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Abstract
In human sentence processing, cognitive load can be
defined many ways. This report considers a defini-
tion of cognitive load in terms of the total probability
of structural options that have been disconfirmed at
some point in a sentence: the surprisal of word wi

given its prefix w0...i−1 on a phrase-structural lan-
guage model. These loads can be efficiently calcu-
lated using a probabilistic Earley parser (Stolcke,
1995) which is interpreted as generating predictions
about reading time on a word-by-word basis. Un-
der grammatical assumptions supported by corpus-
frequency data, the operation of Stolcke’s probabilis-
tic Earley parser correctly predicts processing phe-
nomena associated with garden path structural am-
biguity and with the subject/object relative asym-
metry.

Introduction
What is the relation between a person’s knowledge of
grammar and that same person’s application of that
knowledge in perceiving syntactic structure? The
answer to be proposed here observes three principles.

Principle 1 The relation between the parser and
grammar is one of strong competence.

Strong competence holds that the human sentence
processing mechanism directly uses rules of gram-
mar in its operation, and that a bare minimum of
extragrammatical machinery is necessary. This hy-
pothesis, originally proposed by Chomsky (Chom-
sky, 1965, page 9) has been pursued by many re-
searchers (Bresnan, 1982) (Stabler, 1991) (Steed-
man, 1992) (Shieber and Johnson, 1993), and stands
in contrast with an approach directed towards the
discovery of autonomous principles unique to the
processing mechanism.

Principle 2 Frequency affects performance.

The explanatory success of neural network and
constraint-based lexicalist theories (McClelland and
St. John, 1989) (MacDonald et al., 1994) (Tabor et
al., 1997) suggests a statistical theory of language

performance. The present work adopts a numerical
view of competition in grammar that is grounded in
probability.

Principle 3 Sentence processing is eager.

“Eager” in this sense means the experimental situa-
tions to be modeled are ones like self-paced reading
in which sentence comprehenders are unrushed and
no information is ignored at a point at which it could
be used.

The proposal is that a person’s difficulty per-
ceiving syntactic structure be modeled by word-to-
word surprisal (Attneave, 1959, page 6) which can
be directly computed from a probabilistic phrase-
structure grammar. The approach taken here uses
a parsing algorithm developed by Stolcke. In the
course of explaining the algorithm at a very high
level I will indicate how the algorithm, interpreted
as a psycholinguistic model, observes each principle.
After that will come some simulation results, and
then a conclusion.

1 Language models
Stolcke’s parsing algorithm was initially applied as a
component of an automatic speech recognition sys-
tem. In speech recognition, one is often interested
in the probability that some word will follow, given
that a sequence of words has been seen. Given some
lexicon of all possible words, a language model as-
signs a probability to every string of words from
the lexicon. This defines a probabilistic language
(Grenander, 1967) (Booth and Thompson, 1973)
(Soule, 1974) (Wetherell, 1980).

A language model helps a speech recognizer focus
its attention on words that are likely continuations
of what it has recognized so far. This is typically
done using conditional probabilities of the form

P (Wn = wn|W1 = w1, . . . Wn−1 = wn−1)

the probability that the nth word will actually be
wn given that the words leading up to the nth have
been w1, w2, . . . wn−1. Given some finite lexicon, the
probability of each possible outcome for Wn can be



estimated using that outcome’s relative frequency in
a sample.

Traditional language models used for speech are n-
gram models, in which n− 1 words of history serve
as the basis for predicting the nth word. Such mod-
els do not have any notion of hierarchical syntactic
structure, except as might be visible through an n-
word window.

Aware that the n-gram obscures many
linguistically-significant distinctions (Chomsky,
1956, section 2.3), many speech researchers (Jelinek
and Lafferty, 1991) sought to incorporate hierar-
chical phrase structure into language modeling (see
(Stolcke, 1997)) although it was not until the late
1990s that such models were able to significantly
improve on 3-grams (Chelba and Jelinek, 1998).
Stolcke’s probabilistic Earley parser is one way
to use hierarchical phrase structure in a language
model. The grammar it parses is a probabilistic
context-free phrase structure grammar (PCFG),
e.g.

1.0 S → NP VP
0.5 NP → Det N
0.5 NP → NP VP
...

...

see (Charniak, 1993, chapter 5)

Such a grammar defines a probabilistic language in
terms of a stochastic process that rewrites strings of
grammar symbols according to the probabilities on
the rules. Then each sentence in the language of the
grammar has a probability equal to the product of
the probabilities of all the rules used to generate it.
This multiplication embodies the assumption that
rule choices are independent. Sentences with more
than one derivation accumulate the probability of all
derivations that generate them. Through recursion,
infinite languages can be specified; an important
mathematical question in this context is whether or
not such a grammar is consistent – whether it assigns
some probability to infinite derivations, or whether
all derivations are guaranteed to terminate.

Even if a PCFG is consistent, it would appear to
have another drawback: it only assigns probabili-
ties to complete sentences of its language. This is as
inconvenient for speech recognition as it is for mod-
eling reading times.

Stolcke’s algorithm solves this problem by com-
puting, at each word of an input string, the prefix
probability. This is the sum of the probabilities of all
derivations whose yield is compatible with the string
seen so far. If the grammar is consistent (the proba-
bilities of all derivations sum to 1.0) then subtracting
the prefix probability from 1.0 gives the total proba-
bility of all the analyses the parser has disconfirmed.
If the human parser is eager, then the “work” done

during sentence processing is exactly this disconfir-
mation.

2 Earley parsing
The computation of prefix probabilities takes advan-
tage of the design of the Earley parser (Earley, 1970)
which by itself is not probabilistic. In this section I
provide a brief overview of Stolcke’s algorithm but
the original paper should be consulted for full details
(Stolcke, 1995).

Earley parsers work top-down, and propagate
predictions confirmed by the input string back up
through a set of states representing hypotheses the
parser is entertaining about the structure of the sen-
tence. The global state of the parser at any one time
is completely defined by this collection of states, a
chart, which defines a tree set. A state is a record
that specifies

• the current input string position processed so
far

• a grammar rule
• a “dot-position” in the rule representing how

much of the rule has already been recognized
• the leftmost edge of the substring this rule gen-

erates

An Earley parser has three main functions, pre-
dict, scan and complete, each of which can enter
new states into the chart. Starting from a dummy
start state in which the dot is just to the left of the
grammar’s start symbol, predict adds new states for
rules which could expand the start symbol. In these
new predicted states, the dot is at the far left-hand
side of each rule. After prediction, scan checks the
input string: if the symbol immediately following
the dot matches the current word in the input, then
the dot is moved rightward, across the symbol. The
parser has “scanned” this word. Finally, complete
propagates this change throughout the chart. If, as
a result of scanning, any states are now present in
which the dot is at the end of a rule, then the left
hand side of that rule has been recognized, and any
other states having a dot immediately in front of
the newly-recognized left hand side symbol can now
have their dots moved as well. This happens over
and over until no new states are generated. Parsing
finishes when the dot in the dummy start state is
moved across the grammar’s start symbol.

Stolcke’s innovation, as regards prefix probabili-
ties is to add two additional pieces of information to
each state: α, the forward, or prefix probability, and
γ the “inside” probability. He notes that

path An (unconstrained) Earley path,
or simply path, is a sequence of Earley
states linked by prediction, scanning,
or completion.



constrained A path is said to be con-
strained by, or generate a string x if
the terminals immediately to the left
of the dot in all scanned states, in se-
quence, form the string x.

. . .
The significance of Earley paths is that
they are in a one-to-one correspondence
with left-most derivations. This will al-
low us to talk about probabilities of deriva-
tions, strings and prefixes in terms of the
actions performed by Earley’s parser.

(Stolcke, 1995, page 8)

This correspondence between paths of parser op-
erations and derivations enables the computation of
the prefix probability – the sum of all derivations
compatible with the prefix seen so far. By the cor-
respondence between derivations and Earley paths,
one would need only to compute the sum of all paths
that are constrained by the observed prefix. But
this can be done in the course of parsing by storing
the current prefix probability in each state. Then,
when a new state is added by some parser opera-
tion, the contribution from each antecedent state –
each previous state linked by some parser operation
– is summed in the new state. Knowing the prefix
probability at each state and then summing for all
parser operations that result in the same new state
efficiently counts all possible derivations.

Predicting a rule corresponds to multiplying by
that rule’s probability. Scanning does not alter any
probabilities. Completion, though, requires knowing
γ, the inside probability, which records how probable
was the inner structure of some recognized phrasal
node. When a state is completed, a bottom-up con-
firmation is united with a top-down prediction, so
the α value of the complete-ee is multiplied by the
γ value of the complete-er.

Important technical problems involving left-
recursive and unit productions are examined and
overcome in (Stolcke, 1995). However, these com-
plications do not add any further machinery to the
parsing algorithm per se beyond the grammar rules
and the dot-moving conventions: in particular, there
are no heuristic parsing principles or intermediate
structures that are later destroyed. In this respect
the algorithm observes strong competence – princi-
ple 1. In virtue of being a probabilistic parser it
observes principle 2. Finally, in the sense that pre-
dict and complete each apply exhaustively at each
new input word, the algorithm is eager, satisfying
principle 3.

3 Parallelism
Psycholinguistic theories vary regarding the amount
bandwidth they attribute to the human sentence

processing mechanism. Theories of initial parsing
preferences (Fodor and Ferreira, 1998) suggest that
the human parser is fundamentally serial: a func-
tion from a tree and new word to a new tree. These
theories explain processing difficulty by appealing
to “garden pathing” in which the current analysis
is faced with words that cannot be reconciled with
the structures built so far. A middle ground is held
by bounded-parallelism theories (Narayanan and Ju-
rafsky, 1998) (Roark and Johnson, 1999). In these
theories the human parser is modeled as a function
from some subset of consistent trees and the new
word, to a new tree subset. Garden paths arise in
these theories when analyses fall out of the set of
trees maintained from word to word, and have to
be reanalyzed, as on strictly serial theories. Finally,
there is the possibility of total parallelism, in which
the entire set of trees compatible with the input is
maintained somehow from word to word. On such
a theory, garden-pathing cannot be explained by re-
analysis.

The probabilistic Earley parser computes all
parses of its input, so as a psycholinguistic theory
it is a total parallelism theory. The explanation
for garden-pathing will turn on the reduction in the
probability of the new tree set compared with the
previous tree set – reanalysis plays no role. Before
illustrating this kind of explanation with a specific
example, it will be important to first clarify the na-
ture of the linking hypothesis between the operation
of the probabilistic Earley parser and the measured
effects of the human parser.

4 Linking hypothesis

The measure of cognitive effort mentioned earlier is
defined over prefixes: for some observed prefix, the
cognitive effort expended to parse that prefix is pro-
portional to the total probability of all the struc-
tural analyses which cannot be compatible with the
observed prefix. This is consistent with eagerness
since, if the parser were to fail to infer the incom-
patibility of some incompatible analysis, it would
be delaying a computation, and hence not be eager.
This prefix-based linking hypothesis can be turned
into one that generates predictions about word-by-
word reading times by comparing the total effort
expended before some word to the total effort af-
ter: in particular, take the comparison to be a ratio.
Making the further assumption that the probabili-
ties on PCFG rules are statements about how diffi-
cult it is to disconfirm each rule1, then the ratio of

1This assumption is inevitable given principles 1 and 2. If
there were separate processing costs distinct from the opti-
mization costs postulated in the grammar, then strong com-
petence is violated. Defining all grammatical structures as
equally easy to disconfirm or perceive likewise voids the grad-
edness of grammaticality of any content.



the α value for the previous word to the α value for
the current word measures the combined difficulty
of disconfirming all disconfirmable structures at a
given word – the definition of cognitive load. Scal-
ing this number by taking its log gives the surprisal,
and defines a word-based measure of cognitive effort
in terms of the prefix-based one. Of course, if the
language model is sensitive to hierarchical structure,
then the measure of cognitive effort so defined will
be structure-sensitive as well.

5 Plausibility of Probabilistic
Context-Free Grammar

The debate over the form grammar takes in the mind
is clearly a fundamental one for cognitive science.
Much recent psycholinguistic work has generated a
wealth of evidence that frequency of exposure to lin-
guistic elements can affect our processing (Mitchell
et al., 1995) (MacDonald et al., 1994). However,
there is no clear consensus as to the size of the ele-
ments over which exposure has clearest effect. Gib-
son and Pearlmutter identify it as an “outstanding
question” whether or not phrase structure statistics
are necessary to explain performance effects in sen-
tence comprehension:

Are phrase-level contingent frequency con-
straints necessary to explain comprehen-
sion performance, or are the remaining
types of constraints sufficient. If phrase-
level contingent frequency constraints are
necessary, can they subsume the effects of
other constraints (e.g. locality) ?

(Gibson and Pearlmutter, 1998, page 13)

Equally, formal work in linguistics has demon-
strated the inadequacy of context-free grammars as
an appropriate model for natural language in the
general case (Shieber, 1985). To address this criti-
cism, the same prefix probabilities could be comput-
ing using tree-adjoining grammars (Nederhof et al.,
1998). With context-free grammars serving as the
implicit backdrop for much work in human sentence
processing, as well as linguistics2 simplicity seems as
good a guide as any in the selection of a grammar
formalism.

6 Garden-pathing

6.1 A celebrated example
Probabilistic context-free grammar (1) will help il-
lustrate the way a phrase-structured language model

2Some important work in computational psycholinguistics
(Ford, 1989) assumes a Lexical-Functional Grammar where
the c-structure rules are essentially context-free and have
attached to them “strengths” which one might interpret as
probabilities.

could account for garden path structural ambiguity.
Grammar (1) generates the celebrated garden path
sentence “the horse raced past the barn fell” (Bever,
1970). English speakers hearing these words one by
one are inclined to take “the horse” as the subject of
“raced,” expecting the sentence to end at the word
“barn.” This is the main verb reading in figure 1.

S

NP

the horse

VP

VBD

raced

PP

IN

past

NP

DT

the

NN

barn

Figure 1: Main verb reading

The human sentence processing mechanism is
metaphorically led up the garden path by the main
verb reading, when, upon hearing “fell” it is forced
to accept the alternative reduced relative reading
shown in figure 2.

S

NP

NP

DT

the

NN

horse

VP

VBN

raced

PP

IN

past

NP

DT

the

NN

barn

VP

VBD

fell

Figure 2: Reduced relative reading

The confusion between the main verb and the re-
duced relative readings, which is resolved upon hear-
ing “fell” is the empirical phenomenon at issue.

As the parse trees indicate, grammar (1) analyzes
reduced relative clauses as a VP adjoined to an NP3.
In one sample of parsed text4 such adjunctions are
about 7 times less likely than simple NPs made up of
a determiner followed by a noun. The probabilities
of the other crucial rules are likewise estimated by
their relative frequencies in the sample.

3See section 1.24 of the Treebank style guide
4The sample, starts at sentence 93 of section 16 of

the Treebank and goes for 500 sentences (12924 words)
For information about the Penn Treebank project see
http://www.cis.upenn.edu/~ treebank/



(1)

1.0 S → NP VP .
0.876404494831 NP → DT NN
0.123595505169 NP → NP VP
1.0 PP → IN NP
0.171428571172 VP → VBD PP
0.752380952552 VP → VBN PP
0.0761904762759 VP → VBD
1.0 DT → the
0.5 NN → horse
0.5 NN → barn
0.5 VBD → fell
0.5 VBD → raced
1.0 VBN → raced
1.0 IN → past

This simple grammar exhibits the essential character
of the explanation: garden paths happen at points
where the parser can disconfirm alternatives that to-
gether comprise a great amount of probability. Note
the category ambiguity present with raced which can
show up as both a past-tense verb (VBD) and a past
participle (VBN).
Figure 3 shows the reading time predictions5 derived
via the linking hypothesis that reading time at word
n is proportional to the surprisal log

(
αn−1
αn

)
.

the horse raced past the barn fell

2

4

6

8

10

12

14

Log[
previous prefix

current prefix
]

garden-pathing

0

1.
0.1906840.0641303

0

1.

5.90627

Figure 3: Predictions of probabilistic Earley parser
on simple grammar

At “fell,” the parser garden-paths: up until that
point, both the main-verb and reduced-relative
structures are consistent with the input. The prefix
probability before “fell” is scanned is more than 10
times greater than after, suggesting that the proba-
bility mass of the analyses disconfirmed at that point
was indeed great. In fact, all of the probability as-
signed to the main-verb structure is now lost, and
only parses that involve the low-probability NP rule
survive – a rule introduced 5 words back.

6.2 A comparison
If this garden path effect is truly a result of both the
main verb and the reduced relative structures be-
ing simultaneously available up until the final verb,

5Whether the quantitative values of the predicted read-
ing times can be mapped onto a particular experiment in-
volves taking some position on the oft-observed (Gibson and
Schütze, 1999) imperfect relationship between corpus fre-
quency and psychological norms.

then the effect should disappear when words inter-
vene that cancel the reduced relative interpretation
early on.

To examine this possibility, consider now a differ-
ent example sentence, this time from the language
of grammar (2).

(2)

0.574927953937 S → NP VP
0.425072046063 S → VP
1.0 SBAR → WHNP S
0.80412371161 NP → DT NN
0.082474226966 NP → NP SBAR
0.113402061424 NP → NP VP
0.11043 VP → VBD PP
0.141104 VP → VBD NP PP
0.214724 VP → AUX VP
0.484663 VP → VBN PP
0.0490798 VP → VBD
1.0 PP → IN NP
1.0 WHNP → who
1.0 DT → the
0.33 NN → boss
0.33 NN → banker
0.33 NN → buy-back
0.5 IN → about
0.5 IN → by
1.0 AUX → was
0.74309393 VBD → told
0.25690607 VBD → resigned
1.0 VBN → told

The probabilities in grammar (2) are estimated from
the same sample as before. It generates a sentence
composed of words actually found in the sample,
“the banker told about the buy-back resigned.” This
sentence exhibits the same reduced relative clause
structure as does “the horse raced past the barn
fell.”

S

NP

NP

DT

the

NN

banker

VP

VBN

told

PP

about the buy-back

VP

VBD

resigned

Grammar (2) also generates6 the subject relative
“the banker who was told about the buy-back re-
signed.” Now a comparison of two conditions is pos-
sible.

MV and RC the banker told about the buy-back re-
signed

6This grammar also generates active and simple passive
sentences, rating passive sentences as more probable than the
actives. This is presumably a fact about the writing style
favored by the Wall Street Journal.



the banker who was told about the buy-backresigned

1

2

3

4

5

6

Log[
previous prefix

current prefix
]

Subject Relative Clause

0.798547

1.59946

3.599913.45367

0.498082

1.3212

0.

1.59946

5.87759

Figure 4: Mean 10.5

the banker told about the buy-back resigned

1

2

3

4

5

6

Log[
previous prefix

current prefix
]

Reduced Relative Clause

0.798547

1.59946

0.622262

1.3212

0.

1.59946

6.67629

Figure 5: Mean: 16.44

RC only the banker who was told about the buy-
back resigned

The words who was cancel the main verb reading,
and should make that condition easier to process.
This asymmetry is borne out in graphs 4 and 5. At
“resigned” the probabilistic Earley parser predicts
less reading time in the subject relative condition
than in the reduced relative condition.

This comparison verifies that the same sorts of
phenomena treated in reanalysis and bounded paral-
lelism parsing theories fall out as cases of the present,
total parallelism theory.

6.3 An entirely empirical grammar
Although they used frequency estimates provided by
corpus data, the previous two grammars were par-
tially hand-built. They used a subset of the rules
found in the sample of parsed text. A grammar in-
cluding all rules observed in the entire sample sup-
ports the same sort of reasoning. In this grammar,
instead of just 2 NP rules there are 532, along with
120 S rules. Many of these generate analyses com-
patible with prefixes of the reduced relative clause at
various points during parsing, so the expectation is
that the parser will be disconfirming many more hy-
potheses at each word than in the simpler example.
Figure 6 shows the reading time predictions derived
from this much richer grammar.

Because the terminal vocabulary of this richer
grammar is so much larger, a comparatively large
amount of information is conveyed by the nouns
“banker” and “buy-back” leading to high surprisal

the banker told about the buy-backresigned .

2

4

6

8

10

12

14

Log[
previous prefix

current prefix
]

grammar from Wall Street Journal sample

3.13979

11.9369

9.59068
8.59021

2.92747

11.9496
12.9214

6.50046

Figure 6: Predictions of Earley parser on richer
grammar

values at those words. However, the garden path
effect is still observable at “resigned” where the pre-
fix probability ratio is nearly 10 times greater than
at either of the nouns. Amid the lexical effects, the
probabilistic Earley parser is affected by the same
structural ambiguity that affects English speakers.

7 Subject/Object asymmetry

The same kind of explanation supports an account
of the subject-object relative asymmetry (cf. refer-
ences in (Gibson, 1998)) in the processing of unre-
duced relative clauses. Since the Earley parser is
designed to work with context-free grammars, the
following example grammar adopts a GPSG-style
analysis of relative clauses (Gazdar et al., 1985, page
155). The estimates of the ratios for the two S[+R]

rules are obtained by counting the proportion of sub-
ject relatives among all relatives in the Treebank’s
parsed Brown corpus7.

(3)

0.33 NP → SPECNP NBAR
0.33 NP → you
0.33 NP → me
1.0 SPECNP → DT
0.5 NBAR → NBAR S[+R]
0.5 NBAR → N
1.0 S → NP VP
0.86864638 S[+R] → NP[+R] VP
0.13135362 S[+R] → NP[+R] S/NP
1.0 S/NP → NP VP/NP
1.0 VP/NP → V NP/NP
1.0 VP → V NP
1.0 V → saw
1.0 NP[+R] → who
1.0 DT → the
1.0 N → man
1.0 NP/NP → ε

7In particular, relative clauses in the Treebank are ana-

lyzed as
NP → NP SBAR (rule 1)
SBAR → WHNP S (rule 2)

where the S con-

tains a trace *T* coindexed with the WHNP. The total num-
ber of structures in which both rule 1 and rule 2 apply is
5489. The total number where the first child of S is null is
4768. This estimate puts the total number of object relatives
at 721 and the frequency of object relatives at 0.13135362 and
the frequency of subject relatives at 0.86864638.



Grammar (3) generates both subject and object rela-
tive clauses. S[+R]→NP[+R] VP is the rule that gen-
erates subject relatives and S[+R] → NP[+R] S/NP

generates object relatives. One might expect there
to be a greater processing load for object relatives as
soon as enough lexical material is present to deter-
mine that the sentence is in fact an object relative8.
The same probabilistic Earley parser (modified to
handle null-productions) explains this asymmetry in
the same way as it explains the garden path effect.
Its predictions, under the same linking hypothesis
as in the previous cases, are depicted in graphs 7
and 8. The mean surprisal for the object relative is
about 5.0 whereas the mean surprisal for the subject
relative is about 2.1.

the man who saw you saw me

1

2

3

4

5

Log[
previous prefix

current prefix
]

Subject Relative Clause

1.59946

0

1.

0.203159

1.59946

1.

1.59946

Figure 7: Subject relative clause

the man who you saw saw me

1

2

3

4

5

Log[
previous prefix

current prefix
]

Object Relative Clause

1.59946

0

1.

4.52793

0

1.

1.59946

Figure 8: Object relative clause

Conclusion
These examples suggest that a “total-parallelism”
parsing theory based on probabilistic grammar can
characterize some important processing phenomena.
In the domain of structural ambiguity in particular,
the explanation is of a different kind than in tradi-
tional reanalysis models: the order of processing is
not theoretically significant, but the estimate of its
magnitude at each point in a sentence is. Results
with empirically-derived grammars suggest an affir-
mative answer to Gibson and Pearlmutter’s ques-

8The difference in probability between subject and object
rules could be due to the work necessary to set up storage
for the filler, effectively recapitulating the HOLD Hypothesis
(Wanner and Maratsos, 1978, page 119)

tion: phrase-level contingent frequencies can do the
work formerly done by other mechanisms.

Pursuit of methodological principles 1, 2 and 3
has identified a model capable of describing some of
the same phenomena that motivate psycholinguistic
interest in other theoretical frameworks. Moreover,
this recommends probabilistic grammars as an at-
tractive possibility for psycholinguistics by provid-
ing clear, testable predictions and the potential for
new mathematical insights.
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