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Abstract
Using finite-state automata for the text analysis
component in a text-to-speech system is problem-
atic in several respects: the rewrite rules from which
the automata are compiled are difficult to write and
maintain, and the resulting automata can become
very large and therefore inefficient. Converting the
knowledge represented explicitly in rewrite rules
into a more efficient format is difficult. We take an
indirect route, learning an efficient decision tree rep-
resentation from data and tapping information con-
tained in existing rewrite rules, which increases per-
formance compared to learning exclusively from a
pronunciation lexicon.

1 Introduction
Text-to-speech (TTS) systems, like any other piece
of sophisticated software, suffer from the shortcom-
ings of the traditional software development pro-
cess. Highly skilled developers are a costly re-
source, the complexity and sheer size of the code
involved are difficult to manage. A paradigmatic
example of this is the letter-to-sound component
within the text analysis module of a mature large-
scale text-to-speech system. In the system described
in (Sproat, 1998) text analysis is performed using
finite-state transducers compiled from rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996)
and other high-level descriptions. While the exclu-
sive use of finite-state technology has advantages, it
is not without its shortcomings, both technical and
stemming from the use of hand-crafted rule sets and
how they are represented:

1. Extensive rule sets need to be constructed by
human experts, which is labor-intensive and
expensive (Sproat et al., 1998).

2. Realistic rule sets are difficult to maintain be-
cause of complex interactions between serially
composed rules.

3. Although rewrite rules can, in principle, be
compiled into a huge monolithic transducer
that is then very time-efficient, in practice this
is not feasible because of the enormous sizes of
the resulting machines (cf. the numbers given
in (Mohri and Sproat, 1996) and (Sproat et al.,
1998, 74)).

4. For reasons of space efficiency, certain com-
putations are deferred until run-time (Mohri et
al., 1996; Mohri et al., 2000), with a significant
impact on time efficiency.

While there is a clear need for human expert
knowledge (Sproat et al., 1998, 75ff.), those experts
should not have to deal with the performance as-
pects of the knowledge representation. Ideally we
would like to use a knowledge representation that
is both time and space efficient and can be con-
structed automatically from individually meaning-
ful features supplied by human experts. For practi-
cal reasons we have to be content with methods that
address the efficiency issues and can make use of
explicitly represented knowledge from legacy sys-
tems, so that moving to a new way of building TTS
systems does not entail starting over from scratch.

As a case study of how this transition might be
achieved we took the letter-to-phoneme rules for
French in the TTS system described in (Sproat,
1998) and proceeded to

1. Construct a lexicon using the existing system.

2. Produce an alignment for that lexicon.

3. Convert the aligned lexicon into training in-
stances for an automatically induced classifier.

4. Train and evaluate decision trees.

By running the existing system on a small news-
paper corpus (ca. 1M words of newspaper text from
Le Monde) and eliminating abbreviations we ob-
tained a lexicon of about 18k words. This means



that the performance of the automatically trained
system built from this lexicon is relative to the ex-
isting system.

The key steps, aligning the lexicon and building
a training set, are described in detail in Sections 2
and 3 below.

Our choice of decision trees was motivated by
their following desirable properties:

1. Space and time efficiency, provided the feature
functions can be represented and computed ef-
ficiently, which they can be in our case.

2. Generality.

3. Symbolic representation that can easily be in-
spected and converted.

The first property addresses the efficiency re-
quirements stated above: if every feature function
can be computed in timeO(f), where the function
f does not involve the height of the decision treeh,
then the classification function represented by the
decision tree can be computed in timeO(λn. h ×
f(n)) = O(f) if feature values can be mapped to
child nodes in constant time, e. g. through hashing;
and similarly for space.

The other properties justify the use of decision
trees as a knowledge representation format. In par-
ticular, decision trees can be converted into im-
plicational rules that an expert could inspect and
can in principle be compiled back into finite-state
machines (Sproat and Riley, 1996), although that
would re-introduce the original efficiency problems.
On the other hand, finite-state transducers have the
advantage of being invertible, which can be ex-
ploited e. g. for testing hand-crafted rule sets.

We use a standard decision tree learner (Quin-
lan, 1993), since we believe that it would be pre-
mature to investigate the implications of different
choices of machine learning algorithms while the
fundamental question of what any such algorithm
should use as training data is still open. This topic
is explored further in Section 5. Related work is
discussed in Section 6.

2 Aligning the Lexicon
Learning a mapping between sets of strings is dif-
ficult unless the task is suitably restricted or addi-
tional supervision is provided. Aligning the lexicon
allows us to transform the learning task into a clas-
sification task to which standard machine learning
techniques can be applied.

Given a lexical entry we ideally would want to
align each letter with zero or more phonemes in
a way that minimizes the descriptions of the func-
tion performing the mapping and of the exceptions.
Since we do not know how to do this efficiently,
we chose to be content with an alignment produced
by the first phase of the algorithm described in
(Luk and Damper, 1996): we treat the strings to be
aligned as bags of symbols, count all possible com-
binations, and use this to estimate the parameters for
a zeroth-order Markov model.

(a) t e x . t e
t E k s t .

(b) t e x t e . . . . .
. . . . . t E k s t

Figure 1: Two possible alignments

Figure 1 shows two examples of an alignment,
where the dot represents the empty string (for rea-
sons of visual clarity), also referred to asε. Align-
ment (b), while not as intuitively plausible as align-
ment (a), is possible as an extreme case. In gen-
eral, when counting the combinations of` letters
with p phonemes, we want to includep empty let-
ters and̀ empty phonemes. For example, given the
letters ‘texte’ and corresponding phonemes /tEkst/,
we countCL(t, ε) = 10,CL(t, t) = 4,CL(t, k) = 2,
etc. By normalizing the counts we arrive at an em-
pirical joint probability distributionP̃L for the lexi-
con.

The existing rewrite rules were another source of
information. A rewrite rule is of the form

φ→ ψ / λ ρ

whereφ is usually a string of letters andψ a string
of phonemes. The contextual restrictions expressed
by λ and ρ will be ignored. Typicallyφ and ψ
are very short, rarely consisting of more than four
symbols. We created a second lexicon consisting
of around 200 pairs〈φ, ψ〉 mentioned in the rewrite
rules, and applied the same procedure as before to
obtain countsCR and from those a joint probability
distributionP̃R.

The two empirical distributions were combined
and smoothed by linear interpolation with a uniform
distributionPU :

P (x, y) = λ1P̃R(x, y) + λ2P̃L(x, y) + λ3PU (x, y)

where eachλi ≥ 0 andλ1 + λ2 + λ3 = 1. The
effects of using different coefficient vectors~λ will
be discussed in Section 4.



Since we had available a library for manipulating
weighted automata (Mohri et al., 2000), the align-
ments were computed by using negative log proba-
bilities as weights for a transducer with a single state
(hence equivalent to a zeroth-order Markov model),
composing on the left with the letter string and on
the right with the phoneme string, and finding the
best path (Searls and Murphy, 1995; Mohri et al.,
2000). This amounts to insertingε-symbols into
both the string of letters and the string of phonemes
in a way that minimizes the overall weight of the
transduction, i. e. maximizes the probability of the
alignment with respect to the model.

3 Building Training Instances

Now we bring in additional restrictions that allow
us to express the task of finding a function that maps
letter sequences to phoneme sequences as the sim-
pler task of inducing a mapping from a single letter
to a single phoneme. This is a standard classifica-
tion task, and once we have a set of feature func-
tions and training instances we can choose from a
multitude of learning algorithms and target repre-
sentations. However, investigating the implications
of different choices is not our goal.

The first simplifying assumption is to pretend that
translating an entire text amounts to translating each
word in isolation (but see the discussion ofliaison
in Section 5 below). Secondly we make use of the
fact that the pronunciation of a letter is in most cases
fully determined by its local context, much more so
in French (Laporte, 1997) than in English.

Each letter is to be mapped to a phoneme, or the
empty stringε, in the case of “silent” letters (dele-
tions). An additional mechanism is needed for those
cases where a letter corresponds to more than one
phoneme (insertions), e. g. the letter ‘x’ correspond-
ing to the phonemes /ks/ in Figure 2a. The problem
is the non-uniform appearance of an explicit empty
string symbol that allows for insertions. We avoided
having to build a separate classifier to predict these
insertion points (see (Riley, 1991) in the context of
pronunciation modeling) by simply pretending that
an explicit empty string is present before each letter
and after the last letter. This is illustrated in Fig-
ure 2b. Visual inspection of several aligned lexica
revealed that at most one empty string symbol is
needed between any two letters.

From these aligned and padded strings we derived
training instances by considering local windows of
a fixed size. A context of size one requires a win-

(a) t e x . t e
t E k s t .

(b) . t . e . x . t . e .
. t . E . k s t . . .

Figure 2: Padding aligned strings

dow of size three, which is centered on the letter
aligned with the target phoneme. Figure 3 shows
the first few training instances derived from the ex-
ample in Figure 2b above. The beginning and end
of the string are marked with a special symbol. Note
that the empty string symbol only appears in the
center of the window, never in the contextual part,
where it would not convey any information.

$ . t 7→ .
$ t e 7→ t
t . e 7→ .
t e x 7→ E
e . x 7→ .
e x t 7→ k
x . t 7→ s
x t e 7→ t

Figure 3: A few training instances (context size: 1)

4 Evaluation

We delineated a 90%/10% split of the lexicon and
performed the alignment using a probability distri-
bution with coefficientsλ1 = 0, λ2 = 0.9, and
λ3 = 0.1, i. e., no information from the rewrite
rules was used and the empirical probabilities de-
rived from the lexicon were smoothed slightly. The
value forλ3 was determined empirically after sev-
eral trial runs on a held-out portion. We then gener-
ated training instances as described in the previous
section, and set aside the 10% we had earmarked
earlier for testing purposes. We ran C4.5 on the re-
maining portion of the data, using the held out 10%
for testing. Table 1 summarizes the following as-
pects of the performance of the induced decision
tree classifiers on the test data relative to the size of
context used for classification: classification accu-
racy per symbol; micro-averaged precision (P) and
recall (R) per symbol; size of the tree in number of
nodes; and size of the saved tree data in kilobytes.
All trees were pruned and the subsetting option of
C4.5 was used to further reduce the size of the trees.

Further increasing the context size did not result
in better performance. We did see a performance in-



context acc. P R size of tree
letters % % % nodes kB

0 84.0 51.9 86.6 44 7
1 96.6 90.0 91.3 917 149
2 98.6 97.0 97.1 2664 435
3 98.7 97.5 97.4 3585 586

Table 1: Performance relative to context size, align-
ment based on lexicon

crease, however, when we repeated the above proce-
dure with different coefficients~λ. This time we set
λ1 = 0.9, λ2 = 0.09, andλ3 = 0.01. These partic-
ular values were again determined empirically. The
important thing to note is that the information from
the rewrite rules is now dominant, as compared to
before when it was completely absent. The effect
this had on performance is summarized in Table 2
for three letters of context. As before, classification
accuracy is given on a per-symbol basis; average ac-
curacy per word is around 85%. Notice that the size
of the tree decreases as a result of a better alignment.

alignment acc. P R size of tree
% % % nodes kB

lexicon 98.7 97.5 97.4 3585 586
lex. + rules 98.9 97.8 97.9 3394 555

Table 2: Performance relative to alignment quality
(context size: 3)

These figures are all relative to our existing sys-
tem. What is most important to us are the vast im-
provements in efficiency: the decision trees take up
less than 10% of the space of the original letter-to-
phoneme component, which weighs in at 6.7 MB
total with composition deferred until runtime, since
off-line composition would have resulted in an im-
practically large machine. The size of the origi-
nal component could be reduced through the use
of compression techniques (Kiraz, 1999), which
would lead to an additional run-time overhead.

Classification speed of the decision trees is on
the order of several thousand letters per second (de-
pending on platform details), which is many times
faster than the existing system. The exact details of
a speed comparison depend heavily on platform is-
sues and what one considers to be the average case,
but a conservative estimate places the speedup at a
factor of 20 or more.

5 Directions for Further Research

The tremendous gains in efficiency will enable us
to investigate the use of additional processing mod-
ules that are not included in the existing system be-
cause they would have pushed performance below
an acceptable bound. For example no sophisticated
part-of-speech (POS) disambiguation is done at the
moment, but would be needed to distinguish, e. g.,
between different pronunciations of French words
ending in -ent, which could be verbs, nouns, ad-
verbs, etc. The need for POS disambiguation is
even clearer for languages with “deep” orthogra-
phies, such as English. In conjunction with shallow
parsing, POS disambiguation would give us enough
information to deal with most cases ofliaison, an
inter-word phenomenon that required special atten-
tion in the existing system and that we have so far
ignored in the new approach because of the exclu-
sive focus on regularities at the level of isolated
words.

We have been using the existing automaton-based
system as our baseline, which is unfair because
that system makes mistakes which could very well
obscure some regularities the inductive approach
might otherwise have discovered. Future compar-
isons should use an independent gold standard, such
as a large dictionary, to evaluate and compare both
approaches. The advantage of using the existing
system instead of a dictionary is that we could gen-
erate large amounts of training data from corpora.

But even with plenty of training data available,
the paradigms of verbal inflections, for example,
are quite extensive in French, inflected verb forms
are typically not listed in a dictionary, and we can-
not guarantee that sufficiently many forms appear
in a corpus to guarantee full coverage. In this case
it would make sense to use a hybrid approach that
reuses the explicit representations of verbal inflec-
tions from the existing system.

More importantly, having more training data
available for use with our new approach would
only help to a small extent. Though more and/or
cleaner data would possibly result in better align-
ments, we do not expect to find vast improvements
unless the restriction imposed by the zeroth-order
Markov assumption used for alignment is dropped,
which could easily be done. However, it is not clear
that using a bigram or trigram model for alignment
would optimize the alignment in such a way that the
decision tree classifier learned from the aligned data
is as small and accurate as possible.



This points to a fundamental shortcoming of the
usual two-step procedure, which we followed here:
the goodness of an alignment performed in the first
step should be determined by the impact it has on
producing an optimal classifier that is induced in
the second step. However, there is no provision for
feedback from the second step to the first step. For
this a different setup would be needed that would
discover an optimal alignment and classifier at the
same time. This, to us, is one of the key research
questions yet to be addressed in learning letter-to-
sound rules, since the quality of an alignment and
hence the training data for a classifier learner is es-
sential for ensuring satisfactory performance of the
induced classifier. The question of which classifier
(learner) to use is secondary and not necessarily spe-
cific to the task of learning letter–sound correspon-
dences.

6 Relation to Existing Research

The problem of letter-to-sound conversion is very
similar to the problem of modeling pronuncia-
tion variation, or phonetic/phonological model-
ing (Miller, 1998). For pronunciation modeling
where alternative pronunciations are generated from
known forms one can use standard similarity met-
rics for strings (Hamming distance, Levenshtein
distance, etc.), which are not meaningful for map-
pings between sequences over dissimilar alphabets,
such as letter-to-phoneme mappings.

General techniques for letter-to-phoneme con-
version need to go beyond dictionary lookups and
should be able to handle all possible written word
forms. Since the general problem of learning reg-
ular mappings between regular languages is in-
tractable because of the vast hypothesis space, all
existing research on automatic methods has im-
posed restrictions on the class of target functions. In
almost all cases, this paper included, one only con-
siders functions that are local in the sense that only
a fixed amount of context is relevant for mapping a
letter to a phoneme.

One exception to this is (Gildea and Jurafsky,
1995), where the target function space are the subse-
quential transducers, for which a limit-identification
algorithm exists (Oncina et al., 1993). However,
without additional guidance, that algorithm cannot
be directly applied to the phonetic modeling task
due to data sparseness and/or lack of sufficient bias
(Gildea and Jurafsky, 1995). We would argue that
the lack of locality restrictions is at the root of the

convergence problems for that approach.

Our approach effectively restricts the hypothe-
sis space even further to include only thek-local
(or strictlyk-testable) sequential transducers, where
a classification decision is made deterministically
and based on a fixed amount of context. We con-
sider this to be a good target since we would like
the letter-to-sound mapping to be a function (every
piece of text has exactly one contextually appropri-
ate phonetic realization) and to be deterministically
computable without involving any kind of search.
Locality gives us enough bias for efficiently learn-
ing classifiers with good performance. Since we
are dealing with a restricted subclass of finite-state
transducers, our approach is, at a theoretical level,
fully consistent with the claim in (Sproat, 2000) that
letter–phoneme correspondences can be expressed
as regular relations. However, it must be stressed
that just because something is finite-state does not
mean it should be implemented directly as a finite-
state automaton.

Other machine learning approaches employ es-
sentially the same locality restrictions. Different
learning algorithms can be used, including Artificial
neural networks (Sejnowski and Rosenberg, 1987;
Miller, 1998), decision tree learners (Black et al.,
1998), memory-based learners and hybrid symbolic
approaches (Van den Bosch and Daelemans, 1993;
Daelemans and van den Bosch, 1997), or Markov
models. Out of these the approach in (Black et al.,
1998) is most similar to ours, but it presupposes
that phoneme strings are never longer than the cor-
responding letter strings, which is mostly true, but
has systematic exceptions, e. g. ‘exact’ in English
or French. English has many more exceptions that
do not involve the letter ‘x’, such as ‘cubism’ (/kju-
bIz@m/ according tocmudict.0.6 ) or ‘mutual-
sim’.

The problem of finding a good alignment has not
received its due attention in the literature. Work
on multiple alignments in computational biology
cannot be adapted directly because the letter-to-
sound mapping is between dissimilar alphabets.
The alignment problem in statistical machine trans-
lation (Brown et al., 1990) is too general: long-
distance displacement of large chunks of material
may occur frequently when translating whole sen-
tences, but are unlikely to play any role for the
letter-to-sound mapping, though local reorderings
do occur (Sproat, 2000). Ad hoc figures of merit for
alignments (Daelemans and van den Bosch, 1997)



or hand-corrected alignments (Black et al., 1998)
might give good results in practice, but do not get
us any closer to a principled solution. The present
work is another step towards obtaining better align-
ments by exploiting easily available knowledge in a
systematic fashion.

7 Conclusion
We presented a method for building efficient letter-
to-sound rules from information extractable from,
or with the help of, existing hand-crafted rewrite
rules. Using decision trees as the new target rep-
resentation, significant improvements in time and
space efficiency could be achieved at the cost of
a reduction in accuracy. Our approach relies on
finding an alignment between strings of letters and
phonemes. We identified a way to improve align-
ments and argued that finding a good alignment is
crucial for success and should receive more atten-
tion.
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