a fixed factor compared to the best index entry
for thesameword position. This also guarantees that the
best path is never pruned.

Fig. 2 depicts the trade-off of size and accuracy for
different indexing methods. TMI-node provides the best
trade-off. The last block of Table 3 shows results for all
indexing methods when pruned with the respective prun-
ing thresholds adjusted such that the number of index en-
tries is approximately five times that for the top-1 tran-
script. We chose this size because reducing the index size
still has limited impact on accuracy (0.5-points for pod-
casts, 3.5 for videos, and none for lectures) while keeping
operating characteristics (storage size, CPU, disk) within
an order of magnitude from text search.

5 The System
The presented technique was implemented in a research
prototype shown in Fig. 3. About 780 hours of audio doc-
uments, including video clips from MSN Video and audio
files from most popular podcasts, were indexed. The in-
dex is disk-based, its size is 830 MB, using a somewhat
wasteful XML representation for research convenience.
Typically, searches are executed within 0.5 seconds.

The user interface resembles a typical text search en-
gine. A media player is embedded for immediate within-
page playback. Snippets are generated for previewing the
search results. Each word in a snippet has its original
time point associated, and a click on it positions the me-
dia player to the corresponding time in the document.

6 Conclusion
We targeted the paper to the task of searching audio con-
tent from the Internet. Aiming at maximizing reuse of
existing web-search engines, we investigated how best to

421



Figure 3: Screenshot of the video/audio-search prototype. For each document, in addition to the title and description
text from meta-data, the system displays recognition-transcript snippets around the audio hits, e.g. “...bird flu has
been a ...” in the first document. Clicking on a word in a snippet starts playing back the video at that position using
the embedded video player.

represent important lattice properties – recognition alter-
nates with scores, time boundaries, and phrase-matching
constraints – in a form suitable for large-scale web-search
engines, while requiring only limited code changes.

The proposed method, Time-based Merging for Index-
ing (TMI), first converts the word lattice to a posterior-
probability representation and then merges word hypothe-
ses with similar time boundaries to reduce the index size.
Four approximations were presented, which differ in size
and the strictness of phrase-matching constraints.

Results were presented for three typical types of web
audio content – podcasts, video clips, and online lectures
– for phrase spotting and relevance ranking. Using TMI
indexes that are only five times larger than corresponding
linear-text indexes, accuracy was improved over search-
ing top-1 transcripts by 25-35% for word spotting and
14% for relevance ranking, very close to what is gained
by a direct search of unindexed lattices.

Practical feasibility has been demonstrated by a re-
search prototype with 780 hours indexed audio, which
completes searches within 0.5 seconds.

To our knowledge, this is also the first paper to report
speech recognition results for podcasts.

7 Acknowledgements
The authors wish to thank Jim Glass and T. J. Hazen at
MIT for providing the iCampus data.

References
S. Brin and L. Page, The anatomy of a large-scale hypertextual

Web search engine.Computer Networks and ISDN Systems,

30(1-7):107-117.
C. Chelba and A. Acero, Position specific posterior lattices for

indexing speech.Proc. ACL’2005, Ann Arbor, 2005.
J. Garofolo, TREC-9 Spoken Document Retrieval Track.

National Institute of Standards and Technology,http://
trec.nist.gov/pubs/trec9/sdrt9_slides/
sld001.htm .

J. Glass, T. J. Hazen, L. Hetherington, C. Wang, Analysis and
Processing of Lecture Audio data: Preliminary investiga-
tion. Proc. HLT-NAACL’2004 Workshop: Interdisciplinary
Approaches to Speech Indexing and Retrieval, Boston, 2004.

L. Mangu, E. Brill, A. Stolcke, Finding Consensus in Speech
Recognition: Word Error Minimization and Other Applica-
tions of Confusion Networks.Computer, Speech and Lan-
guage, 14(4):373-400.

MSN Video.http:// video.msn.com .
The TREC evaluation package.http:// www - lpir . nist

. gov / projects / trecvid / trecvid . tools /
trec_eval .

M. Saraclar, R. Sproat, Lattice-based search for spoken utter-
ance retrieval.Proc. HLT’2004, Boston, 2004.

F. Seide, P. Yu,et al., Vocabulary-independent search in sponta-
neous speech.Proc. ICASSP’2004, Montreal, 2004.

F. Wessel, R. Schlüter, and H. Ney, Using posterior word proba-
bilities for improved speech recognition.Proc. ICASSP’2000,
Istanbul, 2000.

P. Yu, K. J. .Chen, L. Lu, F. Seide, Searching the Audio
Notebook: Keyword Search in Recorded Conversations.
Proc. HLT’2005, Vancouver, 2005.

P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-Independent
Indexing of Spontaneous Speech, IEEE transaction on
Speech and Audio Processing, Vol.13, No.5, Special Issue
on Data Mining of Speech, Audio and Dialog.

P. Yu, F. Seide, A hybrid word / phoneme-based approach
for improved vocabulary-independent search in spontaneous
speech.Proc. ICLSP’04, Jeju, 2004.

422


