
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 320–327,
New York, June 2006.c©2006 Association for Computational Linguistics

Prototype-Driven Learning for Sequence Models

Aria Haghighi

Computer Science Division
University of California Berkeley
aria42@cs.berkeley.edu

Dan Klein

Computer Science Division
University of California Berkeley
klein@cs.berkeley.edu

Abstract

We investigate prototype-driven learning for pri-
marily unsupervised sequence modeling. Prior
knowledge is specified declaratively, by provid-
ing a few canonical examples of each target an-
notation label. This sparse prototype information
is then propagated across a corpus using distri-
butional similarity features in a log-linear gener-
ative model. On part-of-speech induction in En-
glish and Chinese, as well as an information extrac-
tion task, prototype features provide substantial er-
ror rate reductions over competitive baselines and
outperform previous work. For example, we can
achieve an English part-of-speech tagging accuracy
of 80.5% using only three examples of each tag
and no dictionary constraints. We also compare to
semi-supervised learning and discuss the system’s
error trends.

1 Introduction

Learning, broadly taken, involves choosing a good

model from a large space of possible models. In su-

pervised learning, model behavior is primarily de-

termined by labeled examples, whose production

requires a certain kind of expertise and, typically,

a substantial commitment of resources. In unsu-

pervised learning, model behavior is largely deter-

mined by the structure of the model. Designing

models to exhibit a certain target behavior requires

another, rare kind of expertise and effort. Unsuper-

vised learning, while minimizing the usage of la-

beled data, does not necessarily minimize total ef-

fort. We therefore consider here how to learn mod-

els with the least effort. In particular, we argue for a

certain kind of semi-supervised learning, which we

call prototype-driven learning.

In prototype-driven learning, we specify prototyp-

ical examples for each target label or label configu-

ration, but do not necessarily label any documents or

sentences. For example, when learning a model for

Penn treebank-style part-of-speech tagging in En-

glish, we may list the 45 target tags and a few exam-

ples of each tag (see figure 4 for a concrete prototype

list for this task). This manner of specifying prior

knowledge about the task has several advantages.

First, is it certainly compact (though it remains to

be proven that it is effective). Second, it is more or

less the minimum one would have to provide to a

human annotator in order to specify a new annota-

tion task and policy (compare, for example, with the

list in figure 2, which suggests an entirely different

task). Indeed, prototype lists have been used ped-

agogically to summarize tagsets to students (Man-

ning and Schütze, 1999). Finally, natural language

does exhibit proform and prototype effects (Radford,

1988), which suggests that learning by analogy to

prototypes may be effective for language tasks.

In this paper, we consider three sequence mod-

eling tasks: part-of-speech tagging in English and

Chinese and a classified ads information extraction

task. Our general approach is to use distributional

similarity to link any given word to similar pro-

totypes. For example, the word reported may be

linked to said, which is in turn a prototype for the

part-of-speech VBD. We then encode these pro-

totype links as features in a log-linear generative

model, which is trained to fit unlabeled data (see

section 4.1). Distributional prototype features pro-

vide substantial error rate reductions on all three

tasks. For example, on English part-of-speech tag-

ging with three prototypes per tag, adding prototype

features to the baseline raises per-position accuracy

from 41.3% to 80.5%.

2 Tasks and Related Work: Tagging

For our part-of-speech tagging experiments, we used

data from the English and Chinese Penn treebanks

(Marcus et al., 1994; Ircs, 2002). Example sentences

320

(a) DT VBN NNS RB MD VB NNS TO VB NNS IN NNS RBR CC RBR RB .

The proposed changes also would allow executives to report exercises of options later and less often .

(b) NR AD VV AS PU NN VV DER VV PU PN AD VV DER VV PU DEC NN VV PU

! " # $ % & ’ () * + , - . / 0 * + , 1 2 3 4 5 6 7

(c) FEAT FEAT FEAT FEAT NBRHD NBRHD NBRHD NBRHD NBRHD SIZE SIZE SIZE SIZE

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

FEAT FEAT FEAT FEAT FEAT RESTR RESTR RESTR RESTR RENT RENT RENT RENT

modern kitchen and dishwasher . No pets allowed . 1050 / month$

Figure 1: Sequence tasks: (a) English POS, (b) Chinese POS, and (c) Classified ad segmentation

are shown in figure 1(a) and (b). A great deal of re-

search has investigated the unsupervised and semi-

supervised induction of part-of-speech models, es-

pecially in English, and there is unfortunately only

space to mention some highly related work here.

One approach to unsupervised learning of part-

of-speech models is to induce HMMs from un-

labeled data in a maximum-likelihood framework.

For example, Merialdo (1991) presents experiments

learning HMMs using EM. Merialdo’s results most

famously show that re-estimation degrades accu-

racy unless almost no examples are labeled. Less

famously, his results also demonstrate that re-

estimation can improve tagging accuracies to some

degree in the fully unsupervised case.

One recent and much more successful approach

to part-of-speech learning is contrastive estimation,

presented in Smith and Eisner (2005). They utilize

task-specific comparison neighborhoods for part-of-

speech tagging to alter their objective function.

Both of these works require specification of the

legal tags for each word. Such dictionaries are large

and embody a great deal of lexical knowledge. A

prototype list, in contrast, is extremely compact.

3 Tasks and Related Work: Extraction

Grenager et al. (2005) presents an unsupervised

approach to an information extraction task, called

CLASSIFIEDS here, which involves segmenting clas-

sified advertisements into topical sections (see fig-

ure 1(c)). Labels in this domain tend to be “sticky”

in that the correct annotation tends to consist of

multi-element fields of the same label. The over-

all approach of Grenager et al. (2005) typifies the

process involved in fully unsupervised learning on

new domain: they first alter the structure of their

HMM so that diagonal transitions are preferred, then

modify the transition structure to explicitly model

boundary tokens, and so on. Given enough refine-

Label Prototypes

ROOMATES roommate respectful drama

RESTRICTIONS pets smoking dog

UTILITIES utilities pays electricity

AVAILABLE immediately begin cheaper

SIZE 2 br sq

PHOTOS pictures image link

RENT $ month *number*15*1

CONTACT *phone* call *time*

FEATURES kitchen laundry parking

NEIGHBORHOOD close near shopping

ADDRESS address carlmont *ordinal*5

BOUNDARY ; . !

Figure 2: Prototype list derived from the develop-

ment set of the CLASSIFIEDS data. The BOUND-

ARY field is not present in the original annotation,

but added to model boundaries (see Section 5.3).

The starred tokens are the results of collapsing of

basic entities during pre-processing as is done in

(Grenager et al., 2005)

ments the model learns to segment with a reasonable

match to the target structure.

In section 5.3, we discuss an approach to this

task which does not require customization of model

structure, but rather centers on feature engineering.

4 Approach

In the present work, we consider the problem of

learning sequence models over text. For each doc-

ument x = [xi], we would like to predict a sequence

of labels y = [yi], where xi ∈ X and yi ∈ Y . We

construct a generative model, p(x, y|θ), where θ are

the model’s parameters, and choose parameters to

maximize the log-likelihood of our observed data D:

L(θ;D) =
∑

x∈D

log p(x|θ)

=
∑

x∈D

log
∑

y

p(x, y|θ)

321

yi−1

〈DT,NN〉

yi

〈NN,VBD〉

xi

reported

xi−1

witness

f(xi, yi) =


















word = reported

suffix-2 = ed

proto = said

proto = had



















∧ VBD

f(yi−1, yi) = DT ∧ NN ∧ VBD

Figure 3: Graphical model representation of trigram

tagger for English POS domain.

4.1 Markov Random Fields

We take our model family to be chain-structured

Markov random fields (MRFs), the undirected

equivalent of HMMs. Our joint probability model

over (x, y) is given by

p(x, y|θ) =
1

Z(θ)

n
∏

i=1

φ(xi, yi)φ(yi−1, yi)

where φ(c) is a potential over a clique c, taking the

form exp
{

θT f(c)
}

, and f(c) is the vector of fea-

tures active over c. In our sequence models, the

cliques are over the edges/transitions (yi−1, yi) and

nodes/emissions (xi, yi). See figure 3 for an exam-

ple from the English POS tagging domain.

Note that the only way an MRF differs from

a conditional random field (CRF) (Lafferty et al.,

2001) is that the partition function is no longer ob-

servation dependent; we are modeling the joint prob-

ability of x and y instead of y given x. As a result,

learning an MRF is slightly harder than learning a

CRF; we discuss this issue in section 4.4.

4.2 Prototype-Driven Learning

We assume prior knowledge about the target struc-

ture via a prototype list, which specifies the set of

target labels Y and, for each label y ∈ Y , a set of

prototypes words, py ∈ Py. See figures 2 and 4 for

examples of prototype lists.1

1Note that this setting differs from the standard semi-
supervised learning setup, where a small number of fully la-
beled examples are given and used in conjunction with a larger
amount of unlabeled data. In our prototype-driven approach, we
never provide a single fully labeled example sequence. See sec-
tion 5.3 for further comparison of this setting to semi-supervised
learning.

Broadly, we would like to learn sequence models

which both explain the observed data and meet our

prior expectations about target structure. A straight-

forward way to implement this is to constrain each

prototype word to take only its given label(s) at

training time. As we show in section 5, this does

not work well in practice because this constraint on

the model is very sparse.

In providing a prototype, however, we generally

mean something stronger than a constraint on that

word. In particular, we may intend that words which

are in some sense similar to a prototype generally be

given the same label(s) as that prototype.

4.3 Distributional Similarity

In syntactic distributional clustering, words are

grouped on the basis of the vectors of their pre-

ceeding and following words (Schütze, 1995; Clark,

2001). The underlying linguistic idea is that replac-

ing a word with another word of the same syntactic

category should preserve syntactic well-formedness

(Radford, 1988). We present more details in sec-

tion 5, but for now assume that a similarity function

over word types is given.

Suppose further that for each non-prototype word

type w, we have a subset of prototypes, Sw, which

are known to be distributionally similar to w (above

some threshold). We would like our model to relate

the tags of w to those of Sw.

One approach to enforcing the distributional as-

sumption in a sequence model is by supplementing

the training objective (here, data likelihood) with a

penalty term that encourages parameters for which

each w’s posterior distribution over tags is compati-

ble with it’s prototypes Sw. For example, we might

maximize,
∑

x∈D

log p(x|θ) −
∑

w

∑

z∈Sw

KL(t|z || t|w)

where t|w is the model’s distribution of tags for

word w. The disadvantage of a penalty-based ap-

proach is that it is difficult to construct the penalty

term in a way which produces exactly the desired

behavior.

Instead, we introduce distributional prototypes

into the learning process as features in our log-linear

model. Concretely, for each prototype z, we intro-

duce a predicate PROTO = z which becomes active

322

at each w for which z ∈ Sw (see figure 3). One ad-

vantage of this approach is that it allows the strength

of the distributional constraint to be calibrated along

with any other features; it was also more successful

in our experiments.

4.4 Parameter Estimation

So far we have ignored the issue of how we learn

model parameters θ which maximize L(θ;D). If our

model family were HMMs, we could use the EM al-

gorithm to perform a local search. Since we have

a log-linear formulation, we instead use a gradient-

based search. In particular, we use L-BFGS (Liu

and Nocedal, 1989), a standard numerical optimiza-

tion technique, which requires the ability to evaluate

L(θ;D) and its gradient at a given θ.

The density p(x|θ) is easily calculated up to the

global constant Z(θ) using the forward-backward

algorithm (Rabiner, 1989). The partition function

is given by

Z(θ) =
∑

x

∑

y

n
∏

i=1

φ(xi, yi)φ(yi−1, yi)

=
∑

x

∑

y

score(x, y)

Z(θ) can be computed exactly under certain as-

sumptions about the clique potentials, but can in all

cases be bounded by

Ẑ(θ) =

K
∑

`=1

Ẑ`(θ) =

K
∑

`=1

∑

x:|x|=`

score(x, y)

Where K is a suitably chosen large constant. We can

efficiently compute Ẑ`(θ) for fixed ` using a gener-

alization of the forward-backward algorithm to the

lattice of all observations x of length ` (see Smith

and Eisner (2005) for an exposition).

Similar to supervised maximum entropy prob-

lems, the partial derivative of L(θ;D) with respect

to each parameter θj (associated with feature fj) is

given by a difference in feature expectations:

∂L(θ;D)

∂θj

=
∑

x∈D

(

Ey|x,θfj − Ex,y|θfj

)

The first expectation is the expected count of the fea-

ture under the model’s p(y|x, θ) and is again eas-

ily computed with the forward-backward algorithm,

Num Tokens

Setting 48K 193K

BASE 42.2 41.3

PROTO 61.9 68.8

PROTO+SIM 79.1 80.5

Table 1: English POS results measured by per-

position accuracy

just as for CRFs or HMMs. The second expectation

is the expectation of the feature under the model’s

joint distribution over all x, y pairs, and is harder to

calculate. Again assuming that sentences beyond a

certain length have negligible mass, we calculate the

expectation of the feature for each fixed length ` and

take a (truncated) weighted sum:

Ex,y|θfj =

K
∑

`=1

p(|x| = `)Ex,y|`,θfj

For fixed `, we can calculate Ex,y|`,θfj using the lat-

tice of all inputs of length `. The quantity p(|x| = `)
is simply Ẑ`(θ)/Ẑ(θ).

As regularization, we use a diagonal Gaussian

prior with variance σ2 = 0.5, which gave relatively

good performance on all tasks.

5 Experiments

We experimented with prototype-driven learning in

three domains: English and Chinese part-of-speech

tagging and classified advertisement field segmenta-

tion. At inference time, we used maximum poste-

rior decoding,2 which we found to be uniformly but

slightly superior to Viterbi decoding.

5.1 English POS Tagging

For our English part-of-speech tagging experiments,

we used the WSJ portion of the English Penn tree-

bank (Marcus et al., 1994). We took our data to be

either the first 48K tokens (2000 sentences) or 193K

tokens (8000 sentences) starting from section 2. We

used a trigram tagger of the model form outlined in

section 4.1 with the same set of spelling features re-

ported in Smith and Eisner (2005): exact word type,

2At each position choosing the label which has the highest
posterior probability, obtained from the forward-backward al-
gorithm.

323

Label Prototype Label Prototype

NN % company year NNS years shares companies

JJ new other last VBG including being according

MD will would could -LRB- -LRB- -LCB-

VBP are ’re ’ve DT the a The

RB n’t also not WP$ whose

-RRB- -RRB- -RCB- FW bono del kanji

WRB when how where RP Up ON

IN of in for VBD said was had

SYM c b f $ $ US$ C$

CD million billion two # #

TO to To na : – : ;

VBN been based compared NNPS Philippines Angels Rights

RBR Earlier duller “ “ ‘ non-“

VBZ is has says VB be take provide

JJS least largest biggest RBS Worst

NNP Mr. U.S. Corp. , ,

POS ’S CC and or But

PRP$ its their his JJR smaller greater larger

PDT Quite WP who what What

WDT which Whatever whatever . . ? !

EX There PRP it he they

” ” UH Oh Well Yeah

Figure 4: English POS prototype list

Correct Tag Predicted Tag % of Errors

CD DT 6.2

NN JJ 5.3

JJ NN 5.2

VBD VBN 3.3

NNS NN 3.2

Figure 5: Most common English POS confusions for

PROTO+SIM on 193K tokens

character suffixes of length up to 3, initial-capital,

contains-hyphen, and contains-digit. Our only edge

features were tag trigrams.

With just these features (our baseline BASE) the

problem is symmetric in the 45 model labels. In

order to break initial symmetry we initialized our

potentials to be near one, with some random noise.

To evaluate in this setting, model labels must be

mapped to target labels. We followed the common

approach in the literature, greedily mapping each

model label to a target label in order to maximize

per-position accuracy on the dataset. The results of

BASE, reported in table 1, depend upon random ini-

tialization; averaging over 10 runs gave an average

per-position accuracy of 41.3% on the larger training

set.

We automatically extracted the prototype list by

taking our data and selecting for each annotated la-

bel the top three occurring word types which were

not given another label more often. This resulted

in 116 prototypes for the 193K token setting.3 For

comparison, there are 18,423 word types occurring

in this data.

Incorporating the prototype list in the simplest

possible way, we fixed prototype occurrences in the

data to their respective annotation labels. In this

case, the model is no longer symmetric, and we

no longer require random initialization or post-hoc

mapping of labels. Adding prototypes in this way

gave an accuracy of 68.8% on all tokens, but only

47.7% on non-prototype occurrences, which is only

a marginal improvement over BASE. It appears as

though the prototype information is not spreading to

non-prototype words.

In order to remedy this, we incorporated distri-

butional similarity features. Similar to (Schütze,

1995), we collect for each word type a context vector

of the counts of the most frequent 500 words, con-

joined with a direction and distance (e.g +1,-2). We

then performed an SVD on the matrix to obtain a re-

duced rank approximation. We used the dot product

between left singular vectors as a measure of distri-

butional similarity. For each word w, we find the set

of prototype words with similarity exceeding a fixed

threshold of 0.35. For each of these prototypes z,

we add a predicate PROTO = z to each occurrence of

w. For example, we might add PROTO = said to each

token of reported (as in figure 3).4

Each prototype word is also its own prototype

(since a word has maximum similarity to itself), so

when we lock the prototype to a label, we are also

pushing all the words distributionally similar to that

prototype towards that label.5

3To be clear: this method of constructing a prototype list
required statistics from the labeled data. However, we believe
it to be a fair and necessary approach for several reasons. First,
we wanted our results to be repeatable. Second, we did not want
to overly tune this list, though experiments below suggest that
tuning could greatly reduce the error rate. Finally, it allowed us
to run on Chinese, where the authors have no expertise.

4Details of distributional similarity features: To extract con-
text vectors, we used a window of size 2 in either direction and
use the first 250 singular vectors. We collected counts from
all the WSJ portion of the Penn Treebank as well as the entire
BLIPP corpus. We limited each word to have similarity features
for its top 5 most similar prototypes.

5Note that the presence of a prototype feature does not en-
sure every instance of that word type will be given its proto-
type’s label; pressure from “edge” features or other prototype
features can cause occurrences of a word type to be given differ-
ent labels. However, rare words with a single prototype feature
are almost always given that prototype’s label.

324

This setting, PROTO+SIM, brings the all-tokens

accuracy up to 80.5%, which is a 37.5% error re-

duction over PROTO. For non-prototypes, the accu-

racy increases to 67.8%, an error reduction of 38.4%

over PROTO. The overall error reduction from BASE

to PROTO+SIM on all-token accuracy is 66.7%.

Table 5 lists the most common confusions for

PROTO+SIM. The second, third, and fourth most

common confusions are characteristic of fully super-

vised taggers (though greater in number here) and

are difficult. For instance, both JJs and NNs tend to

occur after determiners and before nouns. The CD

and DT confusion is a result of our prototype list not

containing a contains-digit prototype for CD, so the

predicate fails to be linked to CDs. Of course in a

realistic, iterative design setting, we could have al-

tered the prototype list to include a contains-digit

prototype for CD and corrected this confusion.

Figure 6 shows the marginal posterior distribu-

tion over label pairs (roughly, the bigram transi-

tion matrix) according to the treebank labels and the

PROTO+SIM model run over the training set (using

a collapsed tag set for space). Note that the broad

structure is recovered to a reasonable degree.

It is difficult to compare our results to other sys-

tems which utilize a full or partial tagging dictio-

nary, since the amount of provided knowledge is

substantially different. The best comparison is to

Smith and Eisner (2005) who use a partial tagging

dictionary. In order to compare with their results,

we projected the tagset to the coarser set of 17 that

they used in their experiments. On 24K tokens, our

PROTO+SIM model scored 82.2%. When Smith and

Eisner (2005) limit their tagging dictionary to words

which occur at least twice, their best performing

neighborhood model achieves 79.5%. While these

numbers seem close, for comparison, their tagging

dictionary contained information about the allow-

able tags for 2,125 word types (out of 5,406 types)

and the their system must only choose, on average,

between 4.4 tags for a word. Our prototype list,

however, contains information about only 116 word

types and our tagger must on average choose be-

tween 16.9 tags, a much harder task. When Smith

and Eisner (2005) include tagging dictionary entries

for all words in the first half of their 24K tokens, giv-

ing tagging knowledge for 3,362 word types, they do

achieve a higher accuracy of 88.1%.

Setting Accuracy

BASE 46.4

PROTO 53.7

PROTO+SIM 71.5

PROTO+SIM+BOUND 74.1

Figure 7: Results on test set for ads data in

(Grenager et al., 2005).

5.2 Chinese POS Tagging

We also tested our POS induction system on the Chi-

nese POS data in the Chinese Treebank (Ircs, 2002).

The model is wholly unmodified from the English

version except that the suffix features are removed

since, in Chinese, suffixes are not a reliable indi-

cator of part-of-speech as in English (Tseng et al.,

2005). Since we did not have access to a large aux-

iliary unlabeled corpus that was segmented, our dis-

tributional model was built only from the treebank

text, and the distributional similarities are presum-

ably degraded relative to the English. On 60K word

tokens, BASE gave an accuracy of 34.4, PROTO gave

39.0, and PROTO+SIM gave 57.4, similar in order if

not magnitude to the English case.

We believe the performance for Chinese POS tag-

ging is not as high as English for two reasons: the

general difficulty of Chinese POS tagging (Tseng et

al., 2005) and the lack of a larger segmented corpus

from which to build distributional models. Nonethe-

less, the addition of distributional similarity features

does reduce the error rate by 35% from BASE.

5.3 Information Field Segmentation

We tested our framework on the CLASSIFIEDS data

described in Grenager et al. (2005) under conditions

similar to POS tagging. An important characteristic

of this domain (see figure 1(a)) is that the hidden la-

bels tend to be “sticky,” in that fields tend to consist

of runs of the same label, as in figure 1(c), in con-

trast with part-of-speech tagging, where we rarely

see adjacent tokens given the same label. Grenager

et al. (2005) report that in order to learn this “sticky”

structure, they had to alter the structure of their

HMM so that a fixed mass is placed on each diag-

onal transition. In this work, we learned this struc-

ture automatically though prototype similarity fea-

tures without manually constraining the model (see

325

INPUNC

PRT

TO

VBN

LPUNC

W

DET

ADV

V

POS

ENDPUNC

VBG

PREP

ADJ

RPUNC

N

CONJ

IN
P
U
N
C

P
R
T

T
O

V
B
N

L
P
U
N
C

W D
E
T

A
D
V

V P
O
S

E
N
D
P
U
N
C

V
B
G

P
R
E
P

A
D
J

R
P
U
N
C

N C
O
N
J

INPUNC

PRT

TO

VBN

LPUNC

W

DET

ADV

V

POS

ENDPUNC

VBG

PREP

ADJ

RPUNC

N

CONJ

IN
P
U
N
C

P
R
T

T
O

V
B
N

L
P
U
N
C

W D
E
T

A
D
V

V P
O
S

E
N
D
P
U
N
C

V
B
G

P
R
E
P

A
D
J

R
P
U
N
C

N C
O
N
J

(a) (b)

Figure 6: English coarse POS tag structure: a) corresponds to “correct” transition structure from labeled

data, b) corresponds to PROTO+SIM on 24K tokens

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

(a) (b) (c)

Figure 8: Field segmentation observed transition structure: (a) labeled data, (b) BASE(c)

BASE+PROTO+SIM+BOUND (after post-processing)

figure 8), though we did change the similarity func-

tion (see below).

On the test set of (Grenager et al., 2005),

BASE scored an accuracy of 46.4%, comparable to

Grenager et al. (2005)’s unsupervised HMM base-

line. Adding the prototype list (see figure 2) without

distributional features yielded a slightly improved

accuracy of 53.7%. For this domain, we utilized

a slightly different notion of distributional similar-

ity: we are not interested in the syntactic behavior

of a word type, but its topical content. Therefore,

when we collect context vectors for word types in

this domain, we make no distinction by direction

or distance and collect counts from a wider win-

dow. This notion of distributional similarity is more

similar to latent semantic indexing (Deerwester et

al., 1990). A natural consequence of this definition

of distributional similarity is that many neighboring

words will share the same prototypes. Therefore

distributional prototype features will encourage la-

bels to persist, naturally giving the “sticky” effect

of the domain. Adding distributional similarity fea-

tures to our model (PROTO+SIM) improves accuracy

substantially, yielding 71.5%, a 38.4% error reduc-

tion over BASE.6

Another feature of this domain that Grenager et

al. (2005) take advantage of is that end of sen-

tence punctuation tends to indicate the end of a

field and the beginning of a new one. Grenager et

al. (2005) experiment with manually adding bound-

ary states and biasing transitions from these states

to not self-loop. We capture this “boundary” ef-

fect by simply adding a line to our protoype-list,

adding a new BOUNDARY state (see figure 2) with

a few (hand-chosen) prototypes. Since we uti-

lize a trigram tagger, we are able to naturally cap-

ture the effect that the BOUNDARY tokens typically

indicate transitions between the fields before and

after the boundary token. As a post-processing

step, when a token is tagged as a BOUNDARY

6Distributional similarity details: We collect for each word
a context vector consisting of the counts for words occurring
within three token occurrences of a word. We perform a SVD
onto the first 50 singular vectors.

326

Correct Tag Predicted Tag % of Errors

FEATURES SIZE 11.2

FEATURES NBRHD 9.0

SIZE FEATURES 7.7

NBRHD FEATURES 6.4

ADDRESS NBRHD 5.3

UTILITIES FEATURES 5.3

Figure 9: Most common classified ads confusions

token it is given the same label as the previous

non-BOUNDARY token, which reflects the annota-

tional convention that boundary tokens are given the

same label as the field they terminate. Adding the

BOUNDARY label yields significant improvements,

as indicated by the PROTO+SIM+BOUND setting in

Table 5.3, surpassing the best unsupervised result

of Grenager et al. (2005) which is 72.4%. Further-

more, our PROTO+SIM+BOUND model comes close

to the supervised HMM accuracy of 74.4% reported

in Grenager et al. (2005).

We also compared our method to the most ba-

sic semi-supervised setting, where fully labeled doc-

uments are provided along with unlabeled ones.

Roughly 25% of the data had to be labeled

in order to achieve an accuracy equal to our

PROTO+SIM+BOUND model, suggesting that the use

of prior knowledge in the prototype system is partic-

ularly efficient.

In table 5.3, we provide the top confusions made

by our PROTO+SIM+BOUND model. As can be seen,

many of our confusions involve the FEATURE field,

which serves as a general purpose background state,

which often differs subtly from other fields such as

SIZE. For instance, the parenthical comment: (mas-

ter has walk - in closet with vanity) is labeled as

a SIZE field in the data, but our model proposed

it as a FEATURE field. NEIGHBORHOOD and AD-

DRESS is another natural confusion resulting from

the fact that the two fields share much of the same

vocabulary (e.g [ADDRESS 2525 Telegraph Ave.] vs.

[NBRHD near Telegraph]).

Acknowledgments We would like to thank the

anonymous reviewers for their comments. This

work is supported by a Microsoft / CITRIS grant and

by an equipment donation from Intel.

6 Conclusions

We have shown that distributional prototype features

can allow one to specify a target labeling scheme

in a compact and declarative way. These features

give substantial error reduction on several induction

tasks by allowing one to link words to prototypes ac-

cording to distributional similarity. Another positive

property of this approach is that it tries to reconcile

the success of sequence-free distributional methods

in unsupervised word clustering with the success of

sequence models in supervised settings: the similar-

ity guides the learning of the sequence model.

References

Alexander Clark. 2001. The unsupervised induction of stochas-
tic context-free grammars using distributional clustering. In
CoNLL.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. 1990. In-
dexing by latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407.

Trond Grenager, Dan Klein, and Christopher Manning. 2005.
Unsupervised learning of field segmentation models for in-
formation extraction. In Proceedings of the 43rd Meeting of
the ACL.

Nianwen Xue Ircs. 2002. Building a large-scale annotated chi-
nese corpus.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In International Con-
ference on Machine Learning (ICML).

Dong C. Liu and Jorge Nocedal. 1989. On the limited mem-
ory bfgs method for large scale optimization. Mathematical
Programming.

Christopher D. Manning and Hinrich Schütze. 1999. Founda-
tions of Statistical Natural Language Processing. The MIT
Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated corpus
of english: The penn treebank. Computational Linguistics,
19(2):313–330.

Bernard Merialdo. 1991. Tagging english text with a proba-
bilistic model. In ICASSP, pages 809–812.

L.R Rabiner. 1989. A tutorial on hidden markov models and
selected applications in speech recognition. In IEEE.

Andrew Radford. 1988. Transformational Grammar. Cam-
bridge University Press, Cambridge.

Hinrich Schütze. 1995. Distributional part-of-speech tagging.
In EACL.

Noah Smith and Jason Eisner. 2005. Contrastive estimation:
Training log-linear models on unlabeled data. In Proceed-
ings of the 43rd Meeting of the ACL.

Huihsin Tseng, Daniel Jurafsky, and Christopher Manning.
2005. Morphological features help pos tagging of unknown
words across language varieties. In Proceedings of the
Fourth SIGHAN Workshop on Chinese Language Process-
ing.

327

