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Abstract

Multitext Grammars (MTGs) generate ar-
bitrarily many parallel texts via produc-
tion rules of arbitrary length. Both ordi-
nary MTGs and their bilexical subclass ad-
mit relatively efficient parsers. Yet, MTGs
are more expressive than other synchronous
formalisms for which parsers have been de-
scribed in the literature. The combination
of greater expressive power and relatively
low cost of inference makes MTGs an at-
tractive foundation for practical models of
translational equivalence.

1 Introduction

Synchronous grammars are a perspicuous way to de-
scribe the multi-dimensional structures that are hid-
den in parallel texts. As with ordinary grammars,
synchronous grammars can be used to guide a parser
to infer these structures from data in which they are
not directly observable. Such an inference process
can be used to collect empirical knowledge about
translational equivalence for machine translation and
other applications. Unfortunately, the synchronous
grammars for which parsers have been described in
the literature have insufficient expressive power to be
practically useful.

At a minimum, a synchronous grammar that could
serve as a foundation for practical translation mod-
eling must be able to express (1) mutual transla-
tions that have different lengths, (2) crossing corre-
spondences, (3) bilexical dependencies, and (4) dis-
continuous constituents, which are surprisingly im-
portant for bilexical parsing of parallel texts. At
the same time, the grammar’s recognition complex-
ity should be lower than that of existing formalisms.
Synchronous lexicalized TAGs (Abeillé et al., 1990;
Shieber & Schabes, 1990) certainly have the desired
expressive power, but the computational complexity

of their recognition is prohibitive. Multiple CFGs
(Seki et al., 1991) are less complex, but they cannot
express (3), and their procedural parsers are difficult
to analyze and optimize. Wu (1997) reported that
a parser for Inversion Transduction Grammar (ITG)
can be reasonably fast, but ITGs cannot express (3)
or (4). The head transducers of Alshawi et al. (2000)
are perhaps the best contenders in the literature, but
they cannot express (4) either.

We introduce the class of Multitext Grammars
(MTGs) to satisfy the above criteria for expressive-
ness and tractability. In this paper we focus on
MTG parsers and their computational complexity,
so we describe MTGs informally in Section 2, omit-
ting all proofs. Section 3 gives a gentle introduction
to synchronous parsing for a subclass of MTGs. We
describe the parsers in a declarative form, which is
amenable to complexity analysis by inspection and to
a variety of parsing strategies (Shieber et al., 1995).
This approach facilitated the generalization of some
recent advances in monolingual parsing, resulting
in efficient parsers for bilexical MTGs. Section 4
explains the main source of MTG complexity, and
shows why discontinuous constituents are practically
unavoidable, even for parsing relatively simple par-
allel texts from languages with similar word order.
Section 5 presents a parser for arbitrary MTGs and
its optimization for bilexical MTGs.

2 Multitext Grammars

Texts that are translations of each other are called
parallel texts or multitexts. Each multitext con-
sists of component texts or components. Every
MTG is a D-MTG for some constant D, and it gen-
erates multitexts with D components. For example,
2-MTGs generate bitexts.

An MTG has disjoint sets of terminals 7" and non-
terminals N. We often group terminals or nonter-
minals into vectors that we call links. We shall
write vector variables in bold. Links express the



translational equivalence between their components.
Every link generated by a D-MTG has D compo-
nents. Some (but not all) components of a link may
be empty. An empty component indicates that an
expression vanishes in translation. To express empty
components, we add a special terminal € to T" and
a special nonterminal € to N. In MTG applications,
the different components of a link will typically come
from largely disjoint subsets of T' or N, representing
vocabularies or sets of grammatical categories from
different languages.

Each MTG also has a set of production rules (or
just “productions” for short), which fall into one of
two categories.! YIELD productions have the form

X=>t (1)

where X is a link of D nonterminals and t is a link of
D terminals. tg4 is empty if and only if X is empty,
1 <d < D. DEPEND productions have the form

X =X PM (2)

where M is a non-empty vector of nonterminal links,
P is a non-empty vector of D permutations, and X
(“join”) is a rendering function, explained below.2
The rank of an MTG production is the number
of nonterminal links on its RHS. The rank of an
MTG is the maximum rank of its production rules.
MTG(R) is the class of MTGs of rank R.

Each row of P and M corresponds to a different
component of multitext. Each permutation is writ-
ten as arow in P, and each link is written as a column
in M, as in Equation 3 below. If X, is empty, then
the dth component of every link in M must be empty
too. If Xjis not empty, then at least one of the links
in M must have a non-empty dth component. The
position of a non-empty terminal or nonterminal rel-
ative to other non-empty elements of its component
is its role. If there are m non-empty nonterminals
in component (row) d of M then Py is a permutation
of roles from 1 to m. Py is empty if and only if X4
is empty.

The D-MTG derivation process begins with the
start link $, which is a vector of D copies of the
special start symbol $ € N. The derivation contin-
ues with nondeterministic application of production
rules. The semantics of = are the usual semantics
of rewriting systems, i.e., that the expression on the
LHS can be rewritten as the expression on the RHS.
Following convention, we let = be the reflexive and
transitive closure of =.

!This dichotomy imposes a convenient normal form,
without loss of generality.

2The rendering function is a notational convenience;
MTGs can be defined without it.

When no more productions can be applied, i.e.,
when all nonterminals have been rewritten into ter-
minals, the rendering functions are evaluated in
inside-out order. The X function rearranges the non-
empty terminals in each row of a link vector accord-
ing to that row’s permutation. For example,

[1,2,3] /e abce abc
X[1,3,2,4] |wy x € z| =wxyz (3)
[3,2,1] \t e uve

By reordering the terminals independently in each
component, the join operator hides information
about which terminals were derived from the same
link. Thus, the translational equivalence represented
by links is not observable in MTG yields, just as it
is not observable in raw multitext.

To avoid spurious ambiguity, we stipulate a nor-
mal form for components of P: In each permutation,
the first appearance of role x must precede the first
appearance of role y for all z < y, except where the
arrangement is incompatible with a preceding per-
mutation in P. We could, for example, obtain the
same result above if we put eze first, put ewt last,
and switch their roles in the 2nd and 3rd permuta-
tions. However, the normal form requires the 2nd
permutation to be [1, 3, 2, 4], not [4, 3, 2, 1], so eze
must be listed last.

Let Q be an MTG derivation where no more pro-
duction rules can be applied. Let Render(Q) be the
result of evaluating all the X’s in Q. The (formal)
language L(G) of an MTG G is the set of multi-
texts that can be generated by applying = to the
start link of G and then evaluating all the joins. Le.,
L(G) = {Render(Q) : $ = Q}.

Due to the importance of lexical information in
disambiguating syntactic structure, we shall pay spe-
cial attention to lexicalized MTGs (LMTGs) of the
bilexical variety (LoMTGs). A bilexical MTG has
a set A of “delexicalized” nonterminal labels. Intu-
itively, A corresponds to the nonterminal set of an
ordinary CFG. Then, every nonterminal in N has
the form L[t] for some terminal ¢ € T and some label
L € A2 The terminal ¢ is the lexical head of its
constituent, or just the head. One link on the RHS
of each LoMTG production serves as the heir of the
link on the LHS. Each component of the heir link in-
herits the lexical head of its parent nonterminal. An
example of a 2-LoMTG derivation is in Figure 1.

3The nonterminal ¢ is always lexicalized with the ter-
minal e. Other nonterminals may also be lexicalized
with € to represent empty categories. The special start
nonterminal § is lexicalized with the special start termi-
nal §. Following Eisner & Satta (1999), we can then
define G so that the language of interest is actually

L'(G)={Q : Q'8 € L(G)}.



$[$ 1,21/ S[fed]  $[$ 1,2 .2,3] { Pro[l Vlted]  NPlcat] \ $[$
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Figure 1: A 2-L,MTG derivation in English and transliterated Russian: (4-5) DEPEND productions; (6) YIELD

productions, followed by rendering.

Some subclasses and superclasses of MTG have
been studied before. = The non-lexicalized class
2-MTG(2) is equivalent to ITG (Wu, 1997). Al-
shawi et al. (2000)’s “collections of finite-state head
transducers” can be viewed as a subclass of 2-LMTG
where, among other restrictions, A contains only one
(dummy) nonterminal label. “Syntax-directed trans-
lations of order k” (Aho & Ullman, 1969) are equiva-
lent to k-MTG(2). On the other hand, MTG is a sub-
class of Multiple CFG (Seki et al., 1991) where the
functions that render the RHS of production rules
may not mix symbols from different components.

3 Synchronous Parsers

Inference of synchronous structures requires a syn-
chronous parser. A synchronous parser is an al-
gorithm that can infer the syntactic structure of each
component text in a multitext and simultaneously in-
fer the correspondence relation between these struc-
tures.* To facilitate complexity analysis (below), we
specify our parsers using declarative inference rules.?
“X - 'Y, Z7 means that X can be inferred from Y
and Z. X}Z means the same thing. An item that
appears in an inference rule stands for the proposi-
tion that the item is in the parse chart. A produc-
tion rule that appears in an inference rule stands for
the proposition that the production is in the gram-
mar. Such specifications are nondeterministic: they
do not indicate the order in which a parser should
attempt inferences. A deterministic parsing strategy
can always be chosen later, to suit the application.
Any reasonable parsing strategy will have the same
asymptotic complexity (McAllester, 2002).

3.1 Naive Synchronous Bilexical Parsers

For expository purposes, we begin with
Parser R2D2A, which is a naive CKY-style
chart parser for 2-LoMTG(2).5 The chart of

4A suitable set of monolingual parsers can also infer
the syntactic structure of each component, but cannot in-
fer the correspondence relation between these structures.
SWe use both Horn clauses and sequents to save space.
5Parser R2D2A can be compared to Wu (1997)’s pro-
cedure for parsing non-lexicalized ITGs, which runs in
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Figure 2: Items used by our parsers for 2-LoMTG(2).

Parser R2D2A is initialized with “seed” items,
illustrated in Figure 2. A one-dimensional seed is
put in the chart for every word in every component
of the input.

After initialization, the parser can assert the
translational equivalence between seeds in different
components by firing Y inference rules:

11—1 Z1
to—1 t1—1 41 4x—1 Xi[h1] _ A
Xi[h] | :- h ]
| Xalhz] 2 ? Xofho] 7 ho
12

Y inference rules infer YIELD production rules.
Each two-dimensional instantiation expresses the
translational equivalence of two word tokens, h
and hs, at positions i; and is in their respective
components. One-dimensional Y inferences assert
that a word vanishes in translation. E.g.:

i2—1] gfe .21 ele €
XJ[;L] T 2D X2[[f12] =

Parser R2D2A spends most of its time compos-
ing pairs of non-seed items into larger items.” A
bottom-up one-dimensional parser composes one-
dimensional items until it infers an item that cov-
ers the input text. A bottom-up synchronous parser
composes multi-dimensional items until it infers
an item that covers the multitext space spanned
by the input multitext. The items composed by
naive synchronous parsers are called hyperedges,
or hedges for short. The 2D hedges composed by
Parser R2D2A are shown in Figure 2. The particu-
lar hedge in the figure represents a constituent be-
tween word boundaries iy ...Jj; of the first compo-

O(n®). As Eisner & Satta (1999) have shown, yields of
bilexical grammars are generally more expensive to parse
than their nonlexicalized counterparts.

"The term item refers to any partial parse.
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Figure 3: Parser R2D2A has four ways to compose two 2D items represented by the shaded regions into one item
represented by their minimum enclosing rectangle. Inference rule R2D2A.C3 is given as an example.

nent and is...js of the second component, labeled
by the nonterminal link inside the rectangle. Since
MTGs can generate multitexts with components of
unequal length, the height of the hedge need not
equal the width. In particular, if one of the nonter-
minals in the label is empty, then that dimension has
zero width, and its boundary variables are dummies.
Such one-dimensional hedges are necessary for rep-
resenting synchronous parse tree branches that are
non-empty in only one component.

Parser R2D2A can compose two hedges whenever
they satisfy both of the following constraints.

ID: The grammar must allow the label of one hedge
to depend on the label of the other.

LP: The two hedges must be adjacent without over-
lapping in the bitext space. In particular, if nei-
ther hedge has empty components, then they

must be corner-to-corner.

Figure 3 illustrates the four ways that these con-
straints can be satisfied in 2D. Each of the shaded di-
agrams in the figure corresponds to one of four com-
position (C) inference rules. Parser R2D2A accepts
a bitext with component lengths n; and ns if and
only if it derives item Success, also in Figure 3.

The worst-case space complexity of a chart parser
is within a constant factor of the maximum number
of items that can be in its chart at the same time. An
item’s signature uniquely determines how the item
can combine with other items, so two items with the
same signature never differ on whether they can par-
ticipate in a successful parse. Therefore, we never
need to store more than one item with the same sig-
nature. The number of possible unique signatures is
the product of the ranges of their free variables.

For Parser R2D2A, the free variables in an item’s
signature are its nonterminals and boundaries in each
dimension. Let | = |A|, and let n be the length
of the longer component of the input bitext. We
assume that n is always smaller than |T'|. Then the

number of possible lexicalized nonterminals in each
dimension is in O(In), for a product of O(I?n?) in
2D. Each of the two item boundaries in each of the
two dimensions also ranges over O(n) possible word
positions, for a product of O(n?). We conclude that
Parser R2D2A requires O(I?n®) space.

If we assume that there exists an ordering of in-
ferences that guarantees correctness and avoids du-
plication of effort, then the worst-case running time
of the parser is within a constant factor of the num-
ber of possible unique inference rule instantiations
(McAllester, 2002). This number is the product of
the ranges of the free variables that appear in the
inference rules. The C rules dominate the compu-
tational expense of Parser R2D2A, with 6 free item
boundaries, each of which ranges over O(n) possi-
ble word positions. In addition, each C rule involves
6 nonterminal labels, which share 4 different lexical
heads, at a cost in O(I®n*). We conclude that the
running time of Parser R2D2A is in O(1°n'?).

Parser R2A is the generalization of Parser R2D2A
to arbitrary dimensionality. Parser R2A derives d-
dimensional hyperrectangles (1 < d < D), corre-
sponding to d-tuples of substrings of the input mul-
titext. Its items still store two boundaries and one
nonterminal per dimension. Each composition rule
still involves two items, which share one boundary
per dimension, for a rate of 2 x 2 — 1 = 3 free
boundaries per dimension. The permutation vectors
are uniquely determined by the item boundaries, so
they add no complexity. Thus, Parser R2A runs in
O(IPn3P) space and O(I13Pn5P) time.

3.2 An Optimization

Eisner & Satta (1999) suggest that any monolingual
head-automaton grammar of interest in NLP can be
construed as a “split” grammar. Roughly speaking,
split grammars are those where every head gener-
ates all its dependents on one side before generat-
ing any dependents on the other side. Taking ad-
vantage of this property, Eisner & Satta present an



3 | go there quite often

INE 4 7
(a) | go there quite often (1)
y| o
\ . vais \4\/
J y vais souvent S
\w 3 souvent -

Figure 4: A synchronous bilexical dependency tree in
English and French that cannot be generated by a split
grammar. The two representations are equivalent: (a)
Horizontal arcs are dependencies; vertical lines indicate
links. (b) Shaded rectangles are 2D constituents; arcs are
2D dependencies.

O(n®) parser for split monolingual bilexical gram-
mars. Unfortunately, split synchronous grammars
preclude many crossing correspondences. E.g., as-
suming that each link is generated as an atomic
unit, there is no way to generate the dependents
of “go/vais” in Figure 4 without switching sides
twice in one of the components. Crossing corre-
spondences are common in multitexts, so split syn-
chronous grammars are not suitable for our purposes.
Since MTGs cannot be construed as “split” gram-
mars, we conjecture that their recognition complex-
ity is higher than O(n3P). The finding that Eis-
ner & Satta’s O(n®) optimization does not general-
ize to the synchronous case has wider implications:
A method for analyzing text in O(n*) is not neces-
sarily capable of analyzing D-dimensional multitext
in O(nP%).

Eisner & Satta (1999) also presented a bilexical
parser that runs in O(n*) and does not rely on the
“split” property. The optimization in that parser is
based on the insight that ID and LP are independent
constraints. It is possible to express each constraint
in a separate inference rule, such that each rule in-
volves fewer free variables. The worst-case running
time of the resulting parser is lower than that of a
naive parser.

Parser R2B is a generalization of this quartic-
time parser for LyMTG(2). Again, we illustrate
the 2D case, which we call Parser R2D2B. This
parser uses another kind of item, labeled “hook” in
Figure 2. Hooks are logically equivalent to CCG-
style “slashed” constituents, where the “missing”
subconstituent is the heir. The missing heir follows a
backslash in the hook’s label if it is the first link in its
DLV; otherwise it follows a forward slash. Each hook
includes the permutation vector that indicates how
the hook expects to compose with its missing heir.
Hooks represent parser states where an ID constraint
has been satisfied, but a suitable LP constraint has
not (yet). Using this type of item, each of the naive
composition rules can be decomposed into an ID rule
and an LP rule. E.g., Rule R2D2A.C3 would decom-
pose into R2D2B.ID3:

L1 51

2 X1 h1 A hl 1’2] -

PEE mN\Zalhe] [
S 7
22 a1 Xi[h1] [1,2] { Z1[h1] Y1[g1]
1oy ] bl =B (ZRREER)
]f)

and R2D2B.LP3:

RS J1 & 1 k1 k1 Ji

I xafh] |i= " & |, X\ Zu[ha) [12)

i Xo[hs] i Za[ha] . Xolho]\Za[ho] [[21]

The other C rules can be decomposed analogously.
Hooks need to keep track of one more nontermi-
nal label per dimension than hedges. Each hook
must also store a permutation vector,® at a cost in
O(D). So, the space complexity of Parser R2B is in
O(DI?Pn3P). On the other hand, LP rules need to
keep track of only one lexical head per dimension,
and ID rules have only 2 free boundaries per dimen-
sion. Thus, the time complexity of Parser R2B is in
O(I*Pn*P), an O(nP) savings over Parser R2A.

4 MTG Binarization

Productions with more than two nonterminal links
on the RHS are useful for representing subcatego-
rization frames with more than two dependents. For
inferring such productions, it is always more efficient
to binarize an MTG than to allow a parser to com-
pose more than two items at a time. Grammar bina-
rization can be regarded as an inference process. In
contrast to the kind of inference that happens dur-
ing parsing, binarization replaces the antecedent pro-
duction in the grammar with the consequent produc-
tions, rather than merely adding the consequents to
the production rule set. Binarization also adds new
nonterminals to the nonterminal set V.

A CFG can always be binarized into another CFG.
In contrast, binarization of MTG DEPEND pro-
ductions can require nonterminals with discontinu-
ous yields. For every dimensionality D > 2 and
rank R > 4, there are some correspondence patterns
that can be generated by D-MTG(R), but not by
D-MTG(R —1) (Rambow & Satta, 1999). For ex-
ample, a grammar in 2-MTG(4) can generate the
synchronous parse tree in Figure 5 via Production 7,
but no grammar in 2-MTG(3) can generate it. The
distinguishing characteristic of such trees is appar-
ent in Figure 5(b): no two constituents are adjacent
in more than one dimension. Each set of sibling

8The permutation vector in a hook is the same as
the one in the production rule from which the hook was
inferred.



S[went] [1,2,3,4] ( N[Pat] V[went] Plhome] A[early]) 7)
S[gayee] [3,1,4,2] \ N[Pat-nay] V/[gayee] P[ghar] Al[juldee]

S[went] [1,2] ( N[Pat] (N [1,2] (M [1,2] (V[Went] P[home]) A[early]))) )

S[gayee] [2,1,2] \ N[Pat-nay] 1], [2,1] [2],[1] \V[gayee] P[ghar] | A[juldee]
Pﬁm " . e hjme =¥ 4 role template more than once, then the leftmost
(a) W (b) races instance corresponds to the first span of the rele-
vant nonterminal, the second instance to the second
ghar Pat-nay juldee gayee e ] span, and so on. See Productions 11-13 below for
e 4 examples. The links and permutations described in

Figure 5: Discontinuous constituents are practically un-
avoidable in synchronous parsing, as for this bitext of
English and transliterated Hindi.
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[a gift] [for you] [from France]

gift _for _you from France

cadeau T
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>< de
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Figure 6: Discontinuous constituents are required for
bilexical parsing, even for simple bitexts in English and
French.

pour

vous

constituents in such an arrangement must be encap-
sulated in the RHS of a single DEPEND production.

Bilexical grammars are usually parsed by attach-
ing dependents to their head, rather than to each
other. This practice may require the use of discontin-
uous constituents for inferring LoMTG productions
with only two dependents on the RHS (not counting
the heir). For example, as illustrated in Figure 6,
bilexical parsing of discontinuous constituents is re-
quired whenever a bitext involves two prepositional
phrases whose order is switched in translation. Syn-
chronous bilexical parsers that cannot handle discon-
tinuous constituents are unlikely to have good cover-
age, even for syntactically similar languages such as
English and French!

To binarize MTGs, we must generalize the defini-
tion of an MTG DEPEND production. We do so by
generalizing the kinds of objects that are input to
and output from the rendering function X. First, for
each discontinuous nonterminal in M, we specify a
cardinality, which indicates the number of contiguous
spans in the nonterminal. Links of possibly discon-
tinuous constituents are called discontinuous links
or d-links. Second, we partition the permutations
in P to indicate where discontinuities should appear
in the output of M. Brackets group contiguous spans
in each permutation. Since each nonterminal can
now comprise more than one span, we must allow
roles to repeat in a given component of P. A per-
mutation cannot have repeating elements, so we call
it a role template instead. If a role appears in

Section 2 are special cases of d-links and role tem-
plates, respectively, without discontinuities. The
result of joining a d-link vector (DLV) according to
a role template vector (RTV) is a d-link.

Using this generalized join operator, we can
decompose the RHS of any MTG DEPEND pro-
duction into nested joins. For example, we can
decompose (7) into (8). A production decomposed
into nested joins of two d-links each can be immedi-
ately binarized according to the MTG Binarization
Rules, in which X, Y, and Zg are d-links, p is an
RTV, and T is a nested join:

X =X p(YT) o)
Zg , X >X p(YZg) , Zg = T
X =X p(T'Y

Zg , X =X p(ZEY) , Zg =T

These rules replace each production that involves a
nested join with two new productions, one of which
has no nested joins and the other of which has fewer
nested joins than the antecedent. The rules also cre-
ate a new nonterminal d-link Zg, which is associated
with the equivalence class E of syntactic contexts in
which Zg appears.

The Binarization Rules are applied recursively un-
til every production in the grammar has rank < 2.
Fach discontinuous nonterminal in the LHS of each
binarized production rule is annotated with its cardi-
nality, to match the number of partitions in the rele-
vant role template. For example, binarization would
replace Production 8 with 3 new production rules,
where VP and V are new nonterminals:?

S 1,2] (N VP
s = M[2[,1,]2] (N VP(2)> (11)
VP 1,2 V A
VPE) M[1][,[2,]1] (f/(2) A> (12)
Vv 1,2] (V P
"o = e (v P) (13)

Binarization does not affect YIELD productions, so
it does not change the generative power of MTGs.

9We omit their lexical heads and equivalence classes
for clarity.



rank | with distinguished heir ~ without

2 2 2

3 3 2
4orb 3 3

6 4 3
7t09 4 4

Table 1: Highest possible cardinality of minimizing de-
compositions over all 2D productions of the given rank.
Figures 6 and 5 exemplify highest-cardinality produc-
tions of ranks 3 and 4, respectively.

As we shall see in Section 5, however, bad bina-
rization can worsen recognition complexity. The Bi-
narization Rules apply deterministically,'® but there
are multiple ways to decompose the RHS of a non-
binary DEPEND production into nested joins.!'!
Some decompositions may give rise to more discon-
tinuities than others. Let the cardinality of an
RTYV be the total number of partitions in all its com-
ponents, and let the cardinality of a decomposi-
tion be the maximum cardinality of the RTVs that
it contains. A minimizing decomposition for a
given production is one of those with lowest cardi-
nality. Then, the cardinality of a production is
the cardinality of its minimizing decomposition. The
cardinality of a production is bounded by its rank,
as Table 1 shows for the 2D case. Finally, the car-
dinality C(G) of an MTG G is the maximum of
the cardinalities of its productions.

5 Inference of Discontinuous
Constituents

Parser A is a parser for arbitrary MTGs. It initializes
its chart and fires Y inferences just like Parser R2A.
It then composes pairs of items into larger items us-
ing inference rule A.C (see below). Just like items
in ordinary parsers, Parser A items need to know
their positions in the input multitext, but not their
internal structure. However, items with disconti-
nuities need to remember all their boundaries, not
just the outermost ones. Expanding on Johnson
(1985), we define a discontinuous span (or d-
span, for short) as a list of zero or more intervals
o= (l1,m1;. ;lm,Tm), where

e the [; are left boundaries and the r; are right
boundaries between word positions in a text, so
that I; < r; for 1 <i <m;

o r; <liy1 for 1 < ¢ <m — 1, which means that
the intervals do not overlap.

0 Given predefined equivalence classes for new nonter-
minals.

UPor correct binarization of productions with a dis-
tinguished heir, the decomposition must put the heir in
the most deeply nested DLV. This requirement tends to
increase the cardinality of LyMTGs, as shown in Table 1.

In addition, we say that a d-span is in normal form
if all the inequalities between r; and ;41 are strict,
i.e. there is a gap between each pair of consecutive
intervals. Now, a hedge item X (o) in Parser A is
a d-link X together with a vector of d-spans ¢ in
normal form. The cardinality of an item is the
total number of intervals in its d-span vector.

Binarized MTG productions can be inferred un-
der generalizations of the ID and LP constraints de-
scribed in Section 3. We use two helper functions
to express these constraints. + is the concatena-
tion operator for d-spans: Given two d-spans, it out-
puts the union of their intervals in normal form.!?
The ® function computes the role template that de-
scribes the relative positions of the intervals in two
d-spans. E.g., if v = (1,3;8,9) and ¢ = (7,8), then
v+o=(1,3;7,9) and v ® ¢ = [1],[2,1]. Both op-
erators apply componentwise to vectors of d-spans.
With their help, we state the composition inference
rule of Parser A:

Y (v),Z(0),X =X [v®o|(Y,Z)
X(v +0)

A.C:

The space complexity of Parser A is a function
of the maximum number of boundaries stored in its
item signatures, and the number |N| of nontermi-
nals in the grammar. The maximum number of re-
quired boundaries is exactly twice the cardinality of
the MTG, and each of the boundaries can range over
O(n) possible positions. Thus, the space complexity
of Parser A for an MTG G is in O(|N|Pn2¢(@). If G
is bilexical, then the number of possible nonterminals
hides a factor of n”, raising the space complexity of
Parser A to O(IPnP+2¢(G)),

The time complexity of Parser A depends on
how many boundaries are shared between antecedent
items in A.C rules. In the best case, all the bound-
aries are shared except the two outermost boundaries
in each dimension, and the inferred item is contigu-
ous. In the worst case, no boundaries are shared,
and the inferred item stores all the boundaries of
the antecedent items. In any case, if y and z are
the cardinalities of the composed items, and z is the
cardinality of the inferred item, then the number of
free boundaries in an A.C inference is = + y + z.
Thus, in the worst case, the number of free bound-
aries involved in an A.C inference is 3C(G). As be-
fore, each boundary can range over O(n) possible
values, where n is the length of the longest compo-
nent of the input multitext. We still have 3 nonter-
minal labels per dimension per inference. Also, each
inference now needs to compute an RTV at a cost

12The inputs of + must have no overlapping intervals,
or else the output is undefined.



in O(C(Q@)). Thus, the time complexity of Parser A
is in O(C(G)|N|*Pn3¢(%)). For a binarized LoMTG,
which also needs to keep track of two lexical heads
per dimension per inference, this complexity rises to
O(C(G)Z3Dn2D+BC(G)).

Parser B is a generalization of Parser R2B for bi-
narized LyMTGs of arbitrary rank. It decomposes
inference rule A.C into ID and LP subrules, using
generalized hooks that carry an RTV. The decompo-
sition can happen in one of two ways, depending on
the heir’s role (1 or 2) in the DLV.

Ylgl(0), X[h] =X [v ® o](Z[h], Y[g])

R X[n(o)[w @ o\Z[H]
B.IPI1: Z[h] (v),i[[::]] ((Z)fg? o]\Z[h]
B2 Vel ;g[[;l]l(z[bz E; f} 7% ([;f][g], Z[h))
BIP2 Z[hl(a);{}l:]]((g)ivﬁ ol/2[h]

The rules in Section 3.2 are simple examples of B.ID1
and B.LP1.

Parser B is faster than Parser A, but takes more
space. The hooks of Parser B must keep track of one
more nonterminal label per dimension than hedges.
The size of an RTV is bounded by the cardinal-
ity of the grammar. Thus, the space complexity of
Parser B is in O(C(G)I?PnP+2¢(%)), On the other
hand, The B.ID rules involve only one d-span in-
stead of two, reducing the number of free variables by
O(C(@)). The B.LP rules again involve only one lex-
ical head instead of two, reducing the number of free
variables by a factor of D. Since D < C(G), it turns
out that the worst-case running time of Parser B is
less than that of Parser A by a factor of n? under
LoMTGs of any rank and dimensionality.

6 Conclusion

We have proposed Multitext Grammars (MTGs)
as a convenient and relatively expressive founda-
tion for building practical models of translational
equivalence. To encourage their use for this pur-
pose, we have explored algorithms for parsing bilex-
ical MTGs of arbitrary rank and dimensionality.
Our exploration highlighted some little-known prop-
erties of synchronous parsing: (1) some optimiza-
tions of monolingual parsers generalize to the syn-
chronous case, but others do not; (2) discontinuous
constituents are essential for parsing bitexts even in
similar Western languages; (3) different binarization
schemes lead to different time and space complexity.

There are many aspects of translational equiva-
lence that MTG cannot express, such as some of
those described by Dorr (1994). In future work,
we hope to extend the formalism to cover some of
the aspects that would not raise the computational
complexity of its recognition, such as discontinuous
and/or phrasal terminals. Concurrently, we shall ex-
plore the empirical properties of MTG, by inducing
stochastic MTGs from real multitexts.
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