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Abstract

This paper presents a method for inducing transla-
tion lexicons based on transduction models of cog-
nate pairs via bridge languages. Bilingual lexicons
within languages families are induced using proba-
bilistic string edit distance models. Translation lex-
icons for arbitrary distant language pairs are then
generated by a combination of these intra-family
translation models and one or more cross-family on-
line dictionaries. Up to 95% exact match accu-
racy is achieved on the target vocabulary (30-68% of
inter-family test pairs). Thus substantial portions of
translation lexicons can be generated accurately for
languages where no bilingual dictionary or parallel
corpora may exist.

1 Translation Lexicons, Cognates,
and Bridge Languages

A translation lexicon is a mapping from words in
one language (the source) to words in another lan-
guage (the target). For each word in the source ,
this dictionary provides one or more words in the
target which might be appropriate translations in
some context. Such a lexicon is the foundation of
any machine translation system.

Translation lexicons are available on-line for many
of the world’s major langauges, but they are of-
ten quite limited and may have intellectual prop-
erty constraints. For lower-density languages, trans-
lation lexicons typically exist only as a hard-copy
dictionary (if at all). Creating a translation lexicon
from scratch requires time-consuming work by ex-
perts trained in both languages. Automatic methods
to generate even partial dictionaries would signifi-
cantly decrease the human effort needed to build ma-
chine translation systems for less heavily supported
languages.

In this paper, we explore algorithms for build-
ing lexicons between arbitrary languages using mod-
els of cognate pairs and cognate distance. We
define a cognate pair as a translation pair where
words from two languages share both meaning and
a similar surface form. Cognate pairs usually arise
when both words are derived from an ancestral root
form (e.g. “neveu” [Fr.], “nephew” [Eng.]) (Buck,
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Figure 1: Translation Lexicon Induction via Bridge
Languages (source and targets are invertable)

1949). Obviously, not all translations are cognates
(e.g. “eau” [Fr.]— “water” [Eng.]), and other trans-
lations, while historically related, are distant enough
to be challenging to model (e.g. “pere” [Fr.]— “fa-
ther” [Eng.]). Depending on how closely two lan-
guages are related, they may share more or fewer
cognate pairs.

We show that languages are often close enough to
others within their language family so that cognate
pairs between the two are common, and significant
portions of the translation lexicon can be induced
with high accuracy. Statistical models of cognate
surface similarity are trained and used to detect cog-
nate pairs and produce mappings in a translation
lexicon (Section 3).

To connect arbitrary distant languages, we use a
two-step model via bridge languages (as shown in
Figure 1 and Section 5). Existing available on-line
dictionaries between the source language and one
representative of a language family can be combined
with intra-family cognate models to yield translation
lexicons from the source to the bridge language’s en-
tire family. Finally, we demonstrate how the perfor-



mance of bridge models can be improved by using
multiple bridge languages, increasing coverage and
accuracy.

Note that in all cases the induced lexicons are
symmetric and for the purposes of machine trans-
lation can be used in either direction, not limited to
the source/target terms used in the algorithm de-
scription.

2 Induction Methods

The induction algorithm we propose relies on a
method of determining the cognate string edit
distance between two words. This distance should
be low for cognates pairs, and high for non-cognates.
Formally: given two languages S and T, where cog-
nate indicates that a pair is cognate, a good distance
function D : S x T' — R is one such that:

Vs € S,Vt.,,t €T :
If cognate(s,t.) A noncognate(s,t)
Then D(s,t.) < D(s,t)

Given such a distance, we can apply it in creat-
ing translations for new languages by mapping each
source word to the nearest target (with respect to
the distance D). Formally:

Vs € S choose £ € T : £ = argmin D(s, t)
teT

We investigated three different distance functions:
Levenshtein distance, a cost function learned by us-
ing stochastic transducers and one learned by using
a hidden Markov model. There are significant dif-
ferences between the Levenshtein distance function
and the two probabilistic methods: the former is a
static metric which requires no training, while the
latter are adaptive metrics which need to be trained
for a particular data set.

Levenshtein distance (L) is defined as the mini-
mum sum of the costs of edit operations required to
transform one string into another. Inserting a char-
acter, deleting a character, and replacing a character
with another are the only edit operations. Tradition-
ally, the cost for all edit operations is 1, but these
costs could conceivably be any positive real number.

The use of stochastic transducers (S) for learn-
ing string edit distance is a problem which has been
studied by Ristad and Yianilos (1998). They use the
Expectation-Maximization (EM) algorithm to esti-
mate a probabilistic cost for each possible edit op-
eration from the training data such that the cost
of transforming source words into the corresponding
target words is minimized. Unlike the Levenshtein
distance metric which sums up the individual edit
costs, these probabilistic costs are multiplied, and
the resulting distance is the sum of all edit paths
that transform one string into its translation.
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Figure 2: Intra-Family Translation Induction by
Probabilistic Cognate Models

The hidden Markov model (H) used here is a
fenonic base form model!, with each character hav-
ing separate edit operation parameters (Jelinek,
1997). The probabilities of all possible edit se-
quences sum to one. In addition, unlike the stochas-
tic transducer model, the atomic edit operations for
each character also sum to one. The use here is in-
spired by the hidden Markov models used in speech
recognition for modeling pronunciation variation in
individual words.

Clearly, these methods are not designed to dis-
cover translation pairs having no surface form rela-
tionships. They are, however, applicable for trans-
lation pairs with orthographically realized historical
or phonological similarity. Strictly for the purposes
of distinguishing this target-language vocabulary, a
translation pair is assumed to be a cognate pair if its
Levenshtein distance is less than 3. This arbitrary
threshold avoids the need to make historical linguis-
tic judgements about cognate relationships but it
appears to identify a useful, though somewhat con-
servative, subset of the target vocabulary with few
false positives. In this paper, we report results both
on the subset of hypothesized cognate pairs and on
the whole set. We also used these hypothesized cog-
nate pairs to train the adaptive metrics.

3 Intra-Family Translation Lexicon
Induction

We first tested these methods by inducing transla-
tion lexicons between languages within the same lan-
guage family (the Romance languages). The follow-
ing describes the general algorithm, given a dictio-
nary between languages S and T:

1. Select 100 word pairs for testing.

2. For the adaptive metrics (which require train-
ing), select hypothesized cognate pairs (those

Tn this model, a recognition model for a word is con-
structed by taking in sequence models for each character in
the word. Each character recognition model is a two state
model with transitions for insert, delete and substitute oper-
ations.



Model Spanish-Portuguese French-Portuguese
cognate full cognate full
vocab (68%) | vocab || vocab (39%) | vocab

L Levenshtein 92.3 67.9 66.4 32.0
H Hidden Markov Model 82.2 58.6 62.7 30.0
S Stochastic Transducer 92.3 67.1 78.6 38.5
L-V | Levenshtein w/vowel sensitive distance 91.9 67.9 68.4 33.8
L-A | Levenshtein w/learned weights (pan-family) 92.9 67.9 80.1 40.5
L-S | Levenshtein w/learned weights (single language) 94.7 69.8 84.3 42.3

Table 1: Direct Translation Lexicon Induction Performance

within an edit-distance of 3) from the remain-
ing word-pairs as training data. Train on those
pairs.

3. For each word in the source language choose
the closest word (with respect to the current
distance function) in the target language from
the list of 100.

4. Count a hypothesized translation pair as being
correct if it matches the translation given in the
reference dictionary, incorrect otherwise. (Our
assumption is that there is only one translation
per word. We are investigating models yielding
multiple translations for each word.)

For this set of experiments, Portuguese was chosen
as the target language and Spanish, French, Ttalian
and Romanian the source languages (Figure 2). The
Spanish-Portuguese dictionary contained 1000 word
pairs, while the others contained 900 pairs. 10(9)-
fold cross-validation experiments were performed in
each case. The number of training pairs for the
adaptive methods which remained after filtering out
unlikely cognate pairs ranged from 621 (for Spanish)
to 232 (for Romanian).

For the purpose of evaluation, we constrained the
candidate test set to have exactly one translation
per source word. However, this property was not
used to improve candidate alignment (e.g. via the
pigeonhole principle).

Table 1 shows results for different candidate dis-
tance functions for Spanish-Portuguese and French-
Portuguese translation induction. The metrics de-
picted in the first three lines, namely Levenshtein
distance (L), the HMM fenonic model (H), and the
stochastic transducer (S), were previously described
in Section 2. The other three methods are variants of
Levenshtein distance where the costs for edit opera-
tions have been modified. In L-V, the substitution
operations between vowels are changed from 1 to 0.5.

Two adaptively trained variants, L-S and L-A,
are shown in the last two lines of Table 1. The
weights in these two systems were produced by fil-
tering the probabilities obtained from the stochastic
transducer into three weight classes: 0.5, 0.75, and 1.
Identity substitutions were assigned a cost of zero.

For L-S, the cost matrix was separately trained for
each language pair, and for L-A, it was trained col-
lectively over all the Romance languages.

Table 2 shows some of the highest probability
consonant-to-consonant edit operations computed
by the stochastic transducer (S). Most of these top-
ranking derived transformations have been observed
to be relatively low distance by either linguistic anal-
ysis of historical sound changes or by phonological

classification, notably: nasal sonorants (“n”,“m”),

unvoiced stops (“p”, “f”), and voiced stops (“c”,
“g? “”  “d”). Other pairs are derivationally rea-
SOnable: (Mb”, “V”), (“X”, “S”) and (“S”, “c”); Whlle
some may be noise: (“g”, “n”) and (“g”, “v”). Not
shown are vowel-to-vowel substitutions which in gen-
eral were the most highly ranked; also not shown
are tight correspondences between accented and un-
accented vowel variants which were also learned by
the stochastic transducer.

fr | pt fr | pt
n | m x | s
c| g s | ¢
p|f clq
gl n g | v
b| v t | d

Table 2: Most Probable Consonant-Consonant Sub-
stitutions Induced for French-Portuguese

As can be observed from Table 1, pure Leven-
shtein distance (L) works surprisingly well. Dy-
namic adaptation via the stochastic transducers (S)
also gives a notable boost on French-Portuguese (in-
creasing cognate accuracy from 66% to 79%) but of-
fer little improvement for Spanish-Portuguese (per-
haps because pure Levenshtein needs no diffusion for
relatively close languages while more complex map-
pings benefit from training). Similarly, a slight im-
provment is observed for Romanian-Portuguese un-
der S, but no improvement for Italian-Portuguese.

Also, empirical evidence suggests that the best
method is achieved through learning weights with
stochastic transducers and then using these weights
in the L-S framework.



In light of the results reported by Ristad and Yian-
ilos (1998) of an error rate reduction of as much as
1/6 over pure Levenshtein distance (on a different
task), it is surprising that S did not consistently
outperform L in these experiments. This surprise
is mitigated when a number of other factors were
considered:

e The training size in Ristad and Yianilos (1998)
is significantly larger than used here, on the or-
der of tens of thousands rather than several hun-
dred pairs. The shortage of potential training
data here undoubtedly hinders the performance
of the adaptive system.

e Ristad and Yianilos (1998) used training and
test sets which are more tightly related - the
test set contained words from the training set,
with possibly different pronunciations. In our
task, however, the words in the training and
test sets are disjoint.

e They trained on a hand-crafted pronunciation
dictionary which listed pronunciations for each
word form. In contrast, we used existing re-
sources which were built for a different task and
was therefore much noisier.

As a further illustration of the effect of the qual-
ity of the data on performance, Ristad and Yianilos
(1998) also described an experiment where corpus-
derived noisy data were used, and in that experiment
stochastic transducers also did not outperform pure
Levenshtein distance. This finding is consistent with
our current results.

Spanish-Portuguese
L S L-S

cognate vocabulary | 1.2 | 2.7 1.1

full vocabulary 10.6 | 13.9 | 10.7

rank

Table 3: Mean Rank of Correct Translation

Table 3 gives the mean rank of the correct trans-
lation in the complete ordering of alignment candi-
dates. This measure may be indicative of the useful-
ness of the translation candidate ordering to human
translators. Even in the case of the unrestricted vo-
cabulary which includes many non-cognates the cor-
rect translation appears on average in the top 10-11.

Performance is also clearly sensitive to the rela-
tive similarity between the source and target lan-
guages. Table 4 shows that performance and cog-
nate coverage (for a Portuguese source language)
are highest for the most similar language (Span-
ish), and drop roughly in order of historical distance
within the Romance language family. Table 10 also
shows that performance decrease is roughly corre-
lated with language distance (for the Slavic and Ro-
mance languages), and indeed clustering languages

by such measures may yield insights regarding his-
torical language distance, although space precludes
such an analysis here.

Exact | Cog L L-S

Match | Cvg | cog | full | cog | full
es-pt | 26.4 | 68.0 | 92.3 | 679 | 94.7 | 69.8
it-pt 9.0 50.1 | 85.8 | 50.0 | 90.0 | 52.0
fr-pt 2.7 39.1 | 66.4 | 32.0 | 84.3 | 42.3
ro-pt 2.7 35.0 | 77.7 | 31.1 | 91.1 | 37.8

Table 4: Language-pair Performance Differences

4 Cross-Family Methodology

In the previous section we induce translation lexi-
cons between languages within the same language
family. In the experiments reported in the remain-
der of the paper, we connect arbitrary source and
target languages using one or more bridge languages
(as illustrated in Figure 3). We define a bridge lan-
guage (B) as one that is in the same language family
as the target language (T), but also has an available
bilingual dictionary with the source language (O).
The dictionary supports cross-family long distance
O—B lexical translations, while the string trans-
duction models described in Section 3 support di-
rect B—T projection from the bridge language(s)
to other members of the target language family.
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Figure 3: Cross-Family Translation Lexicon Induc-
tion

5 Cross-Family Translation Lexicon
Induction

The following describes an algorithm to generate a
bilingual word alignment between source (O) and
target (T) languages using one or more bridge lan-
guages (B).



Spanish Source Target Method | Method’s Top Choice Score Rank
Portuguese (Portuguese) top | correct | correct

caminar ( walk ) andar L cozinhar (cook) 3 4 8

S ano (year) 37.3 37.3 2

L-S andar 2 2 1

kilogramos (kilograms) | quilogramas || L quilogramas 3 3 1

S pickup (pickup truck) | 114.4 | 414.6 21

L-S quilogramas 2 2 1

mostaza (mustard) mostarda L mostarda 2 2 1

S metros (meters) 46.6 64.3 3

L-S mostarda 1.5 1.5 1

freno (brake) freio L feno (hay) 1 1 2

S freio 18.6 18.6 1

L-S freio 0.75 0.75 1

Table 5: Direct Translation Induction Examples
for each word o € O en-es-pt Subset | Union | Intersection

~ for each bridge language B <08 full full full
— en-es-pt 74.0 57.7 53.2 60.0
Translate o — b € B Rank- 1 605 | 460 | 43.0 50.0
vVt € T, Calculate D(b,t) Rank-2 60.9 47.0 43.7 51.4
Rank ¢ by D(b,t) Rank-5 56.2 43.0 40.4 46.0
Score t using information from all bridges Rank-100 | 44.0 | 33.0 31.1 33.0
Sl ighet seoed Do [0 v | B @
Produce mapping o — ¢ Oracle-1 | 82.8 | 672 62.1 70.8
Oracle-2 86.9 71.3 65.8 74.1
Two scoring methods were investigated for the Oracle-5 90.5 75.5 69.7 77.7
above algorithm: one based on rank and the other Oracle-20 | 93.6 80.4 74.2 83.0
on distance. Oracle-100 | 95.1 87.7 80.9 89.0

The rank-based scoring method takes each pro-
posed target and combines the rank of that proposal
across all classifiers, and chooses the translation with
the lowest resulting rank (rank 1 is the best proposed
translation). Since including all the hypothesized
translations regardless of ranking performed poorly,
we only include the ones with a ranking lower than
some threshold V.

The distance-based scoring method selects the hy-
pothesized target word with the smallest distance
from a translation in any of the bridge languages.
We also tested one alternative — dist-rank —
which uses ranks (as described above) to break ties
in the distance-based method, with similar perfor-
mance.

In Table 6, we present the results obtained by ap-
plying different combination algorithms for the path-
way from English to Portuguese using one of the
other Romance languages (Spanish, Italian, French,
and Romanian) as bridges and compare with the sin-
gle best path (English-Spanish-Portuguese). These
results are presented for unrestricted matching on
the full dictionary lexicon (1097 words in each lan-
guage)?. This is a more difficult task than that
used for direct induction (selecting between 100 and
900 potential translation candidates for each source-

2We used L-V (Levenshtein with vowel substitutions at .5)
as the distance function instead of the best performer (L-S).

Table 6: Multipath Translation Induction (L-V)

language word), so the system’s performance is lower
than the Section 3 results.

Since all available dictionaries are incomplete, it
is difficult to decide which set of English words to
compare against. Table 6 presents results for dif-
ferent choices of word coverage: the subset of exist-
ing pairs for English-Spanish, the union over all lan-
guages, and the intersection of all languages. Trends
across subsets are relatively consistent. As an il-
lustration, Table 7 shows consensus formation on
English-Norweigian and English-Portuguese transla-
tion mappings via multiple bridge languages. Note
that the English-French dictionary used here has no
entry for “bait”, preventing its use as a bridge lan-
guage for this word.

As can be seen in Table 6, the distance-based com-
bination methods are more successful at combining
the different proposals than the rank-N combina-
tions. One possible explanation for this is that rank-
based classifiers pick the candidate with the best all-
around distance, while distance-based combinations
choose the single best candidate. Choosing the best
all-around performer is detrimental when cognates
exist for some languages but not for others.



| English | Bridge language | Bridge Word | Target Word

| Score | Rank |

(NORWEGIAN)
bay Danish bugt bukt 1
German bucht bukt 2 1
Dutch baai baug (bow) 1.5 1
bukt 2.5 25
distance-based method: bukt 1 1
rank-based method: bukt 27 1
(PORTUGUESE)
bait Italian esca isca D 1
nada (nothing) 3 54
Spanish carnada corneta (trumpet) 2 1
nada 3 12
isca 3.5 153
Romanian nada nada (nothing) 0.5 1
isca 3.5 153
French N/A N/A N/ N/A
distance-based method: isca 0.5 1
nada 0.5 2
rank-based method: nada 67 1
isca 307 20

Table 7: End-to-End Multipath Translation Induction

The performance of an oracle, if allowed to choose
the correct translation if it appears within the top-IV
in any language, would provide an upper bound for
the performance of the combination methods. Re-
sults for such oracles are also reported in Table 6.
The methods corresponding to “oracle-1” and “dis-
tance” are choosing from the same set of proposed
targets, and the “distance” method achieves perfor-
mance close to that of the oracle (77 vs. 82.8).

6 Path Differences

This section investigates the effect of different path-
way configurations on the performance of the final
multi-path system by examining the following situ-
ations:

o English to Portuguese, using the other Romance
languages as bridges.

e English to Norwegian, using the Germanic lan-
guages as bridges.

e English to Ukrainian, using the Slavic languages
as bridges.

e Portuguese to English, using the Germanic lan-
guages and French as bridges.

The results of these experiments are shown in Ta-
ble 8.3

3Key: en=English, pt=Portuguese, fr=French, it=Italian,
es=Spanish, ro=Romanian, du=Dutch, no=Norwegian,
de=German, da=Danish, cz=Czech, uk=Ukrainian,
po=Polish, sr=Serbian, ru=Russian

The data sets used in these experiments were ap-
proximately the same size as those used in the previ-
ous experiment — 1100-1300 translation word pairs.
Dictionaries for Russian and Ukrainian were con-
verted into romanized pronunciation dictionaries.

There are three observations which can be made
from the multipath results.

1. Adding more pathways usually results in an ac-
curacy improvement. When there is a drop in
accuracy on the cognate vocabulary by adding
an additional bridge language there tends to be
an improvement in accuracy on the full vocabu-
lary due to significantly more cognate pathways
(yielding greater coverage).

2. Tt is difficult to substantially improve upon the
performance of the single closest bridge lan-
guage, especially when they are as close as en-
es-pt. Improvements on performance relative to
the single best ranged from 2% to 20%.

3. Several mediocre pathways can be combined to
improve performance. Though it is always bet-
ter to find one high-performing pathway, it is
often possible to get good performance from
the combination of several, less well-performing
pathways (e.g. en-[sr po]-uk vs. en-ru-uk).

In Table 8 “Cvg” or cognate coverage is the per-
centage words in the source language for which any
of the bridge languages contains a cognate to the
target translation. Italian and French bridges, for
example, offer additional translation pathways to
Portuguese which augment the Spanish pathways.



Accuracy on Accuracy on Cog
Path Full Vocab Cognate Vocab | Cvg
en-es-pt 58.7 86.7 65.5
en-it-pt 44.0 85.4 31.9
en-fr-pt 30.6 74.3 24.8
en-[fr it]-pt 41.2 79.4 42.2
en-[fr it es]-pt 60.2 84.2 70.3
en-da-no 71.9 92.4 75.4
en-du-no 36.1 76.7 39.8
en-de-no 36.1 74.7 38.9
en-[du de]-no 42.3 72.2 54.3
en-[da du de]-no 77.0 87.5 87.4
en-ru-uk 48.8 89.0 44.7
en-po-uk 38.1 87.8 31.9
en-sr-uk 31.9 86.7 30.8
en-[sr po]-uk 45.0 82.0 50.3
en-[ru sr po]-uk 58.4 74.6 71.0
pt-du-en 29.1 69.0 38.4
pt-fr-en 28.1 84.0 24.2
pt-de-en 25.3 68.4 32.1
pt-[de fr]-en 36.5 72.5 48.5
pt-[de fr du]-en 47.0 69.7 66.6

Table 8: Translation Accuracy via Different Bridge
Language Paths (using L-A model)

Using all languages together improves coverage, al-
though this often does not improve performance over
using the best single bridge language.

As a final note, Table 9 shows the cross-language
translation rates for some of the investigated lan-
guages. When translating from English to one of
the Romance languages, using Spanish as the bridge
language achieves the highest accuracy; and using
Russian as the bridge language achieves the best
performance when translating from English to the
Slavic languages. However, note that using English
alone without a bridge language when translating
to the Romance languages still achieves reasonable
performance, due to the substantial French and Lati-
nate presence in English vocabulary.

7 Related Work

Probabilistic string edit distance learning techniques
have been studied by Ristad and Yianilos (1998) for
use in pronunciation modeling for speech recogni-
tion. Satta and Henderson (1997) propose a trans-
formation learning method for generic string trans-
duction. Brill and Moore (2000) propose an alterna-
tive string distance metric and learning algorithm.
While early statistical machine translation mod-
els, such as Brown et al. (1993), did not use
any cognate based information to seed their word-
to-word translation probabilities, subsequent mod-
els (Chen, 1993 and Simard et al., 1992) incor-
porated some simple deterministic heuristics to in-
crease the translation model probabilities for cog-
nates. Other methods have been demonstrated for
building bilingual dictionaries using simple heuristic
rules includes Kirschner (1982) for English/Czech
dictionaries and Chen (1998) for Chinese/English

proper names. Tiedemann (1999) improves on these
alignment seedings by learning all-or-nothing rules
for detecting Swedish/English cognates. Hajic et al.
(2000) has studied the exploitation of language simi-
larity for use in machine translation in the case of the
very closely related languages (Czech/Slovak). Cov-
ington (1998) uses an algorithm based on heuristic
orthographic changes to find cognate words for pur-
poses of historical comparison.

Perhaps the most comprehensive study of word
alignment via string transduction methods was pi-
oneered by Knight and Graehl (1998). While re-
stricted to single language transliteration, it very ef-
fectively used intermediary phonological models to
bridge direct lexical borrowing across distant lan-
guages.

8 Conclusion

The experiments reported in this paper extend prior
research in a number of directions. The novel prob-
abilistic paradigm for inducing translation lexicons
for words from unaligned word lists is introduced.
The set of languages on which we demonstrate these
methods is broader than previously examined. Fi-
nally, the use of multiple bridge languages and of
the high degree of intra-family language similarity
for dictionary induction is new.

There are a number of open questions. The first is
whether there exists a better string transformation
algorithm to use in the induction step. One possible
area of investigation is to use larger dictionaries and
assess how much better stochastic transducers, and
distance metrics derived from them, perform with
more training data. Another option is to investi-
gate the use of multi-vowel or multi-consonant com-
pounds which better reflect the underlying phonetic
units, using an more sophisticated edit distance mea-
sure.

In this paper, we explore ways of using cognate
pairs to create translation lexicons. It is an in-
teresting research question as to whether we can
augment these methods with translation probabil-
ities estimated from statistical frequency informa-
tion gleaned from loosely aligned or unaligned bilin-
gual corpora for non-cognate pairs. Various machine
learning techniques, including co-training and mu-
tual bootstrapping, could employ these additional
measures in creating better estimates.

The techniques presented here are useful for lan-
guage pairs where an on-line translation lexicon does
not already exist, including the large majority of the
world’s lower-density languages. For language pairs
with existing translation lexicons, these methods can
help improve coverage, especially for technical vo-
cabulary and other more recent borrowings which
are often cognate but frequently missing from exist-
ing dictionaries. In both cases, the great potential of



English - Romance Languages
Accuracy on Cognate Vocab (35-68%)

English — Slavic Languages
Accuracy on Cognate Vocab

TL Bridge Language TL Bridge Language

pt it es fr ro 1] cz ru pl sr uk 1]
pt || (100) | 85.6 | 86.7 | 743 | 72.1 | 794 cz || (100) | 703 | 81.4 | 81.0 | 81.4 | 75.0
it 83.7 | (100) | 85.1 | 75.5 | 82.1 | 78.0 ru || 72.7 | (100) | 84.1 | 80.3 | 87.3 | 73.9
es 85.8 | 84.0 | (100) | 78.1 82.1 | 79.3 pl 81.2 85.7 | (100) | 84.5 | 88.2 | 78.2
fr 739 | 75.5 | 76.7 | (100) | 75.2 | 78.7 sr 85.7 | 82.9 | 85.8 | (100) | 85.5 | 76.7
ro || 72.8 | 84.4 | 82.8 | 76.1 | (100) | 78.3 uk || 83.6 | 89.1 | 87.9 | 86.0 | (100) | 73.9
av || 782 | 82.0 | 82.2 | 75.7 | 77.7T | 784 av || 80.2 | 81.5 | 84.2 | 827 | 85.2 | 75

English -+ Romance Languages
Accuracy on Full Vocab

English — Slavic Languages
Accuracy on Full Vocab

TL Bridge Language TL Bridge Language
pt it es fr ro 1] cz ru pl sr uk 0

pt (100) | 42.6 | 58.7 | 29.8 284 | 23.1 cz (100) | 20.5 25.5 | 27.3 | 254 | 12.0
it 42.0 | (100) | 45.6 | 33.8 34.8 | 21.3 ru 23.3 | (100) | 29.9 273 | 47.1 | 134
es || 57.5 | 44.3 | (100) | 31.8 | 29.7 | 22.5 pl 276 | 30.3 | (100) | 27.8 | 36.8 | 15.0
fr 30.7 | 35.2 | 32.7 | (100) | 33.3 | 24.9 sr 31.0 | 296 | 294 | (100) | 33.1 | 185
ro || 285 | 35.7 | 30.5 | 35.0 | (100) | 23.9 uk || 27.0 | 48.7 | 38.0 | 31.4 | (100) | 15.7
av 39.2 39.0 | 41.2 | 32.0 31.0 | 22.6 av 27 31.7 | 30.2 28 35.2 | 14.6

Table 9: Accuracy of English to TL (Target Language) via One Bridge Language (using L-A model)

(0 = direct mapping — no bridge)

this work is the ability to leverage a single bilingual
dictionary into translation lexicons for its entire lan-
guage family, without any additional resources be-
yond raw wordlists for the other languages in the
family.
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