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Abstract

We investigate the problem of training

probabilistic context-free grammars on

the basis of a distribution defined over

an infinite set of trees, by minimizing

the cross-entropy. This problem can be

seen as a generalization of the well-known

maximum likelihood estimator on (finite)

tree banks. We prove an unexpected the-

oretical property of grammars that are

trained in this way, namely, we show

that the derivational entropy of the gram-

mar takes the same value as the cross-

entropy between the input distribution and

the grammar itself. We show that the re-

sult also holds for the widely applied max-

imum likelihood estimator on tree banks.

1 Introduction

Probabilistic context-free grammars are able to de-

scribe hierarchical, tree-shaped structures underly-

ing sentences, and are widely used in statistical nat-

ural language processing; see for instance (Collins,

2003) and references therein. Probabilistic context-

free grammars seem also more suitable than finite-

state devices for language modeling, and several

language models based on these grammars have

been recently proposed in the literature; see for in-

stance (Chelba and Jelinek, 1998), (Charniak, 2001)

and (Roark, 2001).

Empirical estimation of probabilistic context-free

grammars is usually carried out on tree banks, that

is, finite samples of parse trees, through the max-

imization of the likelihood of the sample itself. It

is well-known that this method also minimizes the

cross-entropy between the probability distribution

induced by the tree bank, also called the empirical

distribution, and the tree probability distribution in-

duced by the estimated grammar.

In this paper we generalize the maximum like-

lihood method, proposing an estimation technique

that works on any unrestricted tree distribution de-

fined over an infinite set of trees. This generalization

is theoretically appealing, and allows us to prove un-

expected properties of the already mentioned maxi-

mum likelihood estimator for tree banks, that were

not previously known in the literature on statistical

natural language parsing. More specifically, we in-

vestigate the following information theoretic quanti-

ties

• the cross-entropy between the unrestricted tree

distribution given as input and the tree distri-

bution induced by the estimated probabilistic

context-free grammar; and

• the derivational entropy of the estimated prob-

abilistic context-free grammar.

These two quantities are usually unrelated. We show

that these two quantities take the same value when

the probabilistic context-free grammar is trained us-

ing the minimal cross-entropy criterion. We then

translate back this property to the method of max-

imum likelihood estimation. Our general estima-

tion method also has practical applications in cases

one uses a probabilistic context-free grammar to ap-

proximate strictly more powerful rewriting systems,
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as for instance probabilistic tree adjoining gram-

mars (Schabes, 1992).

Not much is found in the literature about the

estimation of probabilistic grammars from infinite

distributions. This line of research was started

in (Nederhof, 2005), investigating the problem of

training an input probabilistic finite automaton from

an infinite tree distribution specified by means of an

input probabilistic context-free grammar. The prob-

lem we consider in this paper can then be seen as

a generalization of the above problem, where the in-

put model to be trained is a probabilistic context-free

grammar and the input distribution is an unrestricted

tree distribution. In (Chi, 1999) an estimator that

maximizes the likelihood of a probability distribu-

tion defined over a finite set of trees is introduced,

as a generalization of the maximum likelihood es-

timator. Again, the problems we consider here can

be thought of as generalizations of such estimator to

the case of distributions over infinite sets of trees or

sentences.

The remainder of this paper is structured as fol-

lows. Section 2 introduces the basic notation and

definitions and Section 3 discusses our new esti-

mation method. Section 4 presents our main re-

sult, which is transferred in Section 5 to the method

of maximum likelihood estimation. Section 6 dis-

cusses some simple examples, and Section 7 closes

with some further discussion.

2 Preliminaries

Throughout this paper we use standard notation and

definitions from the literature on formal languages

and probabilistic grammars, which we briefly sum-

marize below. We refer the reader to (Hopcroft and

Ullman, 1979) and (Booth and Thompson, 1973) for

a more precise presentation.

A context-free grammar (CFG) is a tuple G =
(N,Σ,R, S), where N is a finite set of nonterminal

symbols, Σ is a finite set of terminal symbols dis-

joint from N , S ∈ N is the start symbol and R is a

finite set of rules. Each rule has the form A → α,

where A ∈ N and α ∈ (Σ ∪ N)∗. We denote by

L(G) and T (G) the set of all strings, resp., trees,

generated by G. For t ∈ T (G), the yield of t is

denoted by y(t).

For a nonterminal A and a string α, we write

f(A,α) to denote the number of occurrences of A

in α. For a rule (A → α) ∈ R and a tree t ∈ T (G),
f(A → α, t) denotes the number of occurrences of

A → α in t. We let f(A, t) =
∑

α f(A → α, t).

A probabilistic context-free grammar (PCFG) is

a pair G = (G, pG), with G a CFG and pG a func-

tion from R to the real numbers in the interval [0, 1].
A PCFG is proper if for every A ∈ N we have∑

α pG(A → α) = 1. The probability of t ∈ T (G)
is the product of the probabilities of all rules in t,

counted with their multiplicity, that is,

pG(t) =
∏

A→α

pG(A → α)f(A→α,t). (1)

The probability of w ∈ L(G) is the sum of the prob-

abilities of all the trees that generate w, that is,

pG(w) =
∑

y(t)=w

pG(t). (2)

A PCFG is consistent if
∑

t∈T (G) pG(t) = 1.

In this paper we write log for logarithms in base 2

and ln for logarithms in the natural base e. We also

assume 0 · log 0 = 0. We write Ep to denote the

expectation operator under distribution p. In case G
is proper and consistent, we can define the deriva-

tional entropy of G as the expectation of the infor-

mation of parse trees in T (G), computed under dis-

tribution pG, that is,

Hd(pG) = EpG
log

1

pG(t)

= −
∑

t∈T (G)

pG(t) · log pG(t). (3)

Similarly, for each A ∈ N we also define the non-

terminal entropy of A as

HA(pG) =

= EpG
log

1

pG(A → α)

= −
∑

α

pG(A → α) · log pG(A → α). (4)

3 Estimation based on cross-entropy

Let T be an infinite set of (finite) trees with inter-

nal nodes labeled by symbols in N , root nodes la-

beled by S ∈ N and leaf nodes labeled by symbols
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in Σ. We assume that the set of rules that are ob-

served in the trees in T is drawn from some finite set

R. Let pT be a probability distribution defined over

T , that is, a function from T to set [0, 1] such that∑
t∈T pT (t) = 1.

The skeleton CFG underlying T is defined as

G = (N,Σ,R, S). Note that we have T ⊆ T (G)
and, in the general case, there might be trees in T (G)
that do not appear in T . We wish anyway to approx-

imate distribution pT the best we can, by turning

G into some proper PCFG G = (G, pG) and set-

ting parameters pG(A → α) appropriately, for each

(A → α) ∈ R.

One possible criterion is to choose pG in such a

way that the cross-entropy between pT and pG is

minimized, where we now view pG as a probability

distribution defined over T (G). The cross-entropy

between pT and pG is defined as the expectation un-

der distribution pT of the information, computed un-

der distribution pG, of the trees in T (G)

H(pT || pG) = EpT
log

1

pG(t)

= −
∑

t∈T

pT (t) · log pG(t). (5)

Since G should be proper, the minimization of (5) is

subject to the constraints
∑

α pG(A → α) = 1, for

each A ∈ N .

To solve the minimization problem above, we use

Lagrange multipliers λA for each A ∈ N and define

the form

∇ =
∑

A∈N

λA · (
∑

α

pG(A → α) − 1) +

−
∑

t∈T

pT (t) · log pG(t). (6)

We now view ∇ as a function of all the λA and the

pG(A → α), and consider all the partial derivatives

of ∇. For each A ∈ N we have

∂∇

∂λA

=
∑

α

pG(A → α) − 1.

For each (A → α) ∈ R we have

∂∇

∂pG(A → α)
=

= λA −
∂

∂pG(A → α)

∑

t∈T

pT (t) · log pG(t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)
log pG(t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)

log
∏

(B→β)∈R

pG(B → β)f(B→β,t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)
∑

(B→β)∈R

f(B → β, t) · log pG(B → β)

= λA −
∑

t∈T

pT (t) ·
∑

(B→β)∈R

f(B → β, t) ·

∂

∂pG(A → α)
log pG(B → β)

= λA −
∑

t∈T

pT (t) · f(A → α, t) ·

·
1

ln(2)
·

1

pG(A → α)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·
∑

t∈T

pT (t) · f(A → α, t)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·EpT
f(A → α, t).

We now need to solve a system of |N |+ |R| equa-

tions obtained by setting to zero all of the above par-

tial derivatives. From each equation ∂∇
∂pG(A→α) = 0

we obtain

λA · ln(2) · pG(A → α) =

= EpT
f(A → α, t). (7)

We sum over all strings α such that (A → α) ∈ R

λA · ln(2) ·
∑

α

pG(A → α) =

=
∑

α

EpT
f(A → α, t)

=
∑

α

∑

t∈T

pT (t) · f(A → α, t)

=
∑

t∈T

pT (t) ·
∑

α

f(A → α, t)

=
∑

t∈T

pT (t) · f(A, t)

= EpT
f(A, t). (8)
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From each equation ∂∇
∂λA

= 0 we obtain∑
α pG(A → α) = 1 for each A ∈ N (our origi-

nal constraints). Combining with (8) we obtain

λA · ln(2) = EpT
f(A, t). (9)

Replacing (9) into (7) we obtain, for every rule

(A → α) ∈ R,

pG(A → α) =
EpT

f(A → α, t)

EpT
f(A, t)

. (10)

The equations in (10) define the desired estimator

for our PCFG, assigning to each rule A → α a prob-

ability specified as the ratio between the expected

number of A → α and the expected number of A,

under the distribution pT . We remark here that the

minimization of the cross-entropy above is equiva-

lent to the minimization of the Kullback-Leibler dis-

tance between pT and pG, viewed as tree distribu-

tions. Also, note that the likelihood of an infinite set

of derivations would always be zero and therefore

cannot be considered here.

To be used in the next section, we now show that

the PCFG G obtained as above is consistent. The

line of our argument below follows a proof provided

in (Chi and Geman, 1998) for the maximum like-

lihood estimator based on finite tree distributions.

Without loss of generality, we assume that in G the

start symbol S is never used in the right-hand side

of a rule.

For each A ∈ N , let qA be the probability that a

derivation in G rooted in A fails to terminate. We

can then write

qA ≤
∑

B∈N

qB ·
∑

α

pG(A → α)f(B,α).(11)

The inequality follows from the fact that the events

considered in the right-hand side of (11) are not mu-

tually exclusive. Combining (10) and (11) we obtain

qA · EpT
f(A, t) ≤

≤
∑

B∈N

qB ·
∑

α

EpT
f(A → α, t)f(B,α).

Summing over all nonterminals we have
∑

A∈N

qA · EpT
f(A, t) ≤

≤
∑

B∈N

qB ·
∑

A∈N

∑

α

EpT
f(A → α, t)f(B,α)

=
∑

B∈N

qB · EpT
fc(B, t), (12)

where fc(B, t) indicates the number of times a node

labeled by nonterminal B appears in the derivation

tree t as a child of some other node.

From our assumptions on the start symbol S, we

have that S only appears at the root of the trees

in T (G). Then it is easy to see that, for every

A 6= S, we have EpT
fc(A, t) = EpT

f(A, t), while

EpT
fc(S, t) = 0 and EpT

f(S, t) = 1. Using these

relations in (12) we obtain

qS · EpT
f(S, T ) ≤ qS · EpT

fc(S, T ),

from which we conclude qS = 0, thus implying the

consistency of G.

4 Cross-entropy and derivational entropy

In this section we present the main result of the pa-

per. We show that, when G = (G, pG) is estimated

by minimizing the cross-entropy in (5), then such

cross-entropy takes the same value as the deriva-

tional entropy of G, defined in (3).

In (Nederhof and Satta, 2004) relations are de-

rived for the exact computation of Hd(pG). For later

use, we report these relations below, under the as-

sumption that G is consistent (see Section 3). We

have

Hd(pG) =
∑

A∈N

outG(A) · HA(pG). (13)

Quantities HA(pG), A ∈ N , have been defined

in (4). For each A ∈ N , quantity outG(A) is the sum

of the probabilities of all trees generated by G, hav-

ing root labeled by S and having a yield composed

of terminal symbols with an unexpanded occurrence

of nonterminal A. Again, we assume that symbol

S does not appear in any of the right-hand sides of

the rules in R. This means that S only appears at

the root of the trees in T (G). Under this condi-

tion, quantities outG(A) can be exactly computed

by solving the following system of linear equations

(see also (Nederhof, 2005))

outG(S) = 1; (14)

for each A 6= S

outG(A) =

=
∑

B→β

outG(B) · f(A, β) · pG(B → β).(15)
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We can now prove the equality

Hd(pG) = H(pT || pG), (16)

where G is the PCFG estimated by minimizing the

cross-entropy in (5), as described in Section 3.

We start from the definition of cross-entropy

H(pT || pG) =

= −
∑

t∈T

pT (t) · log pG(t)

= −
∑

t∈T

pT (t) · log
∏

A→α

pG(A → α)f(A→α,t)

= −
∑

t∈T

pT (t) ·

·
∑

A→α

f(A → α, t) · log pG(A → α)

= −
∑

A→α

log pG(A → α) ·

·
∑

t∈T

pT (t) · f(A → α, t)

= −
∑

A→α

log pG(A → α) ·

·EpT
f(A → α, t). (17)

From our estimator in (10) we can write

EpT
f(A → α, t) =

= pG(A → α) · EpT
f(A, t). (18)

Replacing (18) into (17) gives

H(pT || pG) =

= −
∑

A→α

log pG(A → α) ·

·pG(A → α) · EpT
f(A, t)

= −
∑

A∈N

EpT
f(A, t) ·

·
∑

α

pG(A → α) · log pG(A → α)

=
∑

A∈N

EpT
f(A, t) · H(pG, A). (19)

Comparing (19) with (13) we see that, in order to

prove the equality in (16), we need to show relations

EpT
f(A, t) = outG(A), (20)

for every A ∈ N . We have already observed in Sec-

tion 3 that, under our assumption on the start symbol

S, we have

EpT
f(S, t) = 1. (21)

We now observe that, for any A ∈ N with A 6= S

and any t ∈ T (G), we have

f(A, t) =

=
∑

B→β

f(B → β, t) · f(A, β). (22)

For each A ∈ N with A 6= S we can then write

EpT
f(A, t) =

=
∑

t∈T

pT (t) · f(A, t)

=
∑

t∈T

pT (t) ·
∑

B→β

f(B → β, t) · f(A, β)

=
∑

B→β

∑

t∈T

pT (t) · f(B → β, t) · f(A, β)

=
∑

B→β

EpT
f(B → β, t) · f(A, β). (23)

Once more we use relation (18), which replaced

in (23) provides

EpT
f(A, t) =

=
∑

B→β

EpT
f(B, t) ·

·f(A, β) · pG(B → β). (24)

Notice that the linear system in (14) and (15) and the

linear system in (21) and (24) are the same. Thus we

conclude that quantities EpT
f(A, t) and outG(A)

are the same for each A ∈ N . This completes our

proof of the equality in (16). Some examples will be

discussed in Section 6.

Besides its theoretical significance, the equality

in (16) can also be exploited in the computation of

the cross-entropy in practical applications. In fact,

cross-entropy is used as a measure of tightness in

comparing different models. In case of estimation

from an infinite distribution pT , the definition of the

cross-entropy H(pT || pG) contains an infinite sum-

mation, which is problematic for the computation of

such quantity. In standard practice, this problem is

overcome by generating a finite sample T (n) of large

size n, through the distribution pT , and then comput-

ing the approximation (Manning and Schütze, 1999)

H(pT || pG) ∼ −
1

n

∑

t∈T

f(t, T (n)) · log pG(t),
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where f(t, T (n)) indicates the multiplicity, that is,

the number of occurrences, of t in T (n). However, in

practical applications n must be very large in order

to have a small error. Based on the results in this

section, we can instead compute the exact value of

H(pT || pG) by computing the derivational entropy

Hd(pG), using relation (13) and solving the linear

system in (14) and (15), which takes cubic time in

the number of nonterminals of the grammar.

5 Estimation based on likelihood

In natural language processing applications, the es-

timation of a PCFG is usually carried out on the ba-

sis of a finite sample of trees, called tree bank. The

so-called maximum likelihood estimation (MLE)

method is exploited, which maximizes the likeli-

hood of the observed data. In this section we show

that the MLE method is a special case of the esti-

mation method presented in Section 3, and that the

results of Section 4 also hold for the MLE method.

Let T be a tree sample, and let T be the under-

lying set of trees. For t ∈ T , we let f(t, T ) be the

multiplicity of t in T . We define

f(A → α, T ) =

=
∑

t∈T

f(t, T ) · f(A → α, t), (25)

and let f(A, T ) =
∑

α f(A → α, T ). We can in-

duce from T a probability distribution pT , defined

over T , by letting for each t ∈ T

pT (t) =
f(t, T )

|T |
. (26)

Note that
∑

t∈T pT (t) = 1. Distribution pT is called

the empirical distribution of T .

Assume that the trees in T have internal nodes

labeled by symbols in N , root nodes labeled by

S and leaf nodes labeled by symbols in Σ. Let

also R be the finite set of rules that are observed

in T . We define the skeleton CFG underlying T as

G = (N,Σ,R, S). In the MLE method we proba-

bilistically extend the skeleton CFG G by means of

a function pG that maximizes the likelihood of T ,

defined as

pG(T ) =
∏

t∈T

pG(t)f(t,T ), (27)

subject to the usual properness conditions on pG.

Such maximization provides the estimator (see for

instance (Chi and Geman, 1998))

pG(A → α) =
f(A → α, T )

f(A, T )
. (28)

Let us consider the estimator in (10). If we replace

distribution pT with our empirical distribution pT ,

we derive

pG(A → α) =

=
EpT f(A → α, t)

EpT f(A, t)

=

∑
t∈T

f(t,T )
|T | · f(A → α, t)

∑
t∈T

f(t,T )
|T | · f(A, t)

=

∑
t∈T f(t, T ) · f(A → α, t)
∑

t∈T f(t, T ) · f(A, t)

=
f(A → α, T )

f(A, T )
. (29)

This is precisely the estimator in (28).

From relation (29) we conclude that the MLE

method can be seen as a special case of the general

estimator in Section 3, with the input distribution de-

fined over a finite set of trees. We can also derive

the well-known fact that, in the finite case, the maxi-

mization of the likelihood pG(T ) corresponds to the

minimization of the cross-entropy H(pT || pG).
Let now G = (G, pG) be a PCFG trained on T us-

ing the MLE method. Again from relation (29) and

Section 3 we have that G is consistent. This result

has been firstly shown in (Chaudhuri et al., 1983)

and later, with a different proof technique, in (Chi

and Geman, 1998). We can then transfer the results

of Section 4 to the supervised MLE method, show-

ing the equality

Hd(pG) = H(pT || pG). (30)

This result was not previously known in the litera-

ture on statistical parsing of natural language. Some

examples will be discussed in Section 6.

6 Some examples

In this section we discuss a simple example with the

aim of clarifying the theoretical results in the previ-

ous sections. For a real number q with 0 < q < 1,
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Figure 1: Derivational entropy of Gq and cross-

entropies for three different corpora.

consider the CFG G defined by the two rules S →
aS and S → a, and let Gq = (G, pG,q) be the proba-

bilistic extension of G with pG,q(S → aS) = q and

pG,q(S → a) = 1 − q. This grammar is unambigu-

ous and consistent, and each tree t generated by G

has probability pG,q(t) = qi · (1 − q), where i ≥ 0
is the number of occurrences of rule S → aS in t.

We use below the following well-known relations

(0 < r < 1)

+∞
∑

i=0

ri =
1

1 − r
, (31)

+∞
∑

i=1

i · ri−1 =
1

(1 − r)2
. (32)

The derivational entropy of Gq can be directly

computed from its definition as

Hd(pG,q) = −
+∞
∑

i=0

qi · (1 − q) · log
(

qi · (1 − q)
)

= −(1 − q)
+∞
∑

i=0

qi log qi +

−(1 − q) · log(1 − q) ·
+∞
∑

i=0

qi

= −(1 − q) · log q ·
+∞
∑

i=0

i · qi − log(1 − q)

= −
q

1 − q
· log q − log(1 − q). (33)

See Figure 1 for a plot of Hd(pG,q) as a function

of q.

If a tree bank is given, composed of occurrences

of trees generated by G, the value of q can be es-

timated by applying the MLE or, equivalently, by

minimizing the cross-entropy. We consider here sev-

eral tree banks, to exemplify the behaviour of the

cross-entropy depending on the structure of the sam-

ple of trees. The first tree bank T contains a single

tree t with a single occurrence of rule S → aS and

a single occurrence of rule S → a. We then have

pT (t) = 1 and pG,q(t) = q · (1 − q). The cross-

entropy between distributions pT and pG,q is then

H(pT , pG,q) = − log q · (1 − q)

= − log q − log(1 − q). (34)

The cross-entropy H(pT , pG,q), viewed as a func-

tion of q, is a convex-∪ function and is plotted in

Figure 1 (line indicated by K
d

= 1, see below). We

can obtain its minimum by finding a zero for the first

derivative

d

dq
H(pT , pG,q) = −

1

q
+

1

1 − q

=
2q − 1

q · (1 − q)
= 0, (35)

which gives q = 0.5. Note from Figure 1 that

the minimum of H(pT , pG,q) crosses the line cor-

responding to the derivational entropy, as should be

expected from the result in Section 4.

More in general, for integers d > 0 and K > 0,

consider a tree sample Td,K consisting of d trees ti,

1 ≤ i ≤ d. Each ti contains ki ≥ 0 occurrences

of rule S → aS and one occurrence of rule S → a.

Thus we have pTd,K
(ti) = 1

d
and pG,q(ti) = qki ·

(1− q). We let
∑d

i=1 ki = K. The cross-entropy is

H(pTd,K
, pG,q) =

= −
d

∑

i=0

1

d
· log qki − log(1 − q)

= −
K

d
log q − log(1 − q). (36)

In Figure 1 we plot H(pTd,K
, pG,q) in the case K

d
=

0.5 and in the case K
d

= 1.5. Again, we have that

these curves intersect with the curve corresponding

to the derivational entropy Hd(pG,q) at the points

were they take their minimum values.
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7 Conclusions

We have shown in this paper that, when a PCFG is

estimated from some tree distribution by minimiz-

ing the cross-entropy, then the cross-entropy takes

the same value as the derivational entropy of the

PCFG itself. As a special case, this result holds for

the maximum likelihood estimator, widely applied

in statistical natural language parsing. The result

also holds for the relative weighted frequency esti-

mator introduced in (Chi, 1999) as a generalization

of the maximum likelihood estimator, and for the es-

timator introduced in (Nederhof, 2005) already dis-

cussed in the introduction. In a journal version of the

present paper, which is under submission, we have

also extended the results of Section 4 to the unsuper-

vised estimation of a PCFG from a distribution de-

fined over an infinite set of (unannotated) sentences

and, as a particular case, to the well-knonw inside-

outside algorithm (Manning and Schütze, 1999).

In practical applications, the results of Section 4

can be exploited in the computation of model tight-

ness. In fact, cross-entropy indicates how much the

estimated model fits the observed data, and is com-

monly exploited in comparison of different models

on the same data set. We can then use the given

relation between cross-entropy and derivational en-

tropy to compute one of these two quantities from

the other. For instance, in the case of the MLE

method we can choose between the computation of

the derivational entropy and the cross-entropy, de-

pending basically on the instance of the problem at

hand. As already mentioned, the computation of the

derivational entropy requires cubic time in the num-

ber of nonterminals of the grammar. If this num-

ber is large, direct computation of (5) on the corpus

might be more efficient. On the other hand, if the

corpus at hand is very large, one might opt for direct

computation of (3).
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