
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 351–358,
New York, June 2006.c©2006 Association for Computational Linguistics

A Better -Best List: Practical Determinization of Weighted Finite Tree
Automata

Jonathan May
Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292
jonmay@isi.edu

Kevin Knight
Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292
knight@isi.edu

Abstract

Ranked lists of output trees from syn-
tactic statistical NLP applications fre-
quently contain multiple repeated entries.
This redundancy leads to misrepresenta-
tion of tree weight and reduced informa-
tion for debugging and tuning purposes.
It is chiefly due to nondeterminism in the
weighted automata that produce the re-
sults. We introduce an algorithm that de-
terminizes such automata while preserv-
ing proper weights, returning the sum of
the weight of all multiply derived trees.
We also demonstrate our algorithm’s ef-
fectiveness on two large-scale tasks.

1 Introduction
A useful tool in natural language processing tasks
such as translation, speech recognition, parsing, etc.,
is the ranked list of results. Modern systems typ-
ically produce competing partial results internally
and return only the top-scoring complete result to
the user. They are, however, also capable of pro-
ducing lists of runners-up, and such lists have many
practical uses:

The lists may be inspected to determine
the quality of runners-up and motivate
model changes.
The lists may be re-ranked with extra
knowledge sources that are difficult to ap-
ply during the main search.
The lists may be used with annotation and
a tuning process, such as in (Collins and

Roark, 2004), to iteratively alter feature
weights and improve results.

Figure 1 shows the best 10 English translation
parse trees obtained from a syntax-based translation
system based on (Galley, et. al., 2004). Notice
that the same tree occurs multiple times in this list.
This repetition is quite characteristic of the output of
ranked lists. It occurs because many systems, such
as the ones proposed by (Bod, 1992), (Galley, et. al.,
2004), and (Langkilde and Knight, 1998) represent
their result space in terms of weighted partial results
of various sizes that may be assembled in multiple
ways. There is in general more than one way to as-
semble the partial results to derive the same com-
plete result. Thus, the -best list of results is really
an -best list of derivations.
When list-based tasks, such as the ones mentioned

above, take as input the top results for some con-
stant , the effect of repetition on these tasks is dele-
terious. A list with many repetitions suffers from a
lack of useful information, hampering diagnostics.
Repeated results prevent alternatives that would be
highly ranked in a secondary reranking system from
even being considered. And a list of fewer unique
trees than expected can cause overfitting when this
list is used to tune. Furthermore, the actual weight of
obtaining any particular tree is split among its repeti-
tions, distorting the actual relative weights between
trees.
(Mohri, 1997) encountered this problem in speech

recognition, and presented a solution to the prob-
lem of repetition in -best lists of strings that are
derived from finite-state automata. That work de-
scribed a way to use a powerset construction along

351

34.73: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.74: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.84: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.92: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

Figure 1: Ranked list of machine translation results with repeated trees. Scores shown are negative logs of
calculated weights, thus a lower score indicates a higher weight. The bulleted sentences indicate identical
trees.

with an innovative bookkeeping system to deter-
minize the automaton, resulting in an automaton that
preserves the language but provides a single, prop-
erly weighted derivation for each string in it. Put an-
other way, if the input automaton has the ability to
generate the same string with different weights, the
output automaton generates that string with weight
equal to the sum of all of the generations of that
string in the input automaton. In (Mohri and Riley,
2002) this technique was combined with a procedure
for efficiently obtaining -best ranked lists, yielding
a list of string results with no repetition.
In this paper we extend that work to deal with

grammars that produce trees. Regular tree gram-
mars (Brainerd, 1969), which subsume the tree sub-
stitution grammars developed in the NLP commu-
nity (Schabes, 1990), are of particular interest to
those wishing to work with additional levels of
structure that string grammars cannot provide. The
application to parsing is natural, and in machine
translation tree grammars can be used to model
syntactic transfer, control of function words, re-
ordering, and target-language well-formedness. In
the world of automata these grammars have as a nat-
ural dual the finite tree recognizer (Doner, 1970).
Like tree grammars and packed forests, they are
compact ways of representing very large sets of
trees. We will present an algorithm for determiniz-
ing weighted finite tree recognizers, and use a vari-
ant of the procedure found in (Huang and Chiang,
2005) to obtain -best lists of trees that are weighted
correctly and contain no repetition.
Section 2 describes related work. In Section 3, we

introduce the formalisms of tree automata, specifi-
cally the tree-to-weight transducer. In Section 4, we
present the algorithm. Finally, in Section 5 we show
the results of applying weighted determinization to

recognizers obtained from the packed forest output
of two natural language tasks.

2 Previous Work

The formalisms of tree automata are summarized
well in (Gecseg and Steinby, 1984). Bottom-up
tree recognizers are due to (Thatcher and Wright,
1968), (Doner, 1970), and (Magidor and Moran,
1969). Top-down tree recognizers are due to (Rabin,
1969) and (Magidor and Moran, 1969). (Comon, et.
al., 1997) show the determinization of unweighted
finite-state tree automata, and prove its correctness.
(Borchardt and Vogler, 2003) present determiniza-
tion of weighted finite-state tree automata with a dif-
ferent method than the one we present here. While
our method is applicable to finite tree sets, the previ-
ous method claims the ability to determinize some
classes of infinite tree sets. However, for the fi-
nite case the previous method produces an automa-
ton with size on the order of the number of deriva-
tions, so the technique is limited when applied to
real world data.

3 Grammars, Recognizers, and
Transducers

As described in (Gecseg and Steinby, 1984), tree au-
tomata may be broken into two classes, recognizers
and transducers. Recognizers read tree input and de-
cide whether the input is in the language represented
by the recognizer. Formally, a bottom-up tree recog-
nizer is defined by :1

is a finite set of states,
1Readers familiar with (Gecseg and Steinby, 1984) will no-

tice that we have introduced a start state, modified the notion of
initial assignment, and changed the arity of nullary symbols to
unary symbols. This is to make tree automata more palatable to
those accustomed to string automata and to allow for a useful
graphical interpretation.

352

Figure 2: Visualization of a bottom-up tree recog-
nizer

is a ranked alphabet,
is the initial state,
is a set of final states, and

is a finite set
of transitions from a vector of states to
one state that reads a -ary symbol.

Consider the following tree recognizer:

2

As with string automata, it is helpful to have a vi-
sualization to understand what the recognizer is rec-
ognizing. Figure 2 provides a visualization of the
recognizer above. Notice that some members of
are drawn as arcs with multiple (and ordered) tails.
This is the key difference in visualization between
string and tree automata – to capture the arity of the
symbol being read we must visualize the automata
as an ordered hypergraph.
The function of the members of in the hyper-

graph visualization leads us to refer to the vector of
states as an input vector of states, and the single

state as an output state. We will refer to as the
transition set of the recognizer.
In string automata, a path through a recognizer

consists of a sequence of edges that can be followed
from a start to an end state. The concatenation of la-
bels of the edges of a path, typically in a left-to-right
order, forms a string in the recognizer’s language.
In tree automata, however, a hyperpath through a
recognizer consists of a sequence of hyperedges that
can be followed, sometimes in parallel, from a start

2The number denotes the arity of the symbol.

Figure 3: Bottom-up tree-to-weight transducer

to an end state. We arrange the labels of the hy-
peredges to form a tree in the recognizer’s language
but must now consider proper order in two dimen-
sions. The proper vertical order is specified by the
order of application of transitions, i.e., the labels of
transitions followed earlier are placed lower in the
tree than the labels of transitions followed later. The
proper horizontal order within one level of the tree is
specified by the order of states in a transition’s input

vector. In the example recognizer, the trees

and are valid. Notice that may be

recognized in two different hyperpaths.
Like tree recognizers, tree transducers read tree

input and decide whether the input is in the lan-
guage, but they simultaneously produce some out-
put as well. Since we wish to associate a weight
with every acceptable tree in a language, we will
consider transducers that produce weights as their
output. Note that in transitioning from recognizers
to transducers we are following the convention es-
tablished in (Mohri, 1997) where a transducer with
weight outputs is used to represent a weighted rec-
ognizer. One may consider the determinization of
tree-to-weight transducers as equivalent to the de-
terminization of weighted tree recognizers.
Formally, a bottom-up tree-to-weight transducer
is defined by where ,
, , and are defined as for recognizers, and:

is a
finite set of transitions from a vector of
states to one state, reading a -ary symbol
and outputting some weight
is the initial weight function mapping

to
is the final weight function mapping

353

to .
We must also specify a convention for propagat-

ing the weight calculated in every transition. This
can be explicitly defined for each transition but we
will simplify matters by defining the propagation of
the weight to a destination state as the multiplication
of the weight at each source state with the weight of
the production.
We modify the previous example by adding

weights as follows: As an example, consider the fol-
lowing tree-to-weight transducer (, , , and are
as before):

Figure 3 shows the addition of weights onto the
automata, forming the above transducer. Notice the

tree yields the weight 0.036 (

), and yields the weight 0.012 (

) or 0.054 (), depending on
the hyperpath followed.
This transducer is an example of a nonsubsequen-

tial transducer. A tree transducer is subsequential if
for each vector v of states and each there
is at most one transition in with input vector v and
label . These restrictions ensure a subsequential
transducer yields a single output for each possible
input, that is, it is deterministic in its output.
Because we will reason about the destination state

of a transducer transition and the weight of a trans-
ducer transition separately, we make the following
definition. For a given v where
v is a vector of states, , , and

, let v and v . Equiva-
lent shorthand forms are and .

4 Determinization

The determinization algorithm is presented as Algo-
rithm 1. It takes as input a bottom-up tree-to-weight
transducer and returns as output a subsequential
bottom-up tree-to-weight transducer such that the
tree language recognized by is equivalent to that
of and the output weight given input tree on is
equal to the sum of all possible output weights given
on . Like the algorithm of (Mohri, 1997), this

Figure 4: a) Portion of a transducer before deter-
minization; b) The same portion after determiniza-
tion

algorithm will terminate for automata that recognize
finite tree languages. It may terminate on some au-
tomata that recognize infinite tree languages, but we
do not consider any of these cases in this work.
Determinizing a tree-to-weight transducer can be

thought of as a two-stage process. First, the structure
of the automata must be determined such that a sin-
gle hyperpath exists for each recognized input tree.
This is achieved by a classic powerset construction,
i.e., a state must be constructed in the output trans-
ducer that represents all the possible reachable desti-
nation states given an input and a label. Because we
are working with tree automata, our input is a vector
of states, not a single state. A comparable power-
set construction on unweighted tree automata and a
proof of correctness can be found in (Comon, et. al.,
1997).
The second consideration to weighted deter-

minization is proper propagation of weights. For this
we will use (Mohri, 1997)’s concept of the residual
weight. We represent in the construction of states
in the output transducer not only a subset of states
of the input transducer, but also a number associated
with each of these states, called the residual. Since
we want ’s hyperpath of a particular input tree to
have as its associated weight the sum of the weights
of the all of ’s hyperpaths of the input tree, we re-
place a set of hyperedges in that have the same
input state vector and label with a single hyperedge
in bearing the label and the sum of ’s hyper-
edge weights. The destination state of the hyper-
edge represents the states reachable by ’s applica-
ble hyperedges and for each state, the proportion of
the weight from the relevant transition.
Figure 4 shows the determinization of a portion

of the example transducer. Note that the hyperedge

354

Figure 5: Determinized bottom-up tree-to-weight
transducer

leading to state in the input transducer contributes
of the weight on the output transducer hyperedge

and the hyperedge leading to state in the input
transducer contributes the remaining . This is re-
flected in the state construction in the output trans-
ducer. The complete determinization of the example
transducer is shown in Figure 5.
To encapsulate the representation of states from

the input transducer and associated residual weights,
we define a state in the output transducer as a set of

tuples, where and . Since
the algorithm builds new states progressively, we
will need to represent a vector of states from the
output transducer, typically depicted as v. We may
construct the vector pair q w from v, where q is
a vector of states of the input transducer and w is
a vector of residual weights, by choosing a (state,
weight) pair from each output state in v. For ex-
ample, let . Then two possible out-
put transducer states could be and

. If we choose v then a
valid vector pair q w is q , w .
The sets v , v , and v are defined

as follows:
v q w from v
q .
v q w from v
q .
v q w from v
q .

.
v is the set of vector pairs q w con-

structed from v where each q is an input vector in
a transition with label . v is the set of
unique transitions paired with the appropriate pair
for each q w in v . v is the set of states
reachable from the transitions in v .

The consideration of vectors of states on the in-
cident edge of transitions effects two noticeable
changes on the algorithm as it is presented in
(Mohri, 1997). The first, relatively trivial, change
is the inclusion of the residual of multiple states in
the calculation of weights and residuals on lines 16
and 17. The second change is the production of
vectors for consideration. Whereas the string-based
algorithm considered newly-created states in turn,
we must consider newly-available vectors. For each
newly created state, newly available vectors can be
formed by using that state with the other states of
the output transducer. This operation is performed
on lines 7 and 22 of the algorithm.

5 Empirical Studies

We now turn to some empirical studies. We examine
the practical impact of the presented work by show-
ing:

That the multiple derivation problem is
pervasive in practice and determinization
is effective at removing duplicate trees.
That duplication causes misleading
weighting of individual trees and the
summing achieved from weighted deter-
minization corrects this error, leading to
re-ordering of the -best list.
That weighted determinization positively
affects end-to-end system performance.

We also compare our results to a commonly used
technique for estimation of -best lists, i.e., sum-
ming over the top derivations to get weight
estimates of the top unique elements.

5.1 Machine translation

We obtain packed-forest English outputs from 116
short Chinese sentences computed by a string-to-
tree machine translation system based on (Galley,
et. al., 2004). The system is trained on all Chinese-
English parallel data available from the Linguistic
Data Consortium. The decoder for this system is a
CKY algorithm that negotiates the space described
in (DeNeefe, et. al., 2005). No language model was
used in this experiment.
The forests contain a median of En-

glish parse trees each. We remove cycles from each

355

Algorithm 1: Weighted Determinization of Tree Automata
Input: BOTTOM-UP TREE-TO-WEIGHT TRANSDUCER .
Output: SUBSEQUENTIAL BOTTOM-UP TREE-TO-WEIGHT TRANSDUCER .
begin1

2
3

PRIORITY QUEUE4
5
6

ENQUEUE7
while do8

v head9
v10

for each v such that do11
if such that then12

s.t.13
14

for each such that v do15

v
v16

v
v

v
v s.t.17

v v v18
/* RANK returns the largest hyperedge size that can leave state .

COMBINATIONS returns all possible vectors of length
containing members of and at least one member of . */

if v is a new state then19
for each u COMBINATIONS v

v
RANK do

20
if u is a new vector then21

ENQUEUE u22

v23

DEQUEUE24

end25

forest,3 apply our determinization algorithm, and ex-
tract the -best trees using a variant of (Huang and
Chiang, 2005). The effects of weighted determiniza-
tion on an -best list are obvious to casual inspec-
tion. Figure 7 shows the improvement in quality of
the top 10 trees from our example translation after
the application of the determinization algorithm.
The improvement observed circumstantially

holds up to quantitative analysis as well. The
forests obtained by the determinized grammars have
between 1.39% and 50% of the number of trees of
their undeterminized counterparts. On average, the
determinized forests contain 13.7% of the original

3As in (Mohri, 1997), determinization may be applicable to
some automata that recognize infinite languages. In practice,
cycles in tree automata of MT results are almost never desired,
since these represent recursive insertion of words.

number of trees. Since a determinized forest con-
tains no repeated trees but contains exactly the same
unique trees as its undeterminized counterpart, this
indicates that an average of 86.3% of the trees in an
undeterminized MT output forest are duplicates.

Weighted determinization also causes a surpris-
ingly large amount of -best reordering. In 77.6%
of the translations, the tree regarded as “best” is
different after determinization. This means that in
a large majority of cases, the tree with the high-
est weight is not recognized as such in the undeter-
minized list because its weight is divided among its
multiple derivations. Determinization allows these
instances and their associated weights to combine
and puts the highest weighted tree, not the highest
weighted derivation, at the top of the list.

356

method Bleu
undeterminized 21.87

top-500 “crunching” 23.33
determinized 24.17

Figure 6: Bleu results from string-to-tree machine
translation of 116 short Chinese sentences with no
language model. The use of best derivation (unde-
terminized), estimate of best tree (top-500), and true
best tree (determinized) for selection of translation
is shown.

We can compare our method with the more com-
monly used methods of “crunching” -best lists,
where . The duplicate sentences in the
trees are combined, hopefully resulting in at least
unique members with an estimation of the true

tree weight for each unique tree. Our results indi-
cate this is a rather crude estimation. When the top
500 derivations of the translations of our test cor-
pus are summed, only 50.6% of them yield an esti-
mated highest-weighted tree that is the same as the
true highest-weighted tree.
As a measure of the effect weighted determiniza-

tion and its consequential re-ordering has on an ac-
tual end-to-end evaluation, we obtain Bleu scores
for our 1-best translations from determinization, and
compare them with the 1-best translations from the
undeterminized forest and the 1-best translations
from the top-500 “crunching” method. The results
are tabulated in Figure 6. Note that in 26.7% of
cases determinization did not terminate in a reason-
able amount of time. For these sentences we used
the best parse from top-500 estimation instead. It is
not surprising that determinization may occasionally
take a long time; even for a language of monadic
trees (i.e. strings) the determinization algorithm is
NP-complete, as implied by (Casacuberta and de la
Higuera, 2000) and, e.g. (Dijkstra, 1959).

5.2 Data-Oriented Parsing
Weighted determinization of tree automata is also
useful for parsing. Data-Oriented Parsing (DOP)’s
methodology is to calculate weighted derivations,
but as noted in (Bod, 2003), it is the highest ranking
parse, not derivation, that is desired. Since (Sima’an,
1996) showed that finding the highest ranking parse
is an NP-complete problem, it has been common to
estimate the highest ranking parse by the previously

method Recall Precision F-measure
undeterminized 80.23 80.18 80.20

top-500 “crunching” 80.48 80.29 80.39
determinized 81.09 79.72 80.40

Figure 8: Recall, precision, and F-measure results
on DOP-style parsing of section 23 of the Penn Tree-
bank. The use of best derivation (undeterminized),
estimate of best tree (top-500), and true best tree (de-
terminized) for selection of parse output is shown.

described “crunching” method.
We create a DOP-like parsing model4 by extract-

ing and weighting a subset of subtrees from sec-
tions 2-21 of the Penn Treebank and use a DOP-
style parser to generate packed forest representa-
tions of parses of the 2416 sentences of section 23.
The forests contain a median of parse
trees. We then remove cycles and apply weighted
determinization to the forests. The number of trees
in each determinized parse forest is reduced by a
factor of between 2.1 and . On aver-
age, the number of trees is reduced by a factor of
900,000, demonstrating a much larger number of du-
plicate parses prior to determinization than in the
machine translation experiment. The top-scoring
parse after determinization is different from the top-
scoring parse before determinization for 49.1% of
the forests, and when the determinization method
is “approximated” by crunching the top-500 parses
from the undeterminized list only 55.9% of the top-
scoring parses are the same, indicating the crunch-
ing method is not a very good approximation of
determinization. We use the standard F-measure
combination of recall and precision to score the
top-scoring parse in each method against reference
parses. The results are tabulated in Figure 8. Note
that in 16.9% of cases determinization did not ter-
minate. For those sentences we used the best parse
from top-500 estimation instead.

6 Conclusion

We have shown that weighted determinization is
useful for recovering -best unique trees from a
weighted forest. As summarized in Figure 9, the

4This parser acquires a small subset of subtrees, in contrast
with DOP, and the beam search for this problem has not been
optimized.

357

31.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.11: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.15: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.55: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(cause) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.60: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(attracted) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.16: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(provoke) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.27: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBG(causing) NP-C(NPB(DT(the) JJ(american) NNS(protests)))) .(.))
33.29: S(NP-C(NPB(DT(this) NN(case))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.31: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) NN(protest)) PP(IN(of) NP-C(NPB(DT(the)
NNS(united states))))))) .(.))
33.33: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(incurred) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

Figure 7: Ranked list of machine translation results with no repeated trees.

experiment undeterminized determinized
machine translation

parsing

Figure 9: Median trees per sentence forest in ma-
chine translation and parsing experiments before and
after determinization is applied to the forests, re-
moving duplicate trees.

number of repeated trees prior to determinization
was typically very large, and thus determinization is
critical to recovering true tree weight. We have im-
proved evaluation scores by incorporating the pre-
sented algorithm into our MT work and we believe
that other NLP researchers working with trees can
similarly benefit from this algorithm.
Further advances in determinization will provide

additional benefit to the community. The transla-
tion system detailed here is a string-to-tree system,
and the determinization algorithm returns the -best
unique trees from a packed forest. Users of MT sys-
tems are generally interested in the string yield of
those trees, and not the trees per se. Thus, an algo-
rithm that can return the -best unique strings from
a packed forest would be a useful extension.
We plan for our weighted determinization algo-

rithm to be one component in a generally available
tree automata package for intersection, composition,
training, recognition, and generation of weighted
and unweighted tree automata for research tasks
such as the ones described above.

Acknowledgments

We thank Liang Huang for fruitful discussions
which aided in this work and David Chiang, Daniel
Marcu, and Steve DeNeefe for reading an early draft
and providing useful comments. This work was sup-
ported by NSF grant IIS-0428020.

References
Rens Bod. 1992. A Computational model of language perfor-
mance: data oriented parsing. In Proc. COLING

Rens Bod. 2003. An efficient implementation of a new DOP
model. In Proc. EACL,

Björn Borchardt and Heiko Vogler. 2003. Determinization of
finite state weighted tree automata. Journal of Automata,
Languages and Combinatorics, 8(3).

W. S. Brainerd. 1969. Tree generating regular systems. Infor-
mation and Control, 14.

F. Casacuberta and C. de la Higuera. 2000. Computa-
tional complexity of problems on probabilistic grammars
and transducers. In Proc. ICGI.

Michael Collins and Brian Roark. 2004. Incremental parsing
with the perceptron algorithm. In Proc. ACL.

H. Comon and M. Dauchet and R. Gilleron and F. Jacquemard
and D. Lugiez and S. Tison and M. Tommasi. 1997 Tree
Automata Techniques and Applications.

S. DeNeefe and K. Knight and H. Chan. 2005. Interactively
exploring a machine translation model. Poster in Proc. ACL.

Edsger W. Dijkstra 1959. A note on two problems in connexion
with graphs Numerische Mathematik, 1.

J. E. Doner 1970. Tree acceptors and some of their applications
J. Comput. System Sci., 4.

M. Galley and M. Hopkins and K. Knight and D. Marcu. 2004.
What’s in a translation rule? In Proc. HLT-NAACL.

Ferenc Gécseg and Magnus Steinby 1984. Tree Automata.
Akadémiai Kiadó, Budapest.

Liang Huang and David Chiang 2005. Better k-best parsing In
Proc. IWPT.

Irene Langkilde and Kevin Knight 1998 The Practical Value of
N-Grams in Generation In Proc. INLG.

M. Magidor and G. Moran. 1969. Finite automata over finite
trees Technical Report 30. Hebrew University, Jerusalem.

Mehryar Mohri. 1997. Finite-state transducers in language and
speech processing. Computational Linguistics, 23(2).

Mehryar Mohri and Michael Riley. 2002. An efficient algo-
rithm for the -best strings problem. In Proc. ICSLP.

M. O. Rabin. 1969. Decidability of second-order theories and
automata on infinite trees. Trans. Amer. Math. Soc., 141.

Yves Schabes. 1990. Mathematical and computational aspects
of lexicalized grammars. Ph.D. thesis. University of Penn-
sylvania, Philadelphia, PA.

Khalil Sima’an. 1996. Computational complexity of proba-
bilistic disambiguation by means of tree-grammars. In Proc.
COLING.

J. W. Thatcher and J. B. Wright. 1968. Generalized finite au-
tomata theory with an application to a decision problem of
second order logic. Mathematical Systems Theory, 2.

358

