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Abstract

A given entity, representing a person, a location
or an organization, may be mentioned in text
in multiple, ambiguous ways. Understanding
natural language requires identifying whether
different mentions of a name, within and across
documents, represent the same entity.

We develop an unsupervised learning approach
that is shown to resolve accurately the name
identification and tracing problem. At the heart
of our approach is a generative model of how
documents are generated and how names are
“sprinkled” into them. In its most general form,
our model assumes: (1) a joint distribution over
entities, (2) an “author” model, that assumes
that at least one mention of an entity in a docu-
ment is easily identifiable, and then generates
other mentions via (3) an appearance model,
governing how mentions are transformed from
the “representative” mention. We show how to
estimate the model and do inference with it and
how this resolves several aspects of the prob-
lem from the perspective of applications such
as questions answering.

1 Introduction

Reading and understanding text is a task that requires the
ability to disambiguate at several levels, abstracting away
details and using background knowledge in a variety of
ways. One of the difficulties that humans resolve instan-
taneously and unconsciously is that of reading names.
Most names of people, locations, organizations and oth-
ers, have multiple writings that are used freely within and
across documents.

The variability in writing a given concept, along with
the fact that different concepts may have very similar
writings, poses a significant challenge to progress in nat-
ural language processing. Consider, for example, an open
domain question answering system (Voorhees, 2002) that
attempts, given a question like: “When was President
Kennedy born?” to search a large collection of articles in

order to pinpoint the concise answer: “on May 29, 1917.”
The sentence, and even the document that contains the
answer, may not contain the name “President Kennedy”;
it may refer to this entity as “Kennedy”, “JFK” or “John
Fitzgerald Kennedy”. Other documents may state that
“John F. Kennedy, Jr. was born on November 25, 1960”,
but this fact refers to our target entity’s son. Other men-
tions, such as “Senator Kennedy” or “Mrs. Kennedy”
are even “closer” to the writing of the target entity, but
clearly refer to different entities. Even the statement
“John Kennedy, born 5-29-1941” turns out to refer to a
different entity, as one can tell observing that the doc-
ument discusses Kennedy’s batting statistics. A similar
problem exists for other entity types, such as locations,
organizations etc. Ad hoc solutions to this problem, as
we show, fail to provide a reliable and accurate solution.

This paper presents the first attempt to apply a unified
approach to all major aspects of this problem, presented
here from the perspective of the question answering task:

(1) Entity Identity- do mentionsA andB (typically,
occurring in different documents, or in a question and a
document, etc.) refer to the same entity? This problem
requires both identifying when different writings refer to
the same entity, and when similar or identical writings
refer to different entities. (2)Name Expansion- given a
writing of a name (say, in a question), find other likely
writings of the same name. (3)Prominence- given
question “What is Bush’s foreign policy?”, and given that
any large collection of documents may contain several
Bush’s, there is a need to identify the most prominent, or
relevant “Bush”, perhaps taking into account also some
contextual information.

At the heart of our approach is a global probabilistic
view on how documents are generated and how names
(of different entity types) are “sprinkled” into them. In
its most general form, our model assumes: (1) a joint dis-
tribution over entities, so that a document that mentions
“President Kennedy” is more likely to mention “Oswald”
or “ White House” than “Roger Clemens”; (2) an “au-
thor” model, that makes sure that at least one mention
of a name in a document is easily identifiable, and then
generates other mentions via (3) an appearance model,
governing how mentions are transformed from the “rep-



resentative” mention. Our goal is to learn the model from
a large corpus and use it to supportrobust reading - en-
abling “on the fly” identification and tracing of entities.

This work presents the first study of our proposed
model and several relaxations of it. Given a collection of
documents we learn the models in an unsupervised way;
that is, the system is not told during training whether two
mentions represent the same entity. We only assume the
ability to recognize names, using a named entity recog-
nizer run as a preprocessor. We define several inferences
that correspond to the solutions we seek, and evaluate the
models by performing these inferences against a large
corpus we annotated. Our experimental results suggest
that the entity identity problem can be solved accurately,
giving accuracies (F1) close to90%, depending on the
specific task, as opposed to80% given by state of the art
ad-hoc approaches.

Previous work in the context of question answering
has not addressed this problem. Several works in NLP
and Databases, though, have addressed some aspects of
it. From the natural language perspective, there has
been a lot of work on the related problem of corefer-
ence resolution (Soon et al., 2001; Ng and Cardie, 2003;
Kehler, 2002) - which aims at linking occurrences of
noun phrases and pronouns within a document based on
their appearance and local context. (Charniak, 2001)
presents a solution to the problem of name structure
recognition by incorporating coreference information. In
the context of databases, several works have looked at the
problem of record linkage - recognizing duplicate records
in a database (Cohen and Richman, 2002; Hernandez and
Stolfo, 1995; Bilenko and Mooney, 2003). Specifically,
(Pasula et al., 2002) considers the problem of identity un-
certainty in the context of citation matching and suggests
a probabilistic model for that. Some of very few works
we are aware of that works directly with text data and
across documents, are (Bagga and Baldwin, 1998; Mann
and Yarowsky, 2003), which consider one aspect of the
problem – that of distinguishing occurrences ofidentical
names in different documents, and only ofpeople.

The rest of this paper is organized as follows: We for-
malize the “robust reading” problem in Sec. 2. Sec. 3
describes a generative view of documents’ creation and
three practical probabilistic models designed based on it,
and discusses inference in these models. Sec. 4 illustrates
how to learn these models in an unsupervised setting, and
Sec. 5 describes the experimental study. Sec. 6 concludes.

2 Robust Reading

We consider reading a collection of documentsD =
{d1, d2, . . . , dm}, each of which may containmen-
tions (i.e. real occurrences) of|T | types of enti-
ties. In the current evaluation we considerT =
{Person, Location,Organization}.

An entityrefers to the “real” concept behind a mention
and can be viewed as a unique identifier to a real-world
object. Examples might be the person “John F. Kennedy”
who became a president, “White House” – the residence
of the US presidents, etc.E denotes the collection of all
possible entities in the world andEd = {ed

i }ld

1 is the set
of entities mentioned in documentd. M denotes the col-
lection of all possible mentions andMd = {md

i }nd

1 is
the set of mentions in documentd. Md

i (1 ≤ i ≤ ld) is
the set of mentions that refer to entityed

i ∈ Ed. For en-
tity “John F. Kennedy”, the corresponding set of mentions
in a document may contain “Kennedy”, “J. F. Kennedy”
and “President Kennedy”. Among all mentions of an en-
tity ed

i in documentd we distinguish the one occurring
first, rd

i ∈ Md
i , as therepresentativeof ed

i . In practice,
rd
i is usually the longest mention ofed

i in the document
as well, and other mentions are variations of it. Repre-
sentatives are viewed as a typical representation of an
entity mentioned in a specific time and place. For ex-
ample, “President J.F.Kennedy” and “Congressman John
Kennedy” may be representatives of “John F. Kennedy”
in different documents.R denotes the collection of all
possible representatives andRd = {rd

i }ld

1 ⊆ Md is the
set of representatives in documentd. This way, each doc-
ument is represented as the collection of its entities, rep-
resentatives and mentionsd = {Ed, Rd,Md}.

Elements in the name spaceW = E∪R∪M each have
an identifying writing (denoted aswrt(n) for n ∈ W )1

and an ordered list of attributes,A = {a1, . . . , ap},
which depends on the entity type. Attributes used in the
current evaluation include bothinternal attributes, such
as, forPeople, {title, firstname, middlename, lastname,
gender} as well ascontextualattributes such as{time, lo-
cation, proper-names}. Proper-namesrefer to a list of
proper names that occur around the mention in the doc-
ument. All attributes are of string value and the values
could be missing or unknown2.

The fundamental problem we address in robust read-
ing is to decide what entities are mentioned in a given
document (given the observed setMd) and what the most
likely assignment of entity to each mention is.

3 A Model of Document Generation

We define a probability distribution over documentsd =
{Ed, Rd, Md}, by describing how documents are being
generated. In its most general form the model has the
following three components:

(1) A joint probability distributionP (Ed) that governs

1The observed writing of a mention is its identifying writing.
For entities, it is a standard representation of them, i.e. the full
name of a person.

2Contextual attributes are not part of the current evaluation,
and will be evaluated in the next step of this work.
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Figure 1: Generating a document

how entities (of different types) are distributed into a doc-
ument and reflects their co-occurrence dependencies.

(2) The number of entities in a document,size(Ed),
and the number of mentions of each entity inEd,
size(Md

i ), need to be decided. The current evaluation
makes the simplifying assumption that these numbers are
determined uniformly over a small plausible range.

(3) The appearance probabilityof a name generated
(transformed) from its representative is modelled as a
product distribution over relational transformations of at-
tribute values. This model captures the similarity be-
tween appearances of two names. In the current eval-
uation the same appearance model is used to calculate
both the probabilityP (r|e) that generates a representa-
tive r given an entitye and the probabilityP (m|r) that
generates a mentionm given a representativer. Attribute
transformations are relational, in the sense that the dis-
tribution is over transformation types and independent of
the specific names.

Given these, a documentd is assumed to be gener-
ated as follows (see Fig. 1): A set ofsize(Ed) entities
Ed ⊆ E is selected to appear in a documentd, accord-
ing to P (Ed). For each entityed

i ∈ Ed, a representative
rd
i ∈ R is chosen according toP (rd

i |ed
i ), generatingRd.

Then mentionsMd
i of an entity are generated from each

representativerd
i ∈ Rd — each mentionmd

j ∈ Md
i is

independently transformed fromrd
i according to the ap-

pearance probabilityP (md
j |rd

i ). Assuming conditional
independency betweenMd andEd givenRd, the proba-
bility distribution over documents is therefore

P (d) = P (Ed, Rd, Md) = P (Ed)P (Rd|Ed)P (Md|Rd),

and the probability of the document collectionD is:

P (D) =
∏

d∈D

P (d).

Given a mentionm in a documentd (Md is the set of
observed mentions ind), the key inference problem is to
determine the most likely entitye∗m that corresponds to
it. This is done by computing:

Ed = argmaxE′⊆EP (Ed, Rd|Md, θ) (1)

= argmaxE′⊆EP (Ed, Rd,Md|θ), (2)

whereθ is the learned model’s parameters. This gives the
assignment of the most likely entitye∗m for m.

3.1 Relaxations of the Model

In order to simplify model estimation and to evaluate
some assumptions, several relaxations are made to form
three simpler probabilistic models.

Model I: (the simplest model) The key relaxation here
is in losing the notion of an “author” – rather than first
choosing a representative for each document, mentions
are generated independently and directly given an entity.

That is, an entityei is selected fromE according to the
prior probabilityP (ei); then its actual mentionmi is se-
lected according toP (mi|ei). Also, an entity is selected
into a document independently of other entities. In this
way, the probability of the whole document set can be
computed simply as follows:

P (D) = P ({(ei, mi)}n
i=1) =

n∏
i=1

P (ei)P (mi|ei),

and the inference problem for the most likely entity given
m is:

e∗m = argmaxe∈EP (e|m, θ) = argmaxe∈EP (e)P (m|e).
(3)

Model II: (more expressive) The major relaxation
made here is in assuming a simple model of choos-
ing entities to appear in documents. Thus, in order to
generate a documentd, after we decidesize(Ed) and
{size(Md

1 , size(Md
2 ), . . . } according to uniform distri-

butions, each entityed
i is selected intod independently

of others according toP (ed
i ). Next, the representativerd

i

for each entityed
i is selected according toP (rd

i |ed
i ) and

for each representative the actual mentions are selected
independently according toP (md

j |rd
j ). Here, we have in-

dividual documents along with representatives, and the
distribution over documents is:

P (d) = P (E
d

, R
d

, M
d
) = P (E

d
)P (R

d|Ed
)P (M

d|Rd
)

∼
|Ed|∏

i=1

[P (e
d
i )P (r

d
i |ed

i )]
∏

(rd
j

,md
j
)

P (m
d
j |rd

j )

after we ignore the size components (they do not influ-
ence inferences). The inference problem here is the same
as in Equ. (2).

Model III: This model performs the least relaxation.
After decidingsize(Ed) according to a uniform distri-
bution, instead of assuming independency among enti-
ties which does not hold in reality (For example, “Gore”
and “George. W. Bush” occur together frequently, but
“Gore” and “Steve. Bush” do not), we select entities us-
ing a graph based algorithm: entities inE are viewed



as nodes in a weighted directed graph with edges(i, j)
labelledP (ej |ei) representing the probability that entity
ej is chosen into a document that contains entityei. We
distribute entities toEd via a random walk on this graph
starting fromed

1 with a prior probabilityP (ed
i ). Repre-

sentatives and mentions are generated in the same way
as in Model II. Therefore, a more general model for the
distribution over documents is:

P (d) ∼ P (e
d
1)P (r

d
1 |ed

1)

|Ed|∏

i=2

[P (e
d
i |ed

i−1)P (r
d
i |ed

i )]×
∏

(rd
j

,md
j
)

P (m
d
j |rd

j ).

The inference problem is the same as in Equ. (2).

3.2 Inference Algorithms

The fundamental problem in robust reading can be solved
as inference with the models: given a mentionm, seek the
most likely entitye ∈ E for m according to Equ. (3) for
Model I or Equ. (2) for Model II and III. Instead of all
entities in the real world,E can be viewed without loss
as the set of entities in a closed document collection that
we use to train the model parameters and it is known after
training. The inference algorithm for Model I (with time
complexityO(|E|)) is simple and direct: just compute
P (e,m) for each candidate entitye ∈ E and then choose
the one with the highest value. Due to exponential num-
ber of possible assignments ofEd, Rd to Md in Model
II and III, precise inference is infeasible and approximate
algorithms are therefore designed:

In Model II, we adopt a two-step algorithm: First, we
seek the representativesRd for the mentionsMd in docu-
mentd by sequentially clustering the mentions according
to the appearance model. The first mention in each group
is chosen as the representative. Specifically, when con-
sidering a mentionm ∈ Md, P (m|r) is computed for
each representativer that have already been created and
a fixed threshold is then used to decide whether to create a
new group form or to add it to one of the existing groups
with the largestP (m|r). In the second step, each rep-
resentativerd

i ∈ Rd is assigned to its most likely entity
according toe∗ = argmaxe∈EP (e) ∗P (r|e). This algo-
rithm has a time complexity ofO((|Md|+ |E|) ∗ |Md|).

Model III has a similar algorithm as Model II. The
only difference is that we need to consider the global
dependency between entities. Thus in the second step,
instead of seeking an entitye for each representativer
separately, we determine a set of entitiesEd for Rd in
a Hidden Markov Model with entities inE as hidden
states andRd as observations. The prior probabilities,
the transitive probabilities and the observation probabil-
ities are given byP (e), P (ej |ei) and P (r|e) respec-
tively. Here we seek the most likely sequence of enti-
ties given those representatives in their appearing order
using the Viterbi algorithm. The total time complexity is

e1= George Bush e2= George W. Bush e3= Steve Bush

m1,r1=President 
Bush

m2=Bush

m4,r2=Steve 
Bush

m5=Bush
m3=J. Quayle

Entities E

d1 d2

Figure 2: An conceptual example. The arrows represent
the correct assignment of entities to mentions.r1, r2 are
representatives.

O(|Md|2 + |E|2 ∗ |Md|). The |E|2 component can be
simplified by filtering out unlikely entities for a represen-
tative according to their appearance similarity.

3.3 Discussion

Besides different assumptions, some fundamental differ-
ences exist in inference with the models as well. In Model
I, the entity of a mention is determined completely inde-
pendently of other mentions, while in Model II, it relies
on other mentions in the same document for clustering.
In Model III, it is not only related to other mentions but
to a global dependency over entities. The following con-
ceptual example illustrates those differences as in Fig. 2.

Example 3.1 Given E = {George Bush, George W. Bush,
Steve Bush}, documentsd1, d2 and 5 mentions in them, and
suppose the prior probability of entity “George W. Bush” is
higher than those of the other two entities, the entity assign-
ments to the five mentions in the models could be as follows:

For Model I, mentions(e1) = φ, mentions(e2) =
{m1, m2, m5} and mentions(e3) = {m4}. The result is
caused by the fact that a mention tends to be assigned to the
entity with higher prior probability when the appearance simi-
larity is not distinctive.

For Model II, mentions(e1) = φ, mentions(e2) =
{m1, m2} and mentions(e3) = {m4, m5}. Local depen-
dency (appearance similarity) between mentions inside each
document enforces the constraint that they should refer to the
same entity, like “Steve Bush” and “Bush” ind2.

For Model III, mentions(e1) = {m1, m2}, mentions(e2)
= φ, mentions(e3) = {m4, m5}. With the help of global
dependency between entities, for example, “George Bush” and
“J. Quayle”, an entity can be distinguished from another one
with a similar writing.

3.4 Other Tasks

Other aspects of “Robust Reading” can be solved based
on the above inference problem.
Entity Identity : Given two mentionsm1 ∈ d1,m2 ∈ d2,
determine whether they correspond to the same entity by:

m1 ∼ m2 ⇐⇒ argmaxe∈EP (e, m1) = argmaxe∈EP (e, m2)



for Model I and
m1 ∼ m2 ⇐⇒ argmaxe∈EP (Ed1 , Rd1 , Md1) =

argmaxe∈EP (Ed2 , Rd2 , Md2).

for Model II and III.
Name Expansion: Given a mentionmq in a queryq,

decide whether mentionm in the document collectionD
is a ‘legal’ expansion ofmq:

mq → m ⇐⇒ e∗mq = argmaxe∈EP (Eq, Rq, Mq)

& m ∈ mentions(e∗).

Here it’s assumed that we already know the possible
mentions ofe∗ after training the models with D.

Prominence: Given a namen ∈ W , the most promi-
nent entity forn is given by (P (e) is given by the prior
distributionPE andP (n|e) is given by the appearance
model.):

e∗ = argmaxe∈EP (e)P (n|e).

4 Learning the Models

Confined by the labor of annotating data, we learn the
probabilistic models in an unsupervised way given a col-
lection of documents; that is, the system is not told dur-
ing training whether two mentions represent the same en-
tity. A greedy search algorithm modified after the stan-
dard EM algorithm (We call it Truncated EM algorithm)
is adopted here to avoid complex computation.

Given a set of documentsD to be studied and the ob-
served mentionsMd in each document, this algorithm
iteratively updates the model parameterθ (several under-
lying probabilistic distributions described before) and the
structure (that is,Ed andRd) of each document d. Dif-
ferent from the standard EM algorithm, in the E-step, it
seeks the most likelyEd andRd for each document rather
than the expected assignment.

4.1 Truncated EM Algorithm

The basic framework of the Truncated EM algorithm to
learn Model II and III is as follows:

1. In the initial (I-) step, an initial (Ed
0 , Rd

0) is assigned
to each documentd by an initialization algorithm.
After this step, we can assume that the documents
are annotated withD0 = {(Ed

0 , Rd
0, Md)}.

2. In the M-step, we seek the model parameterθt+1

that maximizesP (Dt|θ). Given the “labels” sup-
plied in the previous I- or E-step, this amounts to the
maximum likelihood estimation. (to be described in
Sec. 4.3).

3. In the E-step, we seek (Ed
t+1, R

d
t+1) for each

documentd that maximizesP (Dt+1|θt+1) where
Dt+1 = {(Ed

t+1, R
d
t+1, M

d)}. It’s the same infer-
ence problem as in Sec. 3.2.

4. Stopping Criterion: If no increase is achieved over
P (Dt|θt), the algorithm exits. Otherwise the algo-
rithm will iterate over the M-step and E-step.

The algorithm for Model I is similar to the above one,
but much simpler in the sense that it does not have the no-
tions of documents and representatives. So in the E-step
we only seek the most likely entitye for each mention
m ∈ D, and this simplifies the parameter estimation in
the M-step accordingly. It usually takes3− 10 iterations
before the algorithms stop in our experiments.

4.2 Initialization

The purpose of the initial step is to acquire an initial guess
of document structures and the set of entities E in a closed
collection of documentsD. The hope is to find all entities
without loss so duplicate entities are allowed. For all the
models, we use the same algorithm:

A local clustering is performed to group mentions in-
side each document: simple heuristics are applied to cal-
culating the similarity between mentions; and pairs of
mentions with similarity above a threshold are then clus-
tered together. The first mention in each group is chosen
as the representative (only in Model II and III) and an
entity having the same writing with the representative is
created for each cluster3. For all the models, the set of
entities created in different documents become the global
entity setE in the following M- and E-steps.

4.3 Estimating the Model Parameters

In the learning process, assuming documents have al-
ready been annotatedD = {(e, r,m)}n

1 from previous I-
or E-step, several underlying probability distributions of
the relaxed models are estimated by maximum likelihood
estimation in each M-step. The model parameters include
a set of prior probabilities for entitiesPE , a set of tran-
sitive probabilities for entity pairsPE|E (only in Model
III) and the appearance probabilitiesPW |W of each name
in the name space W being transformed from another.
• The prior distributionPE is modelled as a multi-

nomial distribution. Given a set of labelled entity-
mention pairs{(ei,mi)}n

1 ,

P (e) =
freq(e)

n

wherefreq(e) denotes the number of pairs containing
entitye.
• Given all the entities appearing inD, the transitive

probabilityP (e|e) is estimated by

P (e2|e1) ∼ P (wrt(e2)|wrt(e1)) =
doc#(wrt(e2), wrt(e1))

doc#(wrt(e1))
.

Here, the conditional probability between two real-
world entities P (e2|e1) is backed off to the one be-
tween the identifying writings of the two entities
P (wrt(e2)|wrt(e1)) in the document setD to avoid

3Note that the performance of the initialization algorithm is
97.3% precision and10.1% recall (measures are defined later.)



sparsity problem. doc#(w1, w2, ...) denotes the num-
ber of documents having the co-occurrence of writings
w1, w2, ....
• Appearance probability, the probability of one

name being transformed from another, denoted as
P (n2|n1) (n1, n2 ∈ W ), is modelled as a product
of the transformation probabilities over attribute val-
ues4. The transformation probability for each attribute
is further modelled as a multi-nomial distribution over
a set of predetermined transformation types:TT =
{copy, missing, typical, non− typical}5.

Supposen1 = (a1 = v1, a2 = v2, ..., ap = vp) and
n2 = (a1 = v′1, a2 = v′2, ..., ap = v′p) are two names be-
longing to the same entity type, the transformation prob-
abilities PM |R, PR|E and PM |E , are all modelled as a
product distribution (naive Bayes) over attributes:

P (n2|n1) = Πp
k=1P (v′k|vk).

We manually collected typical and non-typical trans-
formations for attributes such astitles, first names,
last names, organizationsand locations from multiple
sources such as U.S. government census and online dic-
tionaries. For other attributes likegender, only copy
transformation is allowed. The maximum likelihood es-
timation of the transformation probabilityP (t, k) (t ∈
TT, ak ∈ A) from annotated representative-mention
pairs{(r,m)}n

1 is:

P (t, k) =
freq(r, m) : vr

k →t vm
k

n
(4)

vr
k →t vm

k denotes the transformation from attribute
ak of r to that ofm is of type t. Simple smoothing is
performed here for unseen transformations.

5 Experimental Study

Our experimental study focuses on (1) evaluating the
three models on identifying three entity types (Peo-
ple, Locations, Organization); (2) comparing our in-
duced similarity measure between names (the appearance
model) with other similarity measures; (3) evaluating the
contribution of the global nature of our model, and fi-
nally, (4) evaluating our models on name expansion and
prominence ranking.

5.1 Methodology

We randomly selected300 documents from 1998-2000
New York Times articles in the TREC corpus (Voorhees,

4The appearance probability can be modelled differently by
using other string similarity between names. We will compare
the model described here with some other non-learning similar-
ity metrics later.

5copydenotesv′k is exactly the same asvk; missingdenotes
“missing value” forv′k; typical denotesv′k is a typical variation
of vk, for example, “Prof.” for “Professor”, “Andy” for “An-
drew”; non-typical denotes a non-typical transformation.

2002). The documents were annotated by a named entity
tagger for People, Locations and Organizations. The an-
notation was then corrected and each name mention was
labelled with its corresponding entity by two annotators.
In total, about8, 000 mentions of named entities which
correspond to about2, 000 entities were labelled. The
training process gets to see only the300 documents and
extracts attribute values for each mention. No supervision
is supplied. These records are used to learn the proba-
bilistic models.

In the64 million possible mention pairs, most are triv-
ial non-matching one — the appearances of the two men-
tions are very different. Therefore, direct evaluation over
all those pairs always get almost100% accuracy in our
experiments. To avoid this, only the130, 000 pairs of
matching mentions that correspond to the same entity are
used to evaluate the performance of the models. Since
the probabilistic models are learned in an unsupervised
setting, testing can be viewed simply as the evaluation of
the learned model, and is thus done on the same data. The
same setting was used for all models and all comparison
performed (see below).

To evaluate the performance, we pair two mentions
iff the learned model determined that they correspond
to the same entity. The list of predicted pairs is then
compared with the annotated pairs. We measure Preci-
sion (P ) – Percentage of correctly predicted pairs, Recall
(R) – Percentage of correct pairs that were predicted, and
F1 = 2PR

P+R .
Comparisons: The appearance model induces a “simi-
larity” measure between names, which is estimated dur-
ing the training process. In order to understand whether
the behavior of the generative model is dominated by
the quality of the induced pairwise similarity or by the
global aspects (for example, inference with the aid of
the document structure), we (1) replace this measure by
two other “local” similarity measures, and (2) compare
three possible decision mechanisms – pairwise classifica-
tion, straightforward clustering over local similarity, and
our global model. To obtain the similarity required by
pairwise classification and clustering, we use this for-
mula sima(n1, n2) = P (n1|n2) to convert the appear-
ance probability described in Sec. 4.3 to it.

The first similarity measure we use is a sim-
ple baseline approach: two names are similar iff
they have identical writings (that is,simb(n1, n2) =
1 if n1, n2 are identical or 0 otherwise). The second
one is a state-of-art similarity measuresims(n1, n2) ∈
[0, 1] for entity names (SoftTFIDF with Jaro-Winkler dis-
tance andθ = 0.9); it was ranked the best measure in a
recent study (Cohen et al., 2003).

Pairwise classification is done by pairing two men-
tions iff the similarity between them is above a fixed
threshold. ForClustering, a graph-based clustering al-



All(P/L/O) Identity SoftTFIDF Appearance
Pairwise 70.7 (64.7/64.1/83.7) 82.1 (79.9/77.3/89.5) 81.5 (83.6/70.9/90.7)

Clustering 70.7 (64.7/64.1/83.7) 79.8 (70.6/76.7/91.0) 79.6 (70.9/76.1/91.0)
Model II 70.7 (64.7/64.1/83.7) 82.5 (79.8/77.4/90.2) 89.0(92.7/81.9/92.9)

Table 1: Comparison of different decision levels and sim-
ilarity measures. Three similarity measures are evaluated
(rows) across three decision levels (columns). Performance is
evaluated by theF1 values over the whole test set. The first
number averages all entity types; numbers in parentheses repre-
sent People, Location and Organization respectively.

gorithm is used. Two nodes in the graph are connected
if the similarity between the corresponding mentions is
above a threshold. In evaluation, any two mentions be-
longing to the same connected component are paired the
same way as we did in Sec. 5.1 and all those pairs are then
compared with the annotated pairs to calculate Precision,
Recall andF1.

Finally, we evaluate the baseline and the SoftTFIDF
measure in the context of Model II, where the appear-
ance model is replaced. We found that the probabil-
ities directly converted from the SoftTFIDF similarity
behave badly so we adopt this formulaP (n1|n2) =
e10·sims(n1,n2)−1

e10−1 instead to acquireP (n1|n2) needed by
Model II. Those probabilities are fixed as we estimate
other model parameters in training.

5.2 Results

The bottom line result is given in Tab. 1. All the similarity
measures are compared in the context of the three levels
of decisions – local decision (pairwise), clustering and
our probabilistic model II. Only the best results in the
experiments, achieved by trying different thresholds in
pairwise classification and clustering, are shown.

The behavior across rows indicates that, locally, our
unsupervised learning based appearance model is about
the same as the state-of-the-art SoftTFIDF similarity. The
behavior across columns, though, shows the contribu-
tion of the global model, and that the local appearance
model behaves better with it than a fixed similarity mea-
sure does. A second observation is that the Location ap-
pearance model is not as good as the one for People and
Organization, probably due to the attribute transforma-
tion types chosen.

Tab. 2 presents a more detailed evaluation of the differ-
ent approaches on the entity identity task. All the three
probabilistic models outperform the discriminatory ap-
proaches in this experiment, an indication of the effec-
tiveness of the generative model.

We note that although Model III is more expressive
and reasonable than model II, it does not always perform
better. Indeed, the global dependency among entities in
Model III achieves two-folded outcomes: it achieves bet-
ter precision, but may degrade the recall. The following
example, taken from the corpus, illustrates the advantage
of this model.

Entity Type Mod InDoc InterDoc All
F1(%) F1(%) R(%) P(%) F1(%)

All Entities B 86.0 68.8 58.5 85.5 70.7
D 86.5 78.9 66.4 95.8 79.8
I 96.3 85.0 79.0 94.1 86.2
II 96.5 88.1 85.9 92.2 89.0
III 96.5 87.9 84.4 93.6 88.9

People B 82.4 59.0 48.5 86.3 64.7
D 82.4 67.1 54.5 91.5 70.6
I 96.2 84.8 80.6 94.8 87.4
II 96.4 91.7 94.0 91.5 92.7
III 96.4 88.9 89.8 91.3 90.5

Location B 88.8 63.0 54.8 75.0 64.1
D 91.4 76.0 61.3 95.9 76.7
I 92.9 78.9 70.9 89.1 79.5
II 93.8 81.4 76.2 88.1 81.9
III 93.8 82.8 76.0 91.2 83.3

Organization B 95.3 82.8 72.6 96.4 83.7
D 95.8 90.7 83.9 98.9 91.1
I 98.8 91.8 86.5 98.5 92.3
II 98.5 92.5 88.6 97.5 92.9
III 98.8 93.0 88.5 98.6 93.4

Table 2: Performance of different approaches over all test
examples. B, D, I, II and III denote the baseline model, the
SoftTFIDF similarity model with clustering, and the three prob-
abilistic models. We distinguish between pairs of mentions that
are inside the same document (InDoc, 15% of the pairs) or not
(InterDoc).

Example 5.1 “Sherman Williams” is mentioned along with
the baseball team “Dallas Cowboys” in 8 out of 300 documents,
while “Jeff Williams” is mentioned along with “LA Dodgers”
in two documents.

In all models but Model III, “Jeff Williams” is judged to cor-
respond to the same entity as “Sherman Williams” since their
appearances are similar and the prior probability of the latter is
higher than the former. Only Model III, due to the co-occurring
dependency between “Jeff Williams” and “Dodgers”, identi-
fies it as corresponding to an entity different from “Sherman
Williams”.

While this shows that Model III achieves better preci-
sion, the recall may go down. The reason is that global
dependencies among entities enforces restrictions over
possible grouping of similar mentions; in addition, with
a limited document set, estimating this global depen-
dency is inaccurate, especially when the entities them-
selves need to be found when training the model.
Hard Cases:To analyze the experimental results further,
we evaluated separately two types of harder cases of the
entity identity task: (1) mentions withdifferentwritings
that refer to the same entity; and (2) mentions withsim-
ilar writings that refer to different entities. Model II and
III outperform other models in those two cases as well.

Tab. 3 presentsF1 performance of different approaches
in the first case. The bestF1 value is only73.1%, indicat-
ing that appearance similarity and global dependency are
not sufficient to solve this problem when the writings are
very different. Tab. 4 shows the performance of differ-
ent approaches for disambiguatingsimilar writings that
correspond to different entities.

Both these cases exhibit the difficulty of the problem,
and that our approach provides a significant improvement
over the state of the art similarity measure — columnD
vs. column II in Tab. 4. It also shows that it is necessary
to use contextual attributes of the names, which are not
yet included in this evaluation.



Model B D I II III
Peop 0 77.9 79.2 86.0 82.6
Loc 0 30.4 55.1 58.5 61.5
Org 0 77.7 69.5 71.7 71.2
All 0 63.3 68.4 73.1 72.5

Table 3: Identifying different writings of the same entity
(F1). We filter out identical writings and report only on cases
of differentwritings of the same entity. The test set contains
46, 376 matching pairs (but in different writings) in the whole
data set.

Model B D I II III
Peop 75.2 83.0 60.8 89.7 88.0
Loc 86.5 80.7 80.0 90.3 90.3
Org 80.0 89.4 71.0 93.1 92.6
All 78.7 78.9 68.1 90.7 89.7

Table 4: Identifying similar writings of different
entities(F1). The test set contains39, 837 pairs of mentions
that associated with different entities in the300 documents and
have at least one token in common.

5.3 Other Tasks

In the following experiments, we evaluate the genera-
tive model on other tasks related to robust reading. We
present results only for Model II, the best one in previous
experiments.
Name Expansion:Given a mentionm in a query, we find
the most likely entitye ∈ E for m using the inference al-
gorithm as described in Sec. 3.2. All unique mentions of
the entity in the documents are output as the expansions
of m. The accuracy for a given mention is defined as the
percentage of correct expansions output by the system.
The average accuracy of name expansion of Model II is
shown in Tab. 5. Here is an example:

Query: Who isGore?
Expansions: Vice President Al Gore, Al Gore, Gore.

Prominence Ranking: We refer to Example 3.1 and use
it to exemplify quantitatively how our system supports
prominence ranking. Given a query namen, the ranking
of the entities with regard to the value ofP (e) ∗ P (n|e)
(shown in brackets) by Model II is as follows.

Input: George Bush
1. George Bush (0.0448) 2. George W. Bush (0.0058)
Input: Bush
1. George W. Bush (0.0047) 2. George Bush (0.0015)
3. Steve Bush (0.0002)

6 Conclusion and Future Work

This paper presents an unsupervised learning approach to
several aspects of the “robust reading” problem – cross-
document identification and tracing of ambiguous names.
We developed a model that describes the natural gen-
eration process of a document and the process of how

Entity Type People Location Organization
Accuracy(%) 90.6 100 100

Table 5:Accuracy of name expansion. Accuracy is averaged
over30 randomly chosen queries for each entity type.

names are “sprinkled” into them, taking into account de-
pendencies between entities across types and an “author”
model. Several relaxations of this model were developed
and studied experimentally, and compared with a state-
of-the-art discriminative model that does not take a global
view. The experiments exhibit encouraging results and
the advantages of our model.

This work is a preliminary exploration of the robust
reading problem. There are several critical issues that our
model can support, but were not included in this prelimi-
nary evaluation. Some of the issues that will be included
in future steps are: (1) integration with more contextual
information (like time and place) related to the target enti-
ties, both to support a better model and to allow temporal
tracing of entities; (2) studying an incremental approach
of training the model; that is, when a new document is
observed, coming, how to update existing model param-
eters ? (3) integration of this work with other aspects of
general coreference resolution (e.g., other terms like pro-
nouns that refer to an entity) and named entity recognition
(which we now take as given); and (4) scalability issues
in applying the system to large corpora.
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