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During the last five years there has been a surge In
work which aims to provide robust textual inferenceTr
in arbitrary domains about which the system has no
expertise. The best-known such work has occurre
within the field of question answering (Pasca an
Harabagiu, 2001; Moldovan et al., 2003); more re:
cently, such work has continued with greater focu
in addressing the PASCAL Recognizing Textual En:
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Abstract

This paper advocates a new architecture for tex-
tual inference in which finding a good alignment is
separated from evaluating entailment. Current ap-
proaches to semantic inference in question answer-
ing and textual entailment have approximated the
entailment problem as that of computing the best
alignment of the hypothesis to the text, using a lo-
cally decomposable matching score. We argue that
there are significant weaknesses in this approach,
including flawed assumptions of monotonicity and
locality. Instead we propose a pipelined approach
where alignment is followed by a classification
step, in which we extract features representing
high-level characteristics of the entailment prob-
lem, and pass the resulting feature vector to a statis-
tical classifier trained on development data. We re-
port results on data from the 2005 Pascal RTE Chal-
lenge which surpass previously reported results for
alignment-based systems.

Introduction

Because full, accurate, open-domain natural lan-
guage understanding lies far beyond current capa-
bilities, nearly all efforts in this area have sought
to extract the maximum mileage from quite lim-
ited semantic representations. Some have used sim-
ple measures of semantic overlap, but the more in-
teresting work has largely converged on a graph-
alignment approach, operating on semantic graphs
derived from syntactic dependency parses, and using
a locally-decomposable alignment score as a proxy
for strength of entailment. (Below, we argue that
even approaches relying on weighted abduction may
be seen in this light.) In this paper, we highlight the
fundamental semantic limitations of this type of ap-
proach, and advocate a multi-stage architecture that
addresses these limitations. The three key limita-
tions are arassumption of monotonicitgnassump-
tion of locality, and aconfounding of alignment and
evaluation of entailment
We focus on the PASCAL RTE data, examples
om which are shown in table 1. This data set con-
tgins pairs consisting of a short text followed by a
ne-sentence hypothesis. The goal is to say whether
e hypothesis follows from the text and general
gackground knowledge, according to the intuitions
of an intelligent human reader. That is, the standard
not whether the hypothesis is logically entailed,

tailment (RTE) Challenge (Dagan et al., 2005) an'%S . .
within the U.S. Government AQUAINT program. utwhether it can reasonably be inferred.
Substantive progress on this _task is key to many Approaching a robust semantics

text and natural language applications. If one could

tell that Protestors chanted slogans opposing a freén this section we try to give a unifying overview
trade agreementas a match fopeople demonstrat- to current work on robust textual inference, to
ing against free tradethen one could offer a form of present fundamental limitations of current meth-
semantic search not available with current keywordsds, and then to outline our approach to resolving
based search. Even greater benefits would flow tbem. Nearly all current textual inference systems
richer and more semantically complex NLP tasks. use a single-stage matching/proof process, and differ
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[ID ] Text | Hypothesis | Entailed]

59 Two Turkish engineers and an Afghan translator kidnappdtanslator kidnapped in Iraq no
in December were freed Friday.

98 Sharon warns Arafat could be targeted for assassination{ prime minister targeted for assassinatipn no

152 | Twenty-five of the dead were members of the law enforc&5 of the dead were civilians. no

ment agencies and the rest of the 67 were civilians.
231 | The memorandum noted the United Nations estimated th@ver 2 million people died of AIDS lasf  yes
2.5 million to 3.5 million people died of AIDS last year. year.
971 | Mitsubishi Motors Corp.'s new vehicle sales in the US felMitsubishi sales rose 46 percent. no
46 percent in June.
1806 | Vanunu, 49, was abducted by Israeli agents and convict®dnunu’s disclosures in 1968 led expefts no
of treason in 1986 after discussing his work as a mid-lgvéb conclude that Israel has a stockpile jof
Dimona technician with Britain's Sunday Times newspapenuclear warheads.
2081 | The main race track in Qatar is located in Shahaniya, on ti@atar is located in Shahaniya. no
Dukhan Road.

Table 1: lllustrative examples from the PASCAL RTE data safilable athttp://www.pascal-network.org/Challenges/RTE
Though most problems shown have ansnerthe data set is actually balanced betwgesandno.

mainly in the sophistication of the matching stagedivide the search into two steps: in the first step they
The simplest approach is to base the entailment preensider node scores only, which relaxes the prob-
diction on the degree of semantic overlap betweelem to a weighted bipartite graph matching that can
the text and hypothesis using models based on balys solved in polynomial time, and in the second step
of words, bags ofi-grams, TF-IDF scores, or some-they add the edges scores and hillclimb the align-
thing similar (Jijkoun and de Rijke, 2005). Suchment via an approximate local search.

models have serious limitations: semantic overlap is A thirg approach, exemplified by Moldovan et al.

_typically a symmetric relation, whereas entailment2003) and Raina et al. (2005), is to translate de-
is clearly not, and, because overlap models do Ngendency parses into neo-Davidsonian-style quasi-
account for syntactic or semantic structure, they aiggical forms, and to perform weighted abductive
easily fooled by examples like ID 2081. theorem proving in the tradition of (Hobbs et al.,

A more structured approach is to formulate thd-988). Unless supplemented with a knowledge
entailment prediction as a graph matching probleff@S€, this approach is actually isomorphic to the
(Haghighi et al., 2005: de Salvo Braz et al., 2005)graph maiching approach. For example, the graph
In this formulation, sentences are represented as ndi- figure 1 might generate the quasi-ligse(el),
malized syntactic dependency graphs (like the or@ubi(el, x1), sales(x1), nn(x1, x2), Mitsubishi(x2),
shown in figure 1) and entailment is approximated©Pi(€1, x3), percent(x3), num(x3, x4), 46(x4)
with an alignment between the graph representin?jhere is aterm'correspondlng to each noo!e and arc,
the hypothesis and a portion of the correspondingnd the resolution steps at the core of weighted ab-
graph(s) representing the text. Each possible alig Tuc‘uon theorem proving con_3|der matching an indi-
ment of the graphs has an associated score, and Higual node of the hypothesis (e.gose(el) with
score of the best alignment is used as an approx©mething from the text (e.gfell(el), just as in
mation to the strength of the entailment: a bettef€ graph-matching approach. The two models be-
aligned hypothesis is assumed to be more likely t6°Me distinct when there is a good supply of addi-
be entailed. To enable incremental search, alighional linguistic and world knowledge axioms—as in
ment scores are usually factored as a combinatigdeldovan et al. (2003) but not Raina et al. (2005).
of local terms, corresponding to the nodes and edgdé&€n the theorem prover may generate intermedi-
of the two graphs. Unfortunately, even with factoredt® forms in the proof, but, nevertheless, individ-
scores the problem of finding the best alignment gial terms are resolved locally without reference to
two graphs is NP-complete, so exact computation @obal context.
intractable. Authors have proposed a variety of ap- Finally, a few efforts (Akhmatova, 2005; Fowler
proximate search techniques. Haghighi et al. (200%t al., 2005; Bos and Markert, 2005) have tried to
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translate sentences into formulas of first-order logidje able to prove that civilians are not members of
in order to test logical entailment with a theorenmaw enforcement agencies and conclude that the hy-
prover. While in principle this approach does nopothesis does not follow from the text. But a graph-
suffer from the limitations we describe below, inmatching system will to try to get non-entailment
practice it has not borne much fruit. Because fewy making the matching cost betweeivilians and
problem sentences can be accurately translated neembers of law enforcement agendaesvery high.
logical form, and because logical entailment is &lowever, the likely result of that is that the final part
strict standard, recall tends to be poor. of the hypothesis will align withwere civiliansat
The simple graph matching formulation of thethe end of the text, assuming that we allow an align-
problem belies three important issues. First, theent with “loose” arc correspondenteUnder this
above systems assume a form of upward monotoni¢andidate alignment, the lexical alignments are per-
ity: if a good match is found with a part of the text,fect, and the only imperfect alignment is the subject
other material in the text is assumed not to affecrc of wereis mismatched in the two. A robust in-
the validity of the match. But many situations lackference guesser will still likely conclude that there is
this upward monotone character. Consider variangntailment.
on ID 98. Suppose the hypothesis wémafat tar- We propose that all three problems can be re-
geted for assassinationThis would allow a perfect solved in a two-stage architecture, where the align-
graph match or zero-cost weighted abductive proofnent phase is followed by a separate phase of en-
because the hypothesis is a subgraph of the tetailment determination. Although developed inde-
However, this would be incorrect because it ignorependently, the same division between alignment and
the modal operatorould Information that changes classification has also been proposed by Marsi and
the validity of a proof can also exist outside a matchKrahmer (2005), whose textual system is developed
ing clause. Consider the alternate t8kiaron denies and evaluated on parallel translations into Dutch.
Arafat is targeted for assassinatign Their classification phase features an output space

The second issue is the assumption of localityf five semantic relations, and performs well at dis-
Locality is needed to allow practical search, butinguishing entailing sentence pairs.
many entailment decisions rely on global features of Finding aligned content can be done by any search
the alignment, and thus do not naturally factor byrocedure. Compared to previous work, we empha-
nodes and edges. To take just one example, dropize structural alignment, and seek to ignore issues
ping a restrictive modifier preserves entailment in #ke polarity and quantity, which can be left to a
positive context, but not in a negative one. For exanrsubsequent entailment decision. For example, the
ple, Dogs barked loudlgntailsDogs barkegbutNo  scoring function is designed to encourage antonym
dogs barked loudlgloes not entaiNo dogs barked matches, and ignore the negation of verb predicates.
These more global phenomena cannot be modelddie ideas clearly generalize to evaluating several
with a factored alignment score. alignments, but we have so far worked with just

The last issue arising in the graph matching aghe one-best alignment. Given a good alignment,
proaches is the inherent confounding of alignmerif’® determination of entailment reduces to a simple
and entailment determination. The way to show thaglassification decision. The classifier is built over
one graph element does not follow from another ifatures designed to recognize patterns of valid and
to make the cost of aligning them high. Howeverinvalid inference. Weights for the features can be
since we are embedded in a search for the loweBgnd-set or chosen to minimize a relevant loss func-
cost alignment, this will just cause the system t8On on training data using standard techniques from
choose an alternate alignment rather than recogniglachine learning. Because we already have a com-
ing a non-entailment. In ID 152, we would like theplete alignment, the classifier's decision can be con-

hypothesis to align with the first part of the text, t 2Robust systems need to allow matches with imperfect arc

- correspondence. For instance, gigitl went to Lyons to study
This is the same problem labeled and addresseb@i®xt  French farming practiceswve would like to be able to conclude

in Tatu and Moldovan (2005). thatBill studied French farminglespite the structural mismatch.
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ditioned on arbitraryglobal features of the aligned graphs representing the hypothesis and the text. An
graphs, and it can detect failures of monotonicity. alignment consists of a mapping from each node
(word) in the hypothesis graph to a single node in

3 System the text graph, or to nufl. Figure 1 gives the align-

Our system has three stages: linguistic analysi§ientforiDo71. _

alignment, and entailment determination. The space of alignments is large: there are
o _ O((m + 1)™) possible alignments for a hypothesis

3.1 Linguistic analysis graph withn nodes and a text graph with nodes.

Our goal in this stage is to compute linguistic repWe define a measure of alignment quality, and a
resentations of the text and hypothesis that contafprocedure for identifying high scoring alignments.
as much information as possible about their semaiVe choose a locally decomposable scoring function,
tic content. We usgyped dependency graphghich  such that the score of an alignment is the sum of
contain a node for each word and labeled edges reifte local node and edge alignment scores. Unfor-
resenting the grammatical relations between wordtunately, there is no polynomial time algorithm for
Figure 1 gives the typed dependency graph for Ifinding the exact best alignment. Instead we use an
971. This representation contains much of the infoincremental beam search, combined with a node or-
mation about words and relations between them, argtgring heuristic, to do approximate global search in
is relatively easy to compute from a syntactic parsdhe space of possible alignments. We have exper-
However many semantic phenomena are not reprénented with several alternative search techniques,
sented properly; particularly egregious is the inabiland found that the solution quality is not very sensi-
ity to represent quantification and modality. tive to the specific search procedure used.

We parse input sentences to phrase structure Our scoring measure is designed to favor align-
trees using the Stanford parser (Klein and Manningnents which align semantically similar subgraphs,
2003), a statistical syntactic parser trained on therespective of polarity. For this reason, nodes re-
Penn TreeBank. To ensure correct parsing, we preeive high alignment scores when the words they
process the sentences to collapse named entities imepresent are semantically similar. Synonyms and
new dedicated tokens. Named entities are ident&ntonyms receive the highest score, and unrelated
fied by a CRF-based NER system, similar to thawords receive the lowest. Our hand-crafted scor-
described in (McCallum and Li, 2003). After pars-ing metric takes into account the word, the lemma,
ing, contiguous collocations which appear in Wordand the part of speech, and searches for word relat-
Net (Fellbaum, 1998) are identified and grouped. edness using a range of external resources, includ-

We convert the phrase structure trees to typed darg WordNet, precomputed latent semantic analysis
pendency graphs using a set of deterministic handdatrices, and special-purpose gazettes. Alignment
coded rules (de Marneffe et al., 2006). In these rulesgores also incorporate local edge scores, which are
heads of constituents are first identified using a modhased on the shape of the paths between nodes in
ified version of the Collins head rules that favor sethe text graph which correspond to adjacent nodes
mantic heads (such as lexical verbs rather than auixthe hypothesis graph. Preserved edges receive the
iliaries), and dependents of heads are typed usirfgghest score, and longer paths receive lower scores.
tregexpatterns (Levy and Andrew, 2006), an exten-
sion of thetgrep pattern language. The nodes in the3-3 Entailment determination
final graph are then annotated with their associatggl the final stage of processing, we make a deci-
word, part-of-speech (given by the parser), lemmsion about whether or not the hypothesis is entailed
(given by a finite-state transducer described by Minby the text, conditioned on the typed dependency
nen et al. (2001)) and named-entity tag. graphs, as well as the best alignment between them.

3.2 Alignment *The limitations of using one-to-one alignments are miti-

. . ted by the fact that many multiword expressions (e.g. dame
The purpose of the second phase is to find a gocg‘ﬁtities, noun compounds, multiword prepositions) hawenbe

partial alignment between the typed dependenayllapsed into single nodes during linguistic analysis.
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Alignment Features

nsubj dobj rose —  fell Antonyms aligned in pos/pos context —
sales —  sales Structure: main predicate good match t
( sales ) ( percent ) Mitsubishi  — MitsubishLMotors.Corp. Number: quantity match +
percent —  percent Date: text date deleted in hypothesis —
nn num 46 — 46 Alignment: good score +
( Mitsubishi ) ( 46 ) Alignment score:—0.8962 Entailment score=—5.4262

Figure 1: Problem representation for ID 971: typed depecylgraph (hypothesis only), alignment, and entailmentuiesest

Because we have a data set of examples that are layportant groups of features.

beled for entailment, we can use techniques from sy- , .
g V\%olarlty features. These features capture the pres-

pervised machine learning to learn a classifier. ST :
. ence (or absence) of linguistic markers of negative

adopt the standard approach of defining a featural | . : .
. . polarity contexts in both the text and the hypothesis,
representation of the problem and then learning a

. - . h im i -
linear decision boundary in the feature space. W%uc as simple negationdy), downward-monotone

focus here on the learning methodology; the nexquantlflers o, dfevv), rTSt.nCtm?l prepositionsu(th-
section covers the definition of the set of features. out, excep} and superlativestllesy.

Defined in this way, one can apply any statisticaRhdjunct features. These indicate the dropping or
learning algorithm to this classification task, sucladding of syntactic adjuncts when moving from the
as support vector machines, logistic regression, ¢ext to the hypothesis. For the common case of
naive Bayes. We used a logistic regression classifiegstrictive adjuncts, dropping an adjunct preserves
with a Gaussian prior parameter for regularizationtruth (Dogs barked loudly= Dogs barkeg, while
We also compare our learning results with thosadding an adjunct does ndd¢gs barkedy= Dogs
achieved by hand-setting the weight parameters ftwarked today. However, in negative-polarity con-
the classifier, effectively incorporating strong priortexts (such asNo dogs barkel this heuristic is
(human) knowledge into the choice of weights. reversed: adjuncts can safely be added, but not

An advantage to the use of statistical classifierdropped. For example, in ID 59, the hypothesis
is that they can be configured to output a probaaligns well with the text, but the addition of Iraq
bility distribution over possible answers rather tharindicates non-entailment.
just the most likely answer. This allows us to get We identify the “root nodes” of the problem: the
confidence estimates for computing a confidenac®ot node of the hypothesis graph and the corre-
weighted score (see section 5). A major concern isponding aligned node in the text graph. Using de-
applying machine learning techniques to this clagendency information, we identify whether adjuncts
sification problem is the relatively small size of thehave been added or dropped. We then determine
training set, which can lead to overfitting problemsthe polarity (negative context, positive context or
We address this by keeping the feature dimensionaiestrictor of a universal quantifier) of the two root
ity small, and using high regularization penalties imodes to generate features accordingly.

training. Antonymy features. Entailment problems might

involve antonymy, as in ID 971. We check whether
an aligned pairs of text/hypothesis words appear to
In the entailment determination phase, the entaibe antonymous by consulting a pre-computed list
ment problem is reduced to a representation asad about 40,000 antonymous and other contrasting
vector of 28 features, over which the statisticapairs derived from WordNet. For each antonymous
classifier described above operates. These featurgsr, we generate one of three boolean features, in-
try to capture salient patterns of entailment andicating whether (i) the words appear in contexts of
non-entailment, with particular attention to contextgnatching polarity, (ii) only the text word appears in
which reverse or block monotonicity, such as negaa negative-polarity context, or (iii) only the hypoth-
tions and quantifiers. This section describes the mossis word does.

4 Feature representation
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Modality features. Modality features capture Number, date, and time features. These are de-
simple patterns of modal reasoning, as in ID 98signed to recognize (mis-)matches between num-
which illustrates the heuristic that possibility doeders, dates, and times, as in IDs 1806 and 231. We
not entail actuality. According to the occurrencedo some normalization (e.g. of date representations)
(or not) of predefined modality markers, such aand have a limited ability to do fuzzy matching. In
must or maybe we map the text and the hypoth-ID 1806, the mismatched years are correctly iden-
esis to one of six modalitiespossible not possi- tified. Unfortunately, in ID 231 the significance of
ble, actual not actua) necessaryandnot necessaty overis not grasped and a mismatch is reported.

The text/hypothesis modality pair is then mapped

into one of the following entailment judgmentges Allglgn(;nenth featurels. IOU(; ;‘eature r_eprezer&tatlon
weak yesdon't know weak no or no. For example: includes three real-valued features intended to rep-

resent the quality of the alignmentscore is the
(not possible= not actua)? = yes raw score returned from the alignment phase, while
(possible= necessary? = weak no goodscoreand badscoretry to capture whether the
alignment score is “good” or “bad” by computing
Factivity features. The context in which a verb th_e sigmoid function of the dista? ce b”etweeP th?
: . alignment score and hard-coded “good” and “bad
phrase is embedded may carry semantic presuppo-
" . . . reference values.
sitions giving rise to (non-)entailments suchTdse
gangster tried to escapg The gangster escaped 5 Evaluation
This pattern of entailment, like others, can be re-
versed by negative polarity markershe gangster We present results based on the First PASCAL RTE
managed to escape The gangster escapeshile Challenge, which used a development set contain-
The gangster didn't manage to escdpeThe gang- ing 567 pairs and a test set containing 800 pairs.
ster escaped To capture these phenomena, wdhe data sets are balanced to contain equal num-
compiled small lists of “factive” and non-factive bers ofyesand no answers. The RTE Challenge
verbs, clustered according to the kinds of entailFecommended two evaluation metrics: raw accuracy
ments they create. We then determine to which claggid confidence weighted score (CWS). The CWS is
the parent of the text aligned with the hypothesisomputed as follows: for each positive integeunp
root belongs to. If the parent is not in the list, weto the size of the test set, we compute accuracy over
only check whether the embedding text is an affirthe & most confident predictions. The CWS is then
mative context or a negative one. the average, ovek, of these partial accuracies. Like
raw accuracy, it lies in the interval [0, 1], but it will
Quantifier features. These features are designedexceed raw accuracy to the degree that predictions
to capture entailment relations among simple semre well-calibrated.
tences involving quantification, such Bsery com- Several characteristics of the RTE problems
pany must report= A company must reporfor should be emphasized. Examples are derived from a
The companyor IBM). No attempt is made to han- broad variety of sources, including newswire; there-
dle multiple quantifiers or scope ambiguities. Eacliore systems must be domain-independent. The in-
guantifier found in an aligned pair of text/hypothesiderences required are, from a human perspective,
words is mapped into one of five quantifier catefairly superficial: no long chains of reasoning are
gories: no, some many most andall. Theno involved. However, there are “trick” questions ex-
category is set apart, while an ordering over theressly designed to foil simplistic techniques. The
other four categories is defined. Themecategory definition of entailment is informal and approx-
also includes definite and indefinite determiners anichate: whether a competent speaker with basic
small cardinal numbers. A crude attempt is made tknowledge of the world would typically infer the hy-
handle negation by interchangimgp andall in the pothesis from the text. Entailments will certainly de-
presence of negation. Features are generated giaend on linguistic knowledge, and may also depend
the categories of both hypothesis and text. on world knowledge; however, the scope of required
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Algorithm RTEL Dev Set RTE1 Test Set figures r r for developmen rforman
Ace ows | Ace WS gures reported for development data performance

mardomn 20.0% 500% 500% 500% thereforg reflect overfitting; while such results are
Jijkoun etal. 05 | 61.0% 64.9%]| 55.3%  55.9% not a fair measure of overall performance, they can
Rainaetal. 05 | 57.8% 66.1%| 55.5%  63.8% help us assess the adequacy of our feature set: if
gggggaﬂ;'t' gg - _ g‘;;?‘;f; g%:gsﬁ our features have failed to capture relevant aspects
Alignment only | 58.7% 59.1%| 54.5%  59.7% of the problem, we should expect poor performance
Hand-tuned | 60.3% 65.3%| 59.1%  65.0% even when overfitting. It is therefore encouraging
Learning 61.2% 744%]| 59.1% 63.9% ] 15 see CWS above 70%. Finally, the figures re-
Table 2: Performance on the RTE development and test sefg0rted for test data performance are the fairest ba-
CWS stands for confidence weighted score (see text). sis for comparison. These are significantly better
than our results for alignment only (Fisher’s exact
) . test,p < 0.05), indicating that we gain real value
world knowledge is left unspecifiet. from our features. However, the gain over compara-

Despi_te the inforr_nglity of the problem definition, ble results from other teams is not significant at the
human judges exhibit very good agreement on th]gz< 0.05 level.

RTE task, with agreement rate of 91-96% (Dagan
et al., 2005). In principle, then, the upper bounq
for machine performance is quite high. In practice
however, the RTE task is exceedingly difficult for

A curious observation is that the results for hand-
uned weights are as good or better than results for
fearned weights. A possible explanation runs as fol-

. . : ows. Most of the features represent high-level pat-
computers. Participants in the first PASCAL RT P g P

rns which arise only occasionally. Because the
workshop reported accuracy from 49% to 59%, ampreaining data containsy only a few yhundred exam-
CWS from 50.0% to 69.0% (Dagan et al., 2005).

es, many features are active in just a handful of
Table 2 shows results for a range of systems ar@ y J

testin nditions. We report g nd CWS |n stances; their learned weights are therefore quite
esting co ons. VW& report accuracy a . Onoisy. Indeed, a feature which is expected to fa-
each RTE data set. The baseline for all experiments i ind ith .
is random guessing, which always attains 50% aCCl\ler entaiiment may even wind up with a negative

' weight: the modal featurereak yeds an example.

racy. We show COrT‘par"?‘b'.e r?SUIt§ from recent SY&s shown in table 3, the learned weight for this fea-
tems based on lexical similarity (Jijkoun and de Ri;

. ; . ture was strongly negative — but this resulted from
ke, 2005), graph alignment (Haghighi et al., 2005)? single training example in which the feature was

welghtegl abdgctlon (Raina et aI:, 2005), and a mixe ctive but the hypothesis was not entailed. In such
system including theorem proving (Bos and Mark-

cases, we shouldn’t expect good generalization to
ert, 2005)- H 4+ 113 ”
t(—fst data, and human intuition about the “value” of
We then show results for our system under several _ ... .
. . : .. specific features may be more reliable.
different training regimes. The row labeled “align-
, . . . . Table 3 shows the values learned for selected fea-
ment only” describes experiments in which all fea- .
. ure weights. As expected, the featuastded ad-
tures except the alignment score are turned off. We ~ ° . .
. . ) , . r,|émct in all context modal yes andtext is factive
predict entailment just in case the alignment sco

L - jvere all found to be strong indicators of entailment,
exceeds a threshold which is optimized on devel- . . . o
while date insert date modifier insert widening

opment data. “Hand-tuning” describes experiment; L .
P g P fsrom text to hymll indicate lack of entailment. Inter-

in which all features are on, but no training oc- . .
) . , stingly,text has neg markeandtext & hyp diff po-
curs; rather, weights are set by hand, according {0 . ) : .
o . . o ) arity were also found to disfavor entailment; while
human intuition. Finally, “learning” describes ex-

. . . this outcome is sensible, it was not anticipated or
periments in which all features are on, and featu

re .
weights are trained on the development data. Th%eagned.

“Each RTE problem is also tagged as belonging to one @ Conclusion
seventasks Previous work (Raina et al., 2005) has shown that

conditioning on task can significantly improve accuracythis
work, however, we ignore the task variable, and none of thg-he best current approaches to the problem of tex-

results shown in table 2 reflect optimization by task. tual inference work by aligning semantic graphs,
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