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Abstract

Inverse Document Frequency (IDF) is a popular
measure of a word’s importance. The IDF invari-
ably appears in a host of heuristic measures used in
information retrieval. However, so far the IDF has
itself been a heuristic. In this paper, we show IDF to
be optimal in a principled sense. We show that IDF
is the optimal weight of a word with respect to mini-
mization of a Kullback-Leibler distance suitably gen-
eralized to nonnegative functions which need not be
probability distributions. This optimization prob-
lem is closely related to maximum entropy problem.
We show that the IDF is the optimal weight associ-
ated with a word-feature in an information retrieval
setting where we treat each document as the query
that retrieves itself. That is, IDF is optimal for doc-
ument self-retrieval.

1 Introduction

Inverse Document Frequency (IDF) is a popular
measure of a word’s importance. It is defined as
the logarithm of the ratio of number of documents
in a collection to the number of documents con-
taining the given word (Sparck Jones, 1973). This
means rare words have high IDF and common func-
tion words like “the” have low IDF. IDF is be-
lieved to measure a word’s ability to discriminate
between documents. IDF invariably appears in a
host of heuristic measures used in information re-
trieval (Salton and McGill, 1983). However, so far
IDF has itself been a heuristic, although a good one.

In this paper, we show IDF to be optimal in a pre-
cise sense. To show this, we first view information
retrieval as a classification problem with each docu-
ment in the collection being a class. We then build
a classifier that scores the documents given a query.
To train this classifier, we treat each document as
a query that retrieves itself. Our classifier is an ex-
ponential model similar to the one in the maximum
entropy framework, but without the usual normal-
ization. Therefore, our classifier does not produce a
conditional probability distribution. In the regular
maximum entropy framework, one chooses weights
in the exponential model to maximize the likelihood

of the training data. However, we must now max-
imize a relazed likelihood since our classifier uses a
generalized distribution. Our relaxed likelihood is
globally convex just like the traditional likelihood.
In the case when there is a single binary feature in
the model, the optimal solution is stunningly simple
in contrast to the solution in the regular conditional
maximum entropy framework. A word-feature that
examines the occurrence of the word in both the
query and the document is a binary feature. IDF is
the optimal weight of this feature. That is, IDF is
optimal for document self-retrieval.

In the exponential modeling framework, the
weight associated with a feature is not the same as
the “importance” or gain associated with the fea-
ture. The gain is the improvement of the relaxed
likelihood of the model (prior plus the single fea-
ture) over that of the prior. In our self-retrieval set-
ting with a fixed collection of documents, the least
important words are those with a single count or
those occurring in almost all the documents.

IDF is the optimal weight when there is a sin-
gle feature in the model. But how do we share the
word’s weight across a unigram and a bigram? The
traditional justifications of IDF and similar mea-
sures assume that words occur independently in doc-
uments, e.g. (Robertson and Sparck Jones, 1976).
Those approaches do not easily generalize to account
for word co-occurrences. Our method does. It can
treat simultaneous features that examine presence
or absence of single words, phrases, and more so-
phisticated linguistic relations such as synonyms and
hyponyms. With the independence assumption, our
approach indeed produces the IDF. In the more gen-
eral case, we iteratively solve the optimization prob-
lem with word co-occurrences. Another approach
that does not make the independence assumption is
in (Wong and Yao, 1992). They show that IDF of
a word is the complement of relative entropy, upto
scaling by a constant independent of the word, if we
distribute the probability mass equally among doc-
uments containing the word. Their framework does
not decouple the weight of the word from its good-
ness as evidence.



For the interesting question of sharing a word’s
weight across a unigram and a bigram, we have an
explicit closed-form solution. The unigram and bi-
gram are overlapping features. With a simple lin-
ear transformation, they become non-overlapping.
It turns out that the multi-parameter optimization
for non-overlapping features is reduced to the indi-
vidual single parameter problems on the component
features. That is, with non-overlapping features the
problem decouples into many simple problems. We
recover the solution to the problem with overlapping
features from the easily computed closed-form solu-
tion to that with non-overlapping features.

Since importance of a feature is given not by its
IDF but by the improvement in likelihood from that
feature, we can examine when a bigram becomes im-
portant when the prior already has the two compo-
nent word features. The bigram feature is important
only when it improves the retrieval likelihood over
the component word-features. We show a ranking
of bigrams on Reuters-21578 corpus with respect to
their generalized likelihood improvement.

2 Retrieval as Classification

We treat information retrieval as a classification
problem with each document in the collection as a
class. To build a classifier, we are given a set of
labeled training data as (query, document) pairs.

A traditional method of classification employs a
probability distribution on the classes conditioned
on the observation (query), for example, using a de-
cision tree. For any observation, we assign nonnega-
tive scores (probabilities) to the classes based on the
trained model. Of course, some applications like in-
formation retrieval do not require that the model be
a true probability distribution, i.e., that the scores
add up to one; a probability distribution on the doc-
uments is not necessary.

Our framework is similar to the exponential mod-
els constructed in terms of features and their weights
in the familiar conditional maximum entropy
(minimum Kullback-Leibler “distance”) framework
(Della Pietra et al., 1997). We discuss this frame-
work below.

The standard exponential model has three com-
ponents: a prior conditional probability distribu-
tion Po(c|z); a vector ¢(z,c) of feature functions
(questions or rules) on observation and the candi-
date class; and a weights vector A corresponding
component-wise to the feature vector. The prior
distribution embodies prior knowledge about the do-
main, if any. If the modeler does not have any prior
knowledge, Py(c|z) can simply be the uniform dis-
tribution. The features are usually, but not required
to be, binary. The features are questions on the ob-
servation as well as the candidate class, in contrast
to traditional decision tree questions. An example is

a binary-valued feature that examines if a particu-
lar word occurs in both the query and the candidate
document. Another example is a binary feature that
examines if the query contains a particular word and
the document contains a synonym or a hyponym of
the word.

The three components are combined to form an
exponential model as below:

P, A-o(z,c)
P(clz) := —o(CIx)Ze

where
Zy = ZPo(c|a:)e)"¢(””’C)
ceC
is the normalization term needed to make P a prob-
ability distribution. C above is the set all of classes,
assumed to be finite and fixed a priori. Recall that
A and ¢ are vectors and therefore

X-¢p(z,c) = z Aigi(z,c).

With o; := e, we have

Po(clz) [T, a2

P(clz) := Z.

Therefore, the model P combines the information
from the training data and the prior model. We can
view the evaluation of the probabilities as a voting
scheme by experts. Each feature is an “expert” with
a “vote” (a;). An expert votes only when he agrees
with the observation and the candidate class. The
votes are multiplied and are followed by a normal-
ization.

The model is specified by the functional form,
training data to tune the parameters on, and an
objective function to tune the parameters. Maxi-
mum likelihood is a classic objective function and is
equivalent to maximum entropy in the special case
of uniform prior distribution. In the general prior
case, maximum likelihood is equivalent to minimum
Kullback-Leibler “distance” subject to expectation
constraints on the features and is globally convex.

The standard exponential model above contains
more components than we need. As we argued be-
fore, the normalization by Z, is not necessary in
many applications like information retrieval. If we
drop the normalization factor, we must formulate a
well-defined optimization problem on the new un-
normalized exponential models. Traditional likeli-
hood is not well-defined on nonnegative functions.
It turns out that there is an appropriate general-
ization to entropy maximization in the unnormal-
ized case that also results in a globally convex ob-
jective function. An added benefit is that the gen-
eralization results in a closed form solution to the



single-parameter binary feature problem. Remark-
ably, that closed-form solution is nothing other than
the IDF of a word for a feature that examines the
occurrence of the word both in the query and the
document.

First, we establish the parallel notation for non-
negative functions. We denote the scoring functions
Q : (z,¢) — [0,00) as Q(c|z) rather than as Q(z,c)
to make the parallel explicit. Suppose the training
data is given as {(z;,¢;)}, i =1,2,---,N.

For any function g on the training data, we define
an analog of expectation:

N
Qlal == Qelzi)g(wi,c).

i=1 ceC

We start with a prior nonnegative function
Qo(c|z) that is not necessarily a probability distri-
bution. We fix a feature vector ¢(z,c). We define a
parametric unnormalized convex exponential family
of functions as below:

Q = {Q(clz) := Qo(clx)eM ™}

The models are log-linear in the parameters. In or-
der to define the new objective function, we recall
the notion of log likelihood of training data accord-
ing to a conditional probability distribution P(c|x) as
below:

N
i=1

In extending the log likelihood to a nonnegative
function @, it is not enough to simply replace P
by @ in the above summation: for then it would
be possible to increase the objective function indefi-
nitely by simply scaling any arbitrary model without
exploring much of the model space. It is therefore
necessary to balance such scaling effects in the ob-
jective function. We use a simple balancing for our
generalization, below.

We now define a generalized likelihood of training
data according to @) as below, with 1 denoting the
constant function:

N
G(Q) = N—QM+) logQ(cilas) -

=1

When @ is a probability distribution, G(Q) clearly
coincides with the traditional likelihood. The gen-
eralized likelihood is well-behaved with respect to
scaling: Suppose we scale () “row-by-row” for each
z;. Simple differentiation shows that optimal scal-
ing results in a probability distribution. Thus it is
not possible to increase the objective function indef-
initely by simply scaling a model.

We now have a family of models and an objective
function on them. It remains to optimize the ob-
jective function on the family. We first denote the
empirical feature counts by d as below.

N
d = ) ¢xici)
i=1
It is then routine to show that
G(Q) = G(Qo) + Qo[1] = N + N + X - d — Qo[e™?).

Defining

L) :=N+X-d=> > Qolclz)e @),

we see that
sup G(Q)
QeQ
is equivalent to
sup L(\)
A

The smooth function L(-) is particularly tractable:
Observation 1. L(}) is globally strictly convex.

Analogous to the regular maximum entropy frame-
work, the feature expectation with respect to the
optimal solution matches the empirical counts:

Observation 2. The following is necessary and suf-
ficient for a A, € R™ to be optimal:

d= Z Z Qo(c|mi)e’\*'¢(“’c)¢($,~, c)

In the next section, we present the problem of
maximizing L as the dual of a generalized Kullback-
Leibler distance minimization problem. In section
4, we solve the single-parameter optimization prob-
lem explicitly when ¢ is a scalar binary feature. In
Section 5, we present a closed-form solution to the
multi-parameter problem with non-overlapping fea-
tures and use it compute the IDF’s for a bigram and
unigram that share a word. In Section 6, we present
an analog of the TF-IDF formula used in informa-
tion retrieval.

3 A Generalization of
Kullback-Leibler Distance

Observation 2 shows that the G-optimal solution
from the unnormalized exponential model class
matches the empirical counts in expectation. In-
stead of searching over the exponential model class,
can we search over all nonnegative functions that
match the empirical counts in expectation optimiz-
ing some objective function and arrive at the same
solution? That is the question we examine in this
section. Given the training data as in Section 2,



the following modification of Kullback-Leibler “dis-
tance” between two conditional probability distribu-
tions is common in statistical natural language pro-
cessing, e.g. (Lau et al., 1993). Assume P;(c|z) =0
whenever P(c|z) =0 .

N

Dk (P, P2) = ZZH (c|zs) logp
1=1 ceC 2

P (c|z;)
(clzs)

We consider the following generalization to nonneg-
ative functions, @1, Q2 > 0.

Dg(Q1,Q2) = N — Qi[1] +
Ql(c|$z)
33 0l s .

Clearly, if P, is a probability distribution, then
Dg(P1,Q2) = Dri(Pr1,Q2).

This is one of many possible generalizations of
the Kullback-Leibler distance. The Kullback-Leibler
distance is itself a Bregman distance (Lafferty et
al., 1997). However, our generalization is not a
Bregman distance and hence differs fundamentally
from the seemingly similar I-divergence considered
n (Csiszar, 1991) (the same as the unnormalized
relative entropy in (Collins et al., 2000)) even as it
is identical to the latter when Q2 is a probability
distribution.

Recall the empirical feature counts given by

N
D b(wi, ).
i=1

A priori, fix a Qo(c|z) > 0, called the prior model.
Define a family R as below:

= {Q>0:Q[¢] = d}
We now pose an optimization problem:
inf D
Jnf Da(Q, Qo)
Formulating the Lagrangian

L(QaA) = DG(QJQO) +A- (d - Q[¢]) )

setting its differential with respect to Q(+|-) to 0, we
conclude that Q(c|z) is of the form:

Q(clz)

Substituting this structural form into L(Q, ), we
get a function of A\ alone:

=N+X-d— Z Z Qo(c|z;)er?@ie).

= Qo(clz)e ().

L)

Therefore, the primal problem is equivalent to the
following dual:

sup L(\)

AERn

which was shown in Section 2 to be equivalent to

sup G(Q).-
QeQ

Analogous to the regular maximum entropy
framework (Della Pietra et al., 1997), it turns out
that R N Q is a singleton containing the optimal
solution. However, unlike in the regular maximum
entropy framework, the optimal solution does not
satisfy the Pythagorean property. The optimal vec-
tor solution is obtained by a variant of the improved
iterative scaling algorithm (Papineni, 2000). How-
ever, in some special cases, the optimal solution has
a closed-form solution to which we now turn.

4 The Scalar Binary Feature
Problem

The scalar feature problem is important since we se-
lect good features from a pool of possibly millions of
features. Feature selection involves solving a scalar
feature problem for every feature in the pool for the
optimal gain associated with the feature relative to
the current model. Then the features are ranked by
their gains and the top k features are selected and
added to the current model. The model is retrained
in a multi-parameter setting and the process is re-
peated until the optimal gain of the best feature in
the remaining pool falls below a threshold. With
the generalized Kullback-Leibler distance, the solu-
tion to the scalar binary feature problem turns out
to be closed-form, unlike that in the regular condi-
tional entropy maximization. Since feature is scalar,
the empirical count d is now scalar. We define a

scalar
d() = ZZQO C|.CL',

i=1 ceC

From Observation 2 and the fact that e*?¢ = e*¢
for a scalar binary ¢, we get the following.

xu )

Proposition 1. The binary scalar feature solution

is given by
d
A =log —,
og &
with optimal gain
_ do do

There is no such closed-form solution for a general
prior and a general binary feature in the regular
(normalized) conditional maximum entropy frame-
work.



We now relate the optimal weight to the IDF of a
word w. Identify x with a query and ¢ with a doc-
ument. Suppose C is the collection of documents
c1,C2, -+ ,cN. Suppose we define the training data
as {(ci,ci)}, i =1,2,---, N. Suppose we assign uni-
form prior distribution on the documents. That is,
Qo(clz) = Qo(c) = &. Define a scalar binary fea-
ture as below:

1 if wisin both z and ¢
Pu(2,c) = 0 else.

This feature has the property that we can split the
binary question into two independent binary ques-

tions:
Pu (@) = ¢y, (2) 87, (),
one question on the observation and one on the pro-

posed class. We call a feature that admits such sep-
aration a separable feature. Then,

N
d:= Z¢w(ci,ci) = Ny
i1

where N, is the number of documents containing
the word w. We also have

1
do:=Y_>" N¢}u(ci)¢12u(c)

i=1 ceC

1 a 1 2 1
= N zzzl ¢w (C,) CEZC ¢w(C) = NNwNw.
Thus, we have

N
A« =log N IDF (w).

IDF is supposed to measure a word’s importance.
However, in our framework it is the optimal weight
of a single word feature but is not the same as the
importance of the word. We view the optimal gain
associated with the feature as the word’s impor-
tance. The gain is an information theoretic measure
of goodness of a feature with respect to the prior
and the training data. The gain per document for
the above word feature is as follows:

. w w w
__1- —L—l—l _j'_
Gain * ( og —)

We now compare the gain with mutual informa-
tion below. Consider the training data as joint
observation of (query, document) events, and as-
sign the maximum likelihood estimates for the cor-
responding probabilities. Define a random variable
X (Y) that takes the value 1 when the word w is in
the query (document) and 0 otherwise. We have

P(XY =11) Ny, N

PAY =1)los 5 pv=1) ~ N 8N,

and the above gain per document is nothing but

P(XY =11)log

P(XY=11)

P(X = )P(Y = 1)

P(X =1)P(Y =1) - P(XY =11).

Compare it with mutual information between X and
Y:
P(XY)
P(XY)log ———r"—.
2 PO108 5y

Both vanish when X and Y are independent. How-
ever, there is no notion of prior information (prior
knowledge) in the framework of mutual informa-
tion. But, the generalized Kullback-Leibler distance
framework is built around a prior and the gain rela-
tive to this distance is comparable to mutual infor-
mation when the prior is uniform in this setting.
Expressing the gain in terms of f := N, /N, the
proportion of documents containing the word, we get

Gain= fx(f —1—1log f).

We plot the gain as function of document frequency
f and as a function of IDF.

Figure 1: Gain vs Document Frequency

Gan vs document frequency

We see that the importance of a word is not lin-
early proportional to the IDF. Indeed, words that
occur extremely rarely have very high IDF but very
low gain as do words that occur in almost every doc-
ument. This corroborates H.P. Luhn’s observation
that mid-frequency words have the highest “resolv-
ing power” (Salton and McGill, 1983), p. 62.

The above discussion deals with the weight of a
unigram. How about the importance and optimal
weight of a bigram? Information retrieval systems
benefit by indexing on words as well as phrases (n-
grams). But there are too many n-grams to in-
dex and therefore it is important to decide which
n-grams are worth indexing. We limit our discus-
sion to bigrams here. If we naively view a bigram



Figure 2: Gain vs IDF

Gain vs IDF
T

as a unigram by gluing the words together, we get a
high value for IDF of the bigram as log ]\fvj This as-
signment does not consider the fact the unigram IDF
of v already discriminates documents that contain v.
Intuitively, for the purpose of assigning bigram IDF
for vw, we must redefine the universe of documents
as the ones that contain v. Then, the bigram IDF is
given as

Ny

IDF(vw) = log N

where N, is the number of documents containing

v and Ny is the number of documents contain-

ing both v and w in consecutive positions (one

can also define a corresponding position-independent

feature). This is precisely the optimal A we get for

the feature ¢,,, in the generalized Kullback-Leibler
distance framework with a new prior

1
Qo(clz) = Ne)‘”%(z’c);

with A, = log 2-. If the prior is as above, the value
of adding the bigram to the model is then given by

N, N,
bigram gain = va(# —1-1log va ).

For instance, “Humpty Dumpty” feature is useless
once we have the “Humpty” feature in the prior.

We also get the same gain and weight as above
when the prior has two non-overlapping features: a
feature that examines the occurrence of the word v
in both the query and the document, and a feature
that examines the occurrence of w in the absence of
v in both the query and the document.

Therefore, the above gain can be interpreted as
the importance of the bigram when both v and w
features are in the prior model. The gain should be
negligible when the bigram vw does not improve re-
trieval likelihood over the component word features.

We ranked bigrams in the Reuters-21578 corpus by
their utility over the component word features.

We now briefly discuss the Reuters experi-
ment. We processed documents with LEWISS-
PLIT=“TRAIN” in the Reuters-21578 corpus, avail-
able at http://www.research.att.com/lewis. ~We
processed 12869 documents containing 1.7 million
words. The body of each document is lower-
cased and stripped of punctuation and then passed
through a stop-word filter. Bigrams and unigram
counts from the resulting document are accumu-
lated. Since in a feature selection framework, we will
not consider features with very low scores, we postu-
lated only those bigrams when the component words
have a generalized likelihood gain above a threshold.
This is different from thresholding on the IDF as can
be seen from the above plots. Out of the 473741
possibly bigrams, only 1272 passed the test. The
postulated bigrams were ranked by the above gain.
The top few and bottom few examples are shown in
Figure 3. Please note that “per” was a stop-word.
The top bigrams appear to be natural phrases in the
domain whereas the bottom bigrams appear to be
chance bigrams. The second column shows the gen-
eralized likelihood gain in milli-bits per document.
The last column is the IDF of the bigram. In a re-
trieval system, we would index on all bigrams above
a certain threshold of the gain.

The above computation of the weight for the bi-
gram assumes that we do not retrain the weight of ¢,
simultaneously when computing the weight of ¢y, .
Following results are necessary to obtain a closed-
form solution to the retraining of the weights of the
unigram and bigram features relative to the uniform
prior. First we note that a unigram and a bigram
feature overlap. Overlapped features are more diffi-
cult to train than non-overlapping features. In the
generalized Kullback-Leibler framework, the prob-
lem with non-overlapping features decouples into
many single-parameter problems for which we dis-
played the closed-form solution above. The main
idea in the next section is to transform the features
so that they become non-overlapping and then to re-
cover the solution to the original problem from that
of the simpler transformed problem.

5 Non-overlapping binary features

We say that a set of binary features {¢r(z, ¢) } is non-
overlapping if >, ¢r(z, c) is also binary-valued. We
have the following two results which have no direct
analog in the regular maximum entropy framework.

Proposition 2. The multi-parameter optimal so-
lution to n non-overlapping binary features is simply
obtained by solving n scalar binary feature problems
independently, all with the same prior QQg. That is,
Opt [Ax]f = [ Opt Ag]f-



Figure 3: Utility of a bigram

Bigram Gain (milli-bits) IDF
year shr 59 2.23
pct year 53 2.72
pct last 42 3.18
cts share 39 1.63
pct interest 38 3.35
year net 37 3.21
billion dlIr 37 1.89
pct billion 35 3.46
pct stock 35 3.49
year pct 34 3.36
year billion 33 3.42
stock exchange 33 1.84
last year 32 0.81
year company 31 3.53
net sales 30 2.52
u.s trade 29 2.94
pct company 29 3.78
cts net 28 0.84
u.s government 27 3.07
shares pct 23 2.40
due april 22 2.22
company stock 20 4.13
billion year 19 3.38
stock market 19 3.14
trade march 0.68 7.13
trade shares 0.68 7.13
trade year 0.68 7.13
interest government  0.68 7.13
interest shares 0.68 7.13
interest today 0.68 7.13
interest international 0.68 7.13

Proposition 3. For non-overlapping binary fea-
tures, the multi-parameter optimal gain is the sum
of the single parameter optimal gains.

However, the features ¢, and ¢, are not non-
overlapping. By transforming the features as below,

wv I 1 -1 ¢v
wvw T 0 1 ¢’U’LU ’
we get new features that are non-overlapping whose

solution can be obtained in closed-form (assuming
1), is not identically zero) as

[ A N, ]=[logx- log -],

where N,z is the number of documents that con-
tain v but not w. It remains to recover the optimal
weights for ¢, and ¢,,, from the weights above.

We note that a linear-invertible transformation of
the feature vector results in an equivalent optimiza-
tion problem. Given a ¢, let A, be the optimal
solution with optimal value o4. We consider that
A € R'*™ We denote the feature, its unique opti-
mal solution, and the optimal value of the objective
function by the triple (@, A«, 04).

Observation 3. Let A be an invertible matrix.
Then, (¢, A, 04) & (AP, A\ A, 04).

From the above lemma, it follows that
[0 X2, ] =[logs logfee

In the above derivations, it is assumed that there
are only two features in the model. This is much
like the assignment of IDF of a unigram that ig-
nores co-occurrences of words. To take care of all
correlations, one can solve the full multi-parameter
problem with all unigram, bigram features using the
improved iterative scaling algorithm. Indeed, term
frequencies can also be taken into account in this
framework, which is the subject of the next section.

6 Term Frequencies

This framework also allows for counting the number
of occurrences of a given word in the document. We
simply define an integer-valued feature for a word w
as below:

bl C) = { gfwglséf w is in both z and ¢
where tf,,. is the number of times the word w ap-
pears in document ¢, that is, the term frequency of
w in c¢. We assume there is one such feature for every
word in the vocabulary. This results in the following
score for a document given a query:

Q(clz) = Qo(c|z)er - ¢

Taking logarithms, we have

log Q(clz) =log Qo(clz) + > tfucw.

wexNe

Recall that A\, turned out to be IDF of w when
there is a single binary-valued feature in the model.
Now we have many features and they are not binary-
valued. Therefore the above scoring function is only
analogous but not identical to the familiar TF-IDF
scoring seen in the information retrieval literature.
But, we can obtain the weights for term-frequency
features in a principled manner by minimizing the
generalized likelihood proposed in this paper. An-
other variation is to use document-length normalized
term frequency in the definition of the feature, which
will be real-valued.



7 Conclusion

The IDF of a word is optimal for document self-
retrieval with respect to a generalized Kullback-
Leibler distance. This conclusion is the result of
viewing words independently and does not take into
account that words co-occur. While IDF is cheap to
compute, it must be modified when co-occurrence of
words is taken into account. There is a general opti-
mization framework where word co-occurrences can
be taken into account and which produces the famil-
iar IDF in the special case of a single feature. The
framework is that of a relaxed maximum entropy
or equivalently a relaxed log likelihood or Kullback-
Leibler distance. The general framework opens up
the possibility of assigning weights to more sophis-
ticated lexical questions that is consistent with the
popular notion of IDF.
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