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Abstract

We introduce factored language models
(FLMs) and generalized parallel backoff
(GPB). An FLM represents words as bundles
of features (e.g., morphological classes, stems,
data-driven clusters, etc.), and induces a prob-
ability model covering sequences of bundles
rather than just words. GPB extends standard
backoff to general conditional probability
tables where variables might be heterogeneous
types, where no obvious natural (temporal)
backoff order exists, and where multiple
dynamic backoff strategies are allowed. These
methodologies were implemented during the
JHU 2002 workshop as extensions to the
SRI language modeling toolkit. This paper
provides initial perplexity results on both
Call[Home Arabic and on Penn Treebank Wall
Street Journal articles. Significantly, FLMs
with GPB can produce bigrams with signif-
icantly lower perplexity, sometimes lower
than highly-optimized baseline trigrams. In a
multi-pass speech recognition context, where
bigrams are used to create first-pass bigram
lattices or N-best lists, these results are highly
relevant.

Introduction
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word as a bundle of features, and GPB is a technique that
generalized backoff to arbitrary conditional probability
tables. While these techniques can be considered in iso-
lation, the two methods seem particularly suited to each
other — in particular, the method of GPB can greatly fa-
cilitate the production of FLMs with better performance.

2 Factored Language Models

In afactored language modeh word is viewed as a vec-
tor of k factors, so that;, = {f}, f?,..., fX}. Fac-
tors can be anything, including morphological classes,
stems, roots, and other such features in highly in-
flected languages (e.g., Arabic, German, Finnish, etc.),
or data-driven word classes or semantic features useful
for sparsely inflected languages (e.g., English). Clearly,
a two-factor FLM generalizes standard class-based lan-
guage models, where one factor is the word class and
the other is words themselves. An FLM is a model over
factors, i.e.p(fHE| L5, ), that can be factored as a
product of probabilities of the form(f|f1, f2,- .., fn)-

Our task is twofold: 1) find an appropriate set of factors,
and 2) induce an appropriate statistical model over those
factors (i.e., the structure learning problem in graphical
models|(Bilmes, 2003; Friedman and Koller, 2001)).

3 Generalized Parallel Backoff

An individual FLM probability model can be seen as a di-
rected graphical model over a setf+ 1 random vari-
ables, with child variablg” and N parent variableg

The art of statistical language modeling (LM) is to createhroughFy (if factors are words, theh' = W, andF; =
probability models over words and sentences that tradé&V,_;). Two features make an FLM distinct from a stan-
off statistical prediction with parameter variance. Thelard language model: 1) the variables, Fi, ..., Fy}
field is both diverse and intricate (Rosenfeld, 2000; Checan be heterogeneous (e.g., words, word clusters, mor-
and Goodman, 1998; Jelinek, 1997; Ney et al., 1994phological classes, etc.); and 2) there is no obvious nat-
with many different forms of LMs including maximum- ural (e.g., temporal) backoff order as in standard word-
entropy, whole-sentence, adaptive and cache-based, hased language models. With word-only models, back-
name a small few. Many models are simply smoothedff proceeds by dropping first the oldest word, then the
conditional probability distributions for a word given its next oldest, and so on until only the unigram remains. In
preceding history, typically the two preceding words.  p(f|f1, f2--., fn), however, many of the parent vari-

In this work, we introduce two new methods for lan-ables might be the same age. Even if the variables have
guage modeling:factored language moddFLM) and differing seniorities, it is not necessarily best to drop the
generalized parallel backoflGPB). An FLM considers a oldest variable first.
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This equation is non-standard only in the denominator,
where one may no longer sum over the factgrsnly
with counts greater than. This is because is not nec-
essarily a distribution (i.e., does not sum to unity). There-
fore, backoff weight computation can indeed be more ex-
pensive for certaiy functions, but this appears not to be
prohibitive as demonstrated in the next few sections.

Table 1: CallHome Arabic Results.

LM parents backoff function/path(s) pp!

3-gram w1, wo - [temporal[2, 1] 173

FLM 3-gram w1, W, M1, S1 -1(2,1,4,3] 178

GPB-FLM 3-gram  w;j, wg, m1, s1 g11[2,1,(3,4),3,4] 166

i . i i- 2-gram w -/ temporal[1] 175
Figure 1: A backoff graph fof#" with three pa_rent vari FLM 2-gram Wl e 173
ablesFy, Iy, F5. The graph shows all possible single- — FLm2-gram wi, mi, 81 -111,2,3] 179
GPB-FLM 2-gram w1, m1, s1 g1/[1,(2,3),2,3] 167

step backoff paths, where exactly one variable is dropped
per backoff step. The SRILM-FLM extensions, however,4

also support multi-level backoff. SRILM-FLM extensions

During the recent 2002 JHU workshaop (Kirchhoff et|al.,

. . ) 2003), significant extensions were made to the SRI lan-
Wwe "f‘"Od‘,JC‘? the I’lOtIO!’] of hackoff grapf([_zlgure[:]r) guage modeling toolkif (Stolcke, 2002) to support arbi-
to depict this issue, which shows the varidoackoff o 'r| Ms and GPB procedures. This uses a graphical-
pathsfrom the all-parents case (top graph node) to thg, e jike specification language, and where many dif-
unigram (bottom graph node). Many possible backoffg et hackoff functions (19 in total) were implemented.
paths could be taken. For example, when all variableginer features include: 1) all SRILM smoothing methods
are words, the path — B — E —H corresponds 10 tri- every node in a backoff graph; 2) graph level skipping;

gram with standard oldest-first backoff order. The patrénd 3) up to 32 possible parents (e.g., 33-gram). Two of

A-D-G—His a reverse-time backoff model. This yq 2 ckoff functions are (in the three parents case):
can be seen as a generalization of lattice-based language

modeling (Dupont and Rosenfeld, 1997) where factors a(f, f1, f2, f3) = paeo(f|fers fe,)
consist of words and hierarchically derived word classes.

In our GPB procedure, either a single distinct patP(Vhere
is chosen for each gram or multiple parallel paths are (¢, ¢,) = argmax PaBo (ffmrs frs)
used simultaneously. In either case, the set of back- (m1,m2)€{(1,2),(1,3),(2,3)}
off path(s) that are chosen are determined dynamicaIIYCall thisgy) or alternatively,
(at “run-time”) based on the current values of the vari-
ables. For example, a path might consist of nodes,, ,,, argmax N, fmy s Fmg)
A — (BCD) — (EF) — G where node\ backs off in par- (m1,m2)€{(1,2),(1,3),2,3)} HS : N(fs fmqs fmg) > 0}
allel to the three nodeBCD, nodeB backs off to nodes (¢4 this g,) where N() is the count function. Imple-

(EEF), C backs off to(E), andD backs off to(F). mented backoff functions include maximum/min (nor-
This can be seen as a generalization of the stand

backoff equation. In the two parents case, this becomes. . lized) counts_/backoff probabilities, product_s, sums,
mins, maxs, (weighted) averages, and geometric means.

where

_ [ AN o) PML(FIf1, f2) W N(S, f1, f2) > 7
repo(flf1, f2) = { a(f(ly f‘lz)gz()f» f1, f2) otherwise 5 Results

where dyy s, 1,) is @ standard discount (determiningGPB-FLMs were applied to two corpora and their per-
the smoothing method)py,.. is the maximum likeli- ~plexity was compared with standard optimized vanilla bi-
hood distribution,o(f1, f2) are backoff weights, and ang trigram language models. In the following, we con-

g(f, f1, f2) is an arbitrary non-negativeackoff function  giqer as a “bigram” a language model with a temporal
of its three factor arguments. Standard backoff OCCURS story that includes information from no longer than one
with g(f, f1, f2) = peo(f]f1), but the GPB procedures y 9

can be obtained by using differepfunctions. For exam- Previous time-step into the past. Therefore, if factors are
ple, g(f, f1, f2) = po(f|f2) corresponds to a different deterministically derivable from words, a “bigram” might
backoff path, and parallel backoff is obtained by using aimclude both the previous words and previous factors as
appropriatey (see below). As long ag is non-negative, a history. From a decoding state-space perspective, any
the backoff weights are defined as follows: such bigram would be relatively cheap.

LS NG fare ANy P E P £2) In CallHome-Arabic, words are accompanied with de-

alfr, f2) = S PN 1y emr s F1: F2) terministically derived factors: morphological class (M),




Table 2: Penn Treebank WSJ Results.

LM parents Backoff function/path(s) ppk6td. dev.)
3-gram w1, Wo - [ temporal[2, 1] 258(*=1.2)
2-gram wq - [ temporal[1] 320(1.3)
GPB-FLM 2-gram A wy,di,t;  g2/](1,2,3),(1,2),(2,3),(3,1),1,2,3] 266(1.1)
GPB-FLM 2-gram B wy,dy, fi g2/ [2,1] 276(1.3)
GPB-FLM 2-gram C wy,dy, 1 gof [1,(2,3),2,3] 275(1.2)

stems (S), roots (R), and patterns (P). Training data coim such a first pass, however, requires a decoder that sup-
sisted of official training portions of the LDC CallHome ports such language models. Therefore, FLMs with GPB
ECA corpus plus the CallHome ECA supplement (10Qvill be incorporated into GMTK|(Bilmes, 2002), a gen-
conversations). For testing we used the official 1996 evaéral purpose graphical model toolkit for speech recogni-
uation set. Results are given in Tapje 1 and show perplekien and language processing. The authors thank Dimitra
ity for: 1) the baseline 3-gram; 2) a FLM 3-gram usingVergyri, Andreas Stolcke, and Pat Schone for useful dis-
morphs and stems; 3) a GPB-FLM 3-gram using morphgussions during the JHU’02 workshop.

stems and backoff functiog;; 4) the baseline 2-gram;

5) an FLM 2-gram using morphs; 6) an FLM 2-gram usReferences

ing morphs and stems; and 7) an GPB-FLM 2-gram “Si[?ﬁlmeszooz] J. Bilmes. 2002. The GMTK docu-
morphs and stems. Backoff path(s) are depicted by listing mentation.  |nttp://ssli.ee.washington.edu/

the parent number(s) in backoff order. As can be seen, the bilmes/gmtk

FLM alone .mlght m(.:r(.aase pgrplexny, bu.t the GPB-FL iimes2003] J. A. Bilmes. 2003. Graphical models and au-
decreases it. Also, it is possible to obtain a 2-gram With o matic speech recognition. In R. Rosenfeld, M. Osten-
lower perplexity than the optimized baseline 3-gram. dorf, S. Khudanpur, and M. Johnson, editdvigthematical

The Wall Street Journal (WSJ) data is from the Penn Foundations of Speech and Language Processsmginger-
Treebank 2 tagged ('88-'89) WSJ collection. Word Verlag, New York.
and POS tag informatiori/{) was extracted. The sen{chen and Goodman1998] S. F. Chen and J. Goodman. 1998.
tence order was randomized to produce 5-fold cross- An empirical study of smoothing techniques for language
validation results using (4/5)/(1/5) training/testing sizes. modeling. Technical Report Tr-10-98, Center for Research
Other factors included the use of a simple determinis- N Computing Technology, Harvard University, Cambridge,
tic tagger obtained by mapping a word to its most fre- Massachusetts, August.
quent tag £}), and word classes obtained using SRILM®¥upont and Rosenfeld1997] P. Dupont and R. Rosenfeld.
ngram-class  tool with 50 (C,) and 500 {,) classes. 1997. Lattice based Ianguage model§. T.echni.cal Report
Results are given in Talé 2. The table shows the baselinegxfs'glss:ggélng’mggneg'e Mellon University, Pittsburgh,
3-gram and 2-gram perplexities, and three GPB-FLMs. ’ '
Model A uses the true by-hand tag information from tHeriedman and Koller2001] N. Friedman and D. Koller. 2001.
Treebank. To simulate conditions during first-pass de- Learning Bayesian networks from data. NiPS 2001 Tuto-

. . rial Notes Neural Information Processing Systems, Vancou-

coding, Model B shows the results using the most _fre— ver, B.C. Canada.
qguent tag, and Model C uses only the two data-driven
word classes. As can be seen, the bigram perplexiﬂi@i”e"lgg?] F. Jelinek. 1997Statistical Methods for Speech
are significantly reduced relative to the baseline, almost Recognition MIT Press.
matching that of the baseline trigram. Note that none [@firchhoff et al.2003] K. Kirchhoff et al 2003. Novel ap-

these reduced perplexity bigrams were possible without proaches to arabic speech recognition: Report from the 2002

using one of the novel backoff functions. johns-hopkins summer Works.hop. froc. IE.EE Intl. Conf.
9 on Acoustics, Speech, and Signal Procesditang Kong.

6 Discussion [Ney et al.1994] H. Ney, U. Essen, and R. Kneser. 1994. On
) o ) structuring probabilistic dependencies in stochastic language
The improved perplexity bigram results mentioned above modelling. Computer Speech and Languagel—38.

hould ideall rt of a first- r nition st
S Og d ideally be part o a. . st-pass ecog 0 .S epo F?osenfeleOOO] R. Rosenfeld. 2000. Two decades of statistical
multi-pass speech recognition system. With a bigram, the language modeling: Where do we go from herBfoceed-

decoder search space is not large, so any appreciable LMings of the IEEES8(8).

perplexity reductions should yield comparable word er- _

ror reductions for a fixed set of acoustic scarea first- [St0Icke2002] dAi' Sto'c"li: frgoz' ISR”(EM'fa“ eé‘te”ks'b'i lan-
. . uage modeling toolkit. roc. Int. Conf. on oken Lan-

pass For N-best or lattice generation, the oracle error guage Processi%gjenver Colorado SeptembeFr).

should similarly improve. The use of an FLM with GPB


http://ssli.ee.washington.edu/bilmes/gmtk
http://ssli.ee.washington.edu/~bilmes/gmtk
http://ssli.ee.washington.edu/~bilmes/gmtk

	Introduction
	Factored Language Models
	Generalized Parallel Backoff
	SRILM-FLM extensions
	Results
	Discussion

