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Abstract

The problem of machine translation can be viewed as
consisting of two subproblems (a) Lexical Selection
and (b) Lexical Reordering. We propose stochas-
tic finite-state models for these two subproblems in
this paper. Stochastic finite-state models are effi-
ciently learnable from data, effective for decoding
and are associated with a calculus for composing
models which allows for tight integration of con-
straints from various levels of language processing.
We present a method for learning stochastic finite-
state models for lexical choice and lexical reordering
that are trained automatically from pairs of source
and target utterances. We use this method to de-
velop models for English-Japanese translation and
present the performance of these models for trans-
lation on speech and text. We also evaluate the ef-
ficacy of such a translation model in the context of
a call routing task of unconstrained speech utter-
ances.

1 Introduction

The problem of machine translation can be viewed
as consisting of two phases: (a) lexical choice phase
where appropriate target language lexical items are
chosen for each source language lexical item and
(b) lexical reordering phase where the chosen tar-
get language lexical items are rearranged to produce
a meaningful target language string. In this paper,
we develop stochastic finite-state transducer (SFST)
models for these two phases which can then be com-
posed into a single SFST model for Statistical Ma-
chine Translation (SMT). We explore the perfor-
mance limits of such models in the context of trans-
lation in limited domains. We are also interested in
SFST models since they allow for tight integration
with a speech recognizer for speech-to-speech trans-
lation. In particular, we are interested in one-pass
decoding and translation of speech as opposed to the
more prevalent approach of translation of speech lat-
tices.

* Anuvaad is a system embodying our approach and can be
seen at http://www.research.att.com/” srini/Anuvaad.html

Finite state models have been extensively applied
to many aspects of language processing including,
speech recognition (Pereira and Riley, 1997; Riccardi
et al., 1996), phonology (Kaplan and Kay, 1994),
morphology (Koskenniemi, 1984), chunking (Ab-
ney, 1991; Bangalore and Joshi, 1999) and pars-
ing (Roche, 1999). Finite-state models are attrac-
tive mechanisms for language processing since they
are (a) efficiently learnable from data (b) generally
effective for decoding (c) associated with a calculus
for composing models which allows for straightfor-
ward integration of constraints from various levels of
language processing.!

A number of approaches to SMT, including the
seminal work at IBM (Brown et al., 1993), are
stochastic string transductions that map source lan-
guage strings directly to target language strings.
There are other approaches to SMT where transla-
tion is achieved through tree transductions that map
source language trees to target language trees (Al-
shawi et al., 1998b; Wu, 1997). There are also in-
ternational multi-site projects such as VERBMO-
BIL (Verbmobil, 2000) and CSTAR (Woszczyna
et al., 1998; Lavie et al., 1999) that are involved
in speech-to-speech translation in limited domains.
The systems developed in these projects employ
various techniques ranging from example-based to
interlingua-based translation methods for transla-
tion between English, French, German, Italian,
Japanese, and Korean.

Finite-state models for SMT have been previ-
ously suggested in the literature (Vilar et al., 1999;
Knight and Al-Onaizan, 1998). In (Vilar et al.,
1999), a deterministic transducer is used to imple-
ment an English-Spanish speech translation system.
In (Knight and Al-Onaizan, 1998), finite-state ma-
chine translation is based on (Brown et al., 1993)
and is used for decoding the target language string.
However, no experimental results are reported using
this approach.

Unlike previous approaches, we subdivide the
translation task into lexical choice and lexical re-

1Furthermore, software implementing the finite-state cal-
culus is available for research purposes.



ordering phases. The lexical choice phase is de-
composed into phrase-level and sentence-level trans-
lation models. We use a tree-based alignment al-
gorithm (Alshawi et al., 1998b) to obtain a bilin-
gual lexicon. The phrase-level translation is learned,
based on joint entropy reduction of the source and
target languages (Bangalore and Riccardi, 2000). A
variable length n-gram model (VNSA) (Riccardi et
al., 1995; Riccardi et al., 1996) is learned for the
sentence-level translation. The reordering step uses
position markers on a tree-structure, but approxi-
mates a tree-transducer using a string-transducer.
One of the objectives of this paper is to explore the
impact of this approximation on translation accu-
racy and task accuracy in limited domain applica-
tions.

In addition, we have used the resulting finite-
state translation method to implement an English-
Japanese speech and text translation system and
a Japanese-English text translation system. We
present evaluation results for these systems and dis-
cuss their limitations. We also evaluate the efficacy
of this translation model in the context of a telecom
application such as call routing.

The layout of the paper is as follows. In Section 2
we discuss the architecture of the finite-state trans-
lation system. We discuss the algorithms for lexical
choice and phrasal translations in Section 3. The
details of our method for lexical reordering the re-
sult of lexical choice is presented in Section 4. In
Section 5 we present the experiments and evalua-
tion results for the various translation systems on
text and speech input and in the context of a call-
routing spoken dialog system.

2 Stochastic Machine Translation

In machine translation, the objective is to map a
source symbol sequence Wg = wy,...,wn, (w; €
Lg) into a target sequence Wr = z1,...,zN, (z; €
Lr). The statistical machine translation approach
is based on the noisy channel paradigm (Brown et
al., 1993) and the Maximum-A-Posteriori decoding
algorithm. The sequence Wy is thought as a noisy
version of Wr and the best guess W;i is then com-
puted as

~

Wi = arg max P(Wr|Ws)
= argmax P(Ws|Wr)P(Wr) (1)

In (Brown et al., 1993) they propose a method for
maximizing P(Wr|Wg) by estimating P(Wr) and
P(Ws|Wr) and solving the problem in equation 1.
Our approach to statistical machine translation dif-
fers from the model proposed in (Brown et al., 1993)
in that:

e We compute the joint model P(Wg, Wr) from
the bilanguage corpus to account for the direct
mapping of the source sentence Wy into the tar-
get sentence WT that is ordered according to the
source language word order. The target string
W is then computed as the most likely string
based on the target language model (Ar) from
a subset of all possible reorderings (A, ) of the

string Wr according to Equation (3).

Wr = argmax P(Ws,Wr) (2)

~ ~

Wj; = arg max P, (Wr) (3)
WTE)‘WT

o We decompose the translation problem into
local (phrase-level) and global (sentence-level)
source-target string transduction.

e We automatically learn stochastic automata
and transducers to perform the sentence-level
and phrase-level translation.
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—=Imax P(\NS,V¥)

max R (W)

Figure 1: A block diagram of the stochastic machine
translation system

As shown in Figure 1, the stochastic machine
translation system consists of two phases, the lexical
choice phase and the reordering phase. In the next
sections we describe the finite-state machine com-
ponents and the operation cascade that implements
this translation algorithm.

3 Lexical Choice

The first stage in the process of training a lexical
choice model is obtaining an alignment function that
given a pair of source and target language sentences,
maps source language word subsequences into target
language word subsequences. For this purpose, we
use the alignment algorithm described in (Alshawi
et al., 1998a) which we briefly present here.

The algorithm takes as input a set of bitexts. We
define a bitext to be a source language sentence
paired with its translation. The algorithm consists
of two phases: acquisition of a translation lexicon
and an alignment search. The translation lexicon
specifies a cost for each pairing of source and target
word subsequences? . In the second phase, an align-
ment search is performed that given a source and
target sentence pair, produces a set of pairings of

2We consider source and target word subsequences of 2-1,
1-2, 1-0 and 0-1
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Eng: I need to make a collect call
Jap: fllZ alL 7 b a—-z 2tk
Source:-114764 2

Alignment: 1503024
Target:-13451

Eng: I'd like to charge this to my home phone
Jap: #idx ch% £ FO B Fr—¥
Source: -114247578

Alignment: 170620345

Target: -1623471

BEPHDET

L22VWOTY

Figure 2: Example bilingual texts with alignment information

minimum total cost which maps the source sentence
to its target sentence. This search is carried out in a
hierarchical fashion with recursive decomposition of
the source and target strings around a hypothesized
head word in the source string and its correspond-
ing translation in the target string. The hierarchi-
cal alignment which minimizes the cost function is
computed using a dynamic programming procedure.
Some example bitexts and the result of the align-
ment procedure are shown in Figure 2.2 The align-
ment for the first bitext reads as: first source word
is aligned to the first target word, the second source
word is aligned to the fifth target word, the third
source word not aligned with any target word and
so on. The tree structure resulting from the hier-
archical decomposition of the source string and the
target string is represented along the third and the
fifth line of Figure 2. Each word position is associ-
ated with the word index of its mother in the tree.
The root of the tree is indicated by -1. The tree
structure infomration is used for lexical reordering
as discussed in Section 4.

Note that we use a tree-based alignment unlike
the string-based alignment in IBM statistical mod-
els. We believe that a tree-based alignment is more
natural for modeling lexical reordering operations
than a string-based alignment. We are currently in-
vestigating the quality of the dictionary produced by
a tree-based alignment compared to a string-based
alignment.

From the alignment information in Figure 2, it
is straightforward to compile a bilanguage corpus
consisting of source-target symbol pair sequences
T = ...(w;x;) ..., where the source word w; €
LgUe and its aligned word x; € LrUe (e is the
null symbol). Note that the tokens of a bilanguage
could be either ordered according to the word or-
der of the source language or ordered according to
the word order of the target language. From the cor-

3The Japanese string was translated and segmented so
that a token boundary in Japanese corresponds to some token
boundary in English.

pus 7, we train a Stochastic Finite State Transducer
(SFST) which is an extension of the Variable Ngram
State Automaton (Riccardi et al., 1996). Stochastic
transducers 7st : Lg X L — [0,1] map the string
Ws € Lg into W € Lt and assign a probability to
the transduction Wg =5 Wr. In our case, the SFST
model will estimate P(Wg =¥ Wy) = P(Ws, Wr)
and the symbol pair (w;,z;) will be associated to
each transducer state ¢ with input label w; and out-
put label z;. The model 7gr provides a string-to-
string transduction from Wg into Wr.

3.1 Acquiring Phrasal Translations

While word-to-word translation is only approximat-
ing the lexical choice process, phrase-to-phrase map-
ping can greatly improve the translation of col-
locations, recurrent strings, etc. Moreover, SF-
STs can take advantage of the phrasal correla-
tion to improve the computation of the probabil-
ity P(Ws, Wr) (Bangalore and Riccardi, 2000). In
this section, we describe an alternate method that
uses the result of the alignment module as a seed
to acquire bilingual phrases of more than two words
length.

As mentioned above, we use the alignment in-
formation to construct a bilanguage corpus where
each token is of the form (wj;,z;). Bilingual phrases
can be derived from the phrases (substrings) of the
bilinguage corpus that have high mutual informa-
tion score. We acquire bilanguage phrases from the
bilanguage corpus by computing weighted mutual
information metric of n-grams for arbitrarily large
values of n. We use a suffix array to compute the
frequencies of large n-grams similar to the method
presented in (Yamamoto and Church, 1998). Since
the phrases acquired from a source(target) ordered
bilanguage corpus may not have the target(source)
language words in the order of the target(source)
language, we introduce a reordering phase for the
words in a phrase which we call local reordering.

In the local reordering phase, for each phrase we
select an alignment which aligns each source word



with some word(s) in the target phrase. We then
reorder the words of the target phrase such that the
reordering corresponds to a substring (consecutive
words) of the target sentence in the selected align-
ment. A sample set of phrases after reordering is
illustrated in Table 3.

Japanese Phrases

English Phrases

IAf F4—TVR F4— ATand T

LD RO |EEIC to my home phone

fxarse a—% I need to make a

W5 BEVRHDZ T collect call

UL Hutcz EI3RX-T how may I help
BFEWLEL:SH you

I3V By Whe#ZlFE g | yes could you

Figure 3: Examples of acquired phrases after re-
ordering of Japanese phrases

4 Lexical Reordering

The lexical choice model outputs a sequence of tar-
get language words and phrases for a given source
language sentence. Since these target language
words and phrases may not form a well-formed tar-
get language sentence, we need to apply a lexical
reordering (sentence-level) operation.

For the lexical reordering operation, the exact ap-
proach would be to search through all possible per-
mutation sequences of words and phrases and select
the most likely sequence. However, that is computa-
tionally very expensive. To overcome this problem,
we decompose the sequence of words and phrases
into a tree with each arc labeled with position infor-
mation of the daughter with respect to its mother.
This tree structure could be interpreted as a depen-
dency tree.

We use a stochastic finite-state model to parse the
sequence of words and phrases into a tree contain-
ing reordering information. We train this SFST from
a corpus derived from an aligned corpus of source-
ordered target language sentence paired with its tar-
get sentence (Figure 4). The corpus (Figure 5) con-
sists of bracketed representation of dependency trees
which are constructed from the alignment informa-
tion shown in Figure 4.

The composition of the reordering finite-state
transducer on the result of the lexical choice model
results in strings that are annotated with reordering
instructions. To ensure we obtain well-formed brack-
eted strings, we compose the result with a trans-
ducer that checks for all possible well-formed brack-
ets, for a fixed number of brackets. This can be
regarded as a finite-state approximation of a para-
thensis context-free grammar upto a bounded depth.
The resulting string from the composition contains
reordering instructions which are interpreted to form

the reordered target language sentence. Other inter-
esting approaches involve extracting a context-free
grammar from the training corpus and approximat-
ing the resulting grammar by a finite-state grammar
using techniques discussed in (Pereira and Wright,
1997; Nederhof, 2000).

Figure 6 shows the sequence of transductions
starting from a source language string that results
in a target language string. The intermediate steps
involved include lexical choice, parse of the source-
ordered target string, reordered parse tree for the
target string and the final target string.

5 Experiments and Evaluation

In this section, we discuss issues concerning evalu-
ation of the translation system. The data for the
experiments reported in this section were obtained
from the customer side of operator-customer con-
versations, with the customer-care application de-
scribed in (Riccardi and Gorin, 2000). Each of the
customer’s utterance transcriptions were then man-
ually translated into Japanese. A total of 15,457
English-Japanese sentence pairs was split into 12,204
training sentence pairs and 3,253 test sentence pairs.

5.1 Evaluation of Machine Translation
Systems

Evaluation of a machine translation systems has
been a subject of discussion for many years (Coun-
cil, 1966; Arnold, 1993). A universally acceptable,
objective and reliable metric that can be computed
automatically is yet to be found. However, in the in-
terest of evaluating our translation system automat-
ically and objectively without human intervention,
we report the performance of a machine translation
system in application independent and in the con-
text of an application.

For the application independent evaluation, we
employ two metrics based on string edit distance be-
tween the output of a translation system and the ref-
erence translation string: simple accuracy and trans-
lation accuracy (Alshawi et al., 1998b). Simple ac-
curacy is the number of insertion (I + I'), deletion
(D + D') and substitutions (S) errors between the
target language strings in the test corpus and the
strings produced by the translation model. The met-
ric is summarized in Equation 4. R is the number of
tokens in the target string. This metric is similar to
the string distance metric used for measuring speech
recognition accuracy.

I+I'+D+D'+S
- = ) @)

The simple accuracy metric, however, penalizes
a misplaced token twice, as a deletion from its ex-
pected position and insertion at a different posi-

SimpleAccuracy = (1



Eng-Jap: fll3 L72WwWoTd Fx—Y Ih%x o R B
Japanese: fll3 ZhE D RO B|HIZ Fr—¥ LLWoTT

Source: -1421646
Alignment: 1762345
Target:-1142472

Figure 4: Alignment between English-ordered Japanese and Japanese strings
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Figure 5: Bracket representation of a dependency tree with information on reordering words. Each token

consists of the form of a transduction (input:output).

tion. We use a second metric, Translation Accuracy,
shown in Equation 5, which treats deletion of a to-
ken at one location in the string and the insertion
of the same token at another location in the string
as one single movement error (M=I+D).* This is
in addition to the remaining insertion, deletion and
substitutions.

_M+I'+D'+S

)
(5)

For application dependent evaluation of a transla-
tion system, we employ the translation system in the
context of call type classification. We compare the
classification accuracy using the text produced by
the translation system against that produced using
the reference text.

TranslationAccuracy = (1

5.2 Application Independent Evaluation

Using the training sentence pairs and the procedure
described in the earlier sections, we have developed
English to Japanese and Japanese to English trans-
lation systems.

Table 1 presents the performance results of the
English to Japanese translation system using differ-
ent translation models, before and after the reorder-
ing stage.

In both tables, the unigram, bigram and trigram
translation models do not include any phrases while
uniphrase, biphrase and triphrase models include the
automatically acquired phrases. As can be seen,
the performance of models after reordering is signif-
icantly better than the performance before reorder-

ing.

4Note that the movement errors are derived after the
strings are compared using insertion, deletion and substitu-
tion operations.

Trans Accuracy Accuracy

VNSA before after

order Reordering | Reordering
Unigram 23.8 32.2
Bigram 56.9 69.4
Trigram 56.4 69.1
UniPhrase 44.0 46.8
BiPhrase 60.4 69.8
TriPhrase 58.9 66.7

Table 1: Translation Accuracy of the English to
Japanese Translation System with and without
phrases, before and after reordering on text.

5.2.1 Spoken Language Translation

The English-Japanese translation system was used
to translate spoken language as well. The com-
posed lexical choice transducer and lexical reorder-
ing transducer can be directly plugged into a speech
recognizer in conjunction with the source language
acoustic model to produce a source-speech to target-
text system. We will report the result of such a sys-
tem in the final version of this paper. Currently, we
report performance on one-best output of a speech
recognizer as the input to the translation system.

A VNSA-based trigram language model that was
trained on the 12204 training sentences was used as
the language model for the speech recognizer. An
off-the-shelf context dependent acoustic model for
telephone speech was used as the acoustic model.
The word accuracy of the speech recognizer on the
test data is 74.3%. Table 2 summarizes the trans-
lation accuracies of various models on the one-best
output of the speech recognizer. The simple and
translation accuracy of the triphrase-based transla-
tion system on the one-best output of the recognizer
is 56.9% respectively.



English:I’d like to charge this to my home phone
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Japanese: A3 TN ZRDORDEEHIZ Fr—¥ L2WOTT —
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Choice
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Lezical
Reordering
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Figure 6: Sequence of finite-state transductions from English to Japanese

Table 2: Translation Accuracy of the English to
Japanese Translation System with and without
phrases, before and after reordering on one-best out-
put of the speech recognizer.

5.3 Application Dependent Evaluation:
Call Type Classification

The objective of this experiment is to measure the
performance of a translation system in the context
of an application, in our case, a call type classifi-
cation application task called the How May I Help
You? (Gorin et al., 1997) task. We briefly review
the problem and the spoken language system. The
goal is to sufficiently understand caller’s responses
to the open-ended prompt How May I Help You?
and route such a call based on the meaning of the re-
sponse. Thus we aim at extracting a relatively small
number of semantic actions from the utterances of
a very large set of users who are not trained to the
system’s capabilities and limitations.

The first utterance of each transaction has been

Trans Accuracy Accuracy transcribed and marked with a call-type by label-
VNSA order before after ers. There are 14 call-types plus a class other for
Reordering | Reordering the complement class. In particular, we focused our
Unigram 21.4 21.7 study on the classification of the caller’s first utter-
Bigram 48.9 55.7 ance in these dialogs. The spoken sentences vary
Trigram 49.0 56.8 widely in duration, with a distribution distinctively
UniPhrase 39.3 39.6 skewed around a mean value of 5.3 seconds corre-
BiPhrase 51.3 56.5 sponding to 19 words per utterance. Some examples
TriPhrase £0.0 £6.9 of the first utterances are given below:

e Yes ma’am where is area code two zero
one?

e I’'m tryn’a call and I can’t get it to
go through I wondered if you could try
it for me please?

e Hello

In an automated call router there are two impor-
tant performance measures. The first is the prob-
ability of false rejection, where a call is falsely re-
jected or classified as other. Since such calls would
be transferred to a human agent, this corresponds to
a missed opportunity for automation. The second
measure is the probability of correct classification.
Errors in this dimension lead to misinterpretations
that must be resolved by a dialog manager (Abella
and Gorin, 1997).

Using our approach described in the previous
sections, we have trained a unigram, bigram and
trigram VNSA based translation models with and
without phrases. Table 3 shows lexical choice (bag-
of-tokens) accuracy for these different translation



models measured in terms of recall, precision and
F-measure.

Trans Recall | Precision | F-Measure
VNSA order (R) (P) %;i}’;
Unigram 31.1 92.2 46.5
Bigram 65.4 89.9 75.8
Trigram 63.2 91.5 4.7
Phr. Unigram | 41.9 92.9 57.8
Phr. Bigram 66.7 89.3 76.4
Phr. Trigram | 65.3 89.9 75.7

Table 3: Lexical choice accuracy of the Japanese
to English Translation System with and without
phrases

In order to measure the effectiveness of our trans-
lation models for this task we classify Japanese ut-
terances based on their English translations. We
trained a classifier on the training set of English sen-
tences each of which was annotated with a call type.
The classifier searches for phrases that are strongly
associated with one of the call types (Gorin et al.,
1997) and in the test phase the classifier extracts
these phrases from the translation output. Figure 7
plots the false rejection rate against the correct clas-
sification rate of the classifier on the English gener-
ated by three different Japanese to English transla-
tion models for the set of Japanese test sentences.
The figure also shows the performance of the classi-
fier using the correct English text as input.

ROC curve for English test set
100 T T T

95

Trigram Phrase-Unigram *

* * . e
90 * ; %
Py
% * :
g5 £ # : : :

Phrase—-Trigram

Unigram

Correct classification rate (%)

75

70 I I I I I I I I
0 10 20 30 40 50 60 70 80 90
False rejection rate (%)

Figure 7: Plots for the false rejection rate against
the correct classification rate of the classifier on the
English generated by three different Japanese to En-
glish translation models

There are a few interesting observations to be
made from the Figure 7. Firstly, the task per-
formance on the text data is asymptotically simi-
lar to the task performance on the translation out-

put. In other words, the system performance is not
significantly affected by the translation process; a
Japanese transcription would most often be associ-
ated with the same call type after translation as if
the original were English. We believe that this re-
sult is due to the nature of the application where the
classifier is mostly relying on the existence of certain
key words and phrases.

The task performance improved from the
unigram-based translation model to phrase unigram-
based translation model corresponding to the im-
provement in the lexical choice accuracy in Table 3.
Also, at higher false rejection rates, the task perfor-
mance is better for trigram-based translation model
than the phrase trigram-based translation model
since the precision of lexical choice is better than
that of the phrase trigram-based model as shown in
Table 3. This difference narrows at lower false rejec-
tion rate.

We are currently working on evaluating the
translation system in an application independent
method and developing improved models of reorder-
ing needed for better translation system.

6 Conclusion

We have presented an architecture for speech trans-
lation in limited domains based on the simple ma-
chinery of stochastic finite-state transducers. We
have implemented stochastic finite-state models for
English-Japanese and Japanese-English translation
in limited domains. These models have been trained
automatically from source-target utterance pairs.
We have evaluated the effectiveness of such a transla-
tion model in the context of a call-type classification
task.
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