
University of Massachusetts : MUC-4 Test Results and Analysi s

W. Lehnert, C . Cardie, D. Fisher, J. McCarthy, E. Riloff, & S. Soderland

Department of Computer Science
University of Massachusett s

Amherst, MA 01003
lehnert@cs.umass.edu

INTRODUCTIO N

The UMass/MUC-4 system is based on a form of sentence analysis known as selective concept
extraction . This approach to language processing is distinguished by a minimal reliance on syntactic sentenc e
analysis, along with a minimal dictionary customized to operate in a limited domain . Last year, the UMass/MUC-3
system demonstrated the viability of selective concept extraction, but serious questions were raised about th e
portability and scalability of the technology, particularly with respect to the creation of domain-dependent and task-
dependent dictionaries . We estimated that 9 person/months went into the creation of the dictionary used by
UMass/MUC-3, and we were unable to say how much domain-dependent lexicon was still missing . We were
nevertheless sure that our dictionary coverage was incomplete .

This year we confronted the issue of efficient system development, with particular attention to the problem o f
dictionary construction . As a result, we are now in a position to claim that effective customized dictionaries can b e
constructed quickly and easily by relatively inexperienced system developers . The dictionary used by UMass/MUC- 3
emerged after roughly 1500 hours of highly skilled labor by two advanced graduate students and one post doc . For
MUC-4, we created a new dictionary that achieved nearly the full functionality of the UMass/MUC-3 dictionary after
only 8 hours of effort on the part of a first-year graduate student . This outcome was achieved through the use of an
automated dictionary construction tool called AutoSlog . The AutoSlog dictionary was used for our optional TST 3
and TST4 runs, while a modified version of our UMass/MUC-3 dictionary was used for our official TST3 and TST4
runs. Our optional and official systems were identically configured except for their dictionaries .

Our official UMass/MUC-4 system employs a new memory-based consolidation module for discours e
analysis, some generic enhancements to the CIRCUS sentence analyzer, and filters that operate after sentenc e
analysis and then again after consolidation in order to reduce spurious slot fills and spurious templates. We also made
a number of adjustments associated with MUC-4 template updates and domain specifications . We found it necessary
to eliminate last year's optional case-based consolidation module because of its strong tendency towar d
overgeneration . Even so, we had two competing consolidation modules to evaluate, as well as a variety of possibl e
filters . To resolve all of these other system options, we ran hundreds of tests over TST1, TST2 and 250 additiona l
texts from the development corpus.

OFFICIAL TESTING AND RESULTS

We ran four test sets for MUC-4 . Our official system was run on TST3 and TST4 as required, and we ran on e
additional optional system on TST3 and TST4 . The official system and optional system were identical except fo r
their dictionaries . The optional system ran a dictionary constructed by AutoSlog that contained 379 concept nod e
definitions. Our official system ran with a version of the UMass/MUC-3 dictionary augmented by 76 additiona l
concept node defmitions imported from the AutoSlog dictionary (for a total of 389 concept node definitions) . Both
dictionaries accessed the same 5436 lexical definitions for part-of-speech recognition (these definitions were taken
from the UMass/MUC-3 dictionary), along with 2102 proper names . We predicted that both systems would produc e
comparable levels of precision, and that the optional system would fall behind the official system by 10 recall point s
under All Templates . Table 1 contains the All Templates scores for all four test runs .

Our official and optional systems both crashed twice on TST3, once on a relevant text containing three key
templates and once again on an irrelevant text . No system crashes occurred during TST4 . We note that the official
system was run on all of DEV, TST1, and TST2 without any fatal errors shortly before the official testing began .

151

As predicted, the AutoSlog dictionary produced lower recall levels than the official system : 7 points lower for TST3 ,
and 12 points lower for TST4. Precision was comparable for both systems with AutoSlog generating higher overall
precision rates : 2 points higher for TST3 and 1 point higher for TST4 . We note that our performance on TST4 wa s
generally worse than TST3. However, a close inspection of the detailed score reports for the official system show s
that the primary difference in those reports lies in the All Templates precision scores : 57 for TST3 vs. 45 for TST4 .
This loss of precision can be explained for the most part by comparing the number of spurious templates : 16 for
TST3 vs. 31 for TST4 .

System recall precision P&R 2P&R P&2R

Official TST3 47 57 51 .52 54 .67 48 .7 1
Optional TST3 40 59 47 .67 53 .88 42 .75
Official TST4 48 45 46.45 45.57 47 .3 7
Optional TST4 36 46 40.39 43 .58 37 .64

Table 1 : Overall Scores under All Templates for the Four UMass/MUC-4 Test Run s

Setting aside the differences between TST3 and TST4, we were pleased to see how well the AutoS lo g
dictionary performed relative to our hand-crafted dictionary from last year . Comparing P&R scores, our AutoSlog
dictionary achieved 93% of the overall performance of our official system on TST3, and 87% of the official system' s
performance on TST4. In an effort to leverage the UMass/MUC-3 and the AutoSlog dictionaries, we strengthened
the performance of the MUC-3 dictionary by augmenting it with 76 AutoSlog defrnitions . t Without this boost to
the MUC-3 dictionary, the distance between our official and optional systems would have been insignificant.

Given our MUC-4 test results, we have demonstrated that an effective domain-dependent dictionary can be
efficiently constructed using a representative text corpus accompanied by hand-coded template encodings. Our
preliminary and very limited efforts have produced a dictionary that closely mirrors the functionality obtained by a
relatively successful hand-crafted dictionary. Although the process of dictionary construction via AutoSlog is not
totally automated, the manual labor needed can be completed in a matter of hours by a single individual with
minimal expertise in dictionary construction . We consider this to be a significant step forward in the area o f
automated dictionary construction for text extraction applications .

AUTOMATED DICTIONARY CONSTRUCTIO N

The AutoSlog construction tool analyzes available key templates in conjunction with source texts and
generates hypothesized CIRCUS definitions without human assistance . AutoSlog's proposed concept node
definitions are derived from sentences in the MUC-4 development corpus that contain string fills associated with key
templates . Using the complete 1300-text DEV corpus as the training set for our dictionary construction experiment ,
AutoSlog proposed 1356 concept node definitions in response to 1272 string-fill slots. Although a large number of
these definitions were flawed or redundant, 28% of AutoS log's proposed definitions were reasonable and could be
included in an operational dictionary without alteration . In our experiment, 375 of the 1356 definitions proposed by
AutoSlog were deemed acceptable when reviewed by visual inspection .

Each AutoSlog definition begins with a single string fill in a single key template . Given a specific slot ,
AutoSlog extracts the first non-empty string fill listed in the key template (string-fill slots often contain multipl e
strings based on multiple references within the source text) . It then searches the source text for the first instance of
that exact string within the source text . Once located, AutoSlog pulls the complete sentence containing that strin g
from the source text and passes it to the CIRCUS sentence analyzer for syntactic analysis . CIRCUS analyzes th e
sentence using a part-of-speech dictionary . When all goes well, a set of buffers are instantiated with simple syntacti c
constituents corresponding to a subject, a verb, and possibly an object or a prepositional phrase . When the original
string fill shows up in one of these buffers, AutoSlog hypothesizes a concept node definition complete with a lexica l
trigger, complement pattern, and slot constraints . This definition is then written to a file and AutoSlog returns to th e
key template for the next siring fill slot . Figure 1 shows the AutoS log construction tool in action .

t Other methods of leveraging the two dictionaries were tested, but this was the most effective strategy .

152

Key Template

sentenc e

string fil l

5436 tagge d
words

1

*Do * _ (__)

*PP * _ (... (.. ..))

syntactic analysis

I".1	
sentence

Source Text

(((()

	

))

((

	

) (() () ())(())))

Concept Node Definition

Figure 1 : Automated Dictionary Constructio n

The presence of string-fills in key templates is a crucial requirement for AutoSlog . In fact, the more string-fil l
slots, the better. The MUC-4 templates contained six string-fill slots used by AutoSlog : inc-instr-id, perp-ind-id,
perp-org-id, phys-tgt-id, hum-tgt-name, and hum-tgt-desc . After processing the 1300 texts of DEV, AutoSlo g
generated 136 definitions based on inc-instr-id, 316 definitions from perp-ind-id, 201 definitions from perp-org-id ,
306 definitions from phys-tgt-id, 193 definitions from hum-tgt-name, and 204 definitions from hum-tgt-desc . Thi s
dictionary was compiled in 14 hours and then passed to a CIRCUS programmer for manual review. During the
review process, each definition was dispatched into one of two possible states : (1) keep as is, or (2) save for possible
revision . Files were maintained for the "keeps" and the "edits" with the expectation that the keep-definitions migh t
be augmented by some number of edit-definitions if any of the edit definitions could be salvaged . The initial
categorization into "keeps" and "edits" was relatively fast because each definition could be categorized on the basis of
visual inspection alone . Many definitions destined for the edit files were easy to spot since they often resulted fro m
parsing errors, patterns of no linguistic generality, or patterns of dubious reliability .

Here is an example a good AutoSlog definition generated by the first text in the development corpus :

Id: DEV-MUC3-0001

	

Trigger: KIDNAPPED

	

Trigger Root : KIDNAP

	

Syntactic-type: VERB
Slot filler : "TERRORISTS "
Sentence:(THE ARCE BATTALION COMMAND HAS REPORTED THAT ABOUT 6650 PEASANTS OF VARIOUS AGES HAVE

BEEN KIDNAPPED BY TERRORISTS OF THE FARABUNDO_MARTI_NATIONAL_LIBERATION_FRONT I N
SAN_MIGUEL DEPARTMENT >PE)

Name: %ACTOR-PASSIVE-VERB-PP-KIDNAPPED-BY%
Time limit : 10
Variable Slots :

	

Constraints :
(ACTOR (*PP* (IS-PREP? '(BY))))

	

(((CLASS ORGANIZATION *PP*)
(CLASS TERRORIST *PP*)
(CLASS PROPER-NAME *PP*)
(CLASS HUMAN *PP)))

Constant Slots : (TYPE PERPETRATOR)
Enabling Conditions : ((PASSIVE))

This definition extracts slot fillers from constructions of the form : "X is/was/(has/have been) kidnapped by Y . "
This particular definition will only pick up the conceptual actor Y . A separate definition is needed to pick up the
conceptual victim X. The following is an example of a bad AutoSlog definition :

153

Id: DEV-MUC3-0036

	

Trigger. WAS

	

Trigger Root : WAS Syntactic-type : VER B

Slot Filler: "MEMBER OF THE DEMOCRATIC SOCIALIST PARTY"

Sentence:(GILDA FLORES WAS AN ACTIVE MEMBER OF THE DEMOCRATIC SOCIALIST PARTY OF GUATEMALA >C O

WHOSE SECRETARY_GENERAL MARIO SOLORZANO REPORTED SALVADORAN PARAMILITARY GROUPS AR E
CARRYING_OUT ACTIONS IN THIS COUNTRY >PE)

Name: %VICTIM-ACTIVE-OBJECT-VERB-WAS%
Time Limit: 1 0

Variable Slots :

	

Constraints :
(VICTIM (*DO* 1))

	

(((CLASS HUMAN *DO*)
(CLASS PROPER-NAME *DO*)))

Constant Slots: (TYPE KIDNAPPING)
Enabling Conditions : ((ACTIVE :CHECK-DO-NO-ONE T))

As it stands, this definition hypothesizes that an active form of the verb "to be" predicts the victim of a
kidnapping. Although the source sentence does legitimately suggest that the verb "to be" can be used to link huma n
names with human descriptions, this proposed definition cannot be trusted to deliver a kidnapping victim .

When AutoSlog creates a new definition, it checks the existing set of previously proposed definitions to see i f
the current proposal duplicates an older one . AutoSlog does not produce multiple copies of the same definition . By
tracking the number of duplicates AutoSlog suppresses, we can see evidence that the dictionary is approaching a
saturation point. In particular, we note that after AutoSlog has processed 1200 texts, the next 100 texts generat e
only half as many definitions as the first 100 texts. Figure 2 shows the weakening frequency of new dictionar y
definitions as we move through the development corpus .

Although the AutoSlog dictionary definitions are derived from only six template slots, consolidation and
template-generation routines are capable of extracting the information needed to fill additional slots . When the
AutoSlog dictionary operates in conjunction with the full system, we can fill every template slot except phys-tgt-
nation, phys-tgt-effect, phys-tgt-total-num, and hum-tgt-total-num .

The 8-hour AutoSlog dictionary was completed only four weeks before the final testing for MUC-4 . Now tha t
we have seen how much impact AutoSlog can have on the process of dictionary construction, it makes sense to
pursue enhancements to AutoSlog in order to strengthen its baseline performance . As it stands, AutoSlog can be
moved to new domains with a minimal amount of software tuning . Adjustments must be made to handle a ne w
template design, but any templates that contain string-fills will serve to fuel dictionary construction .

VV

8o _

Original AutoSlog Defs60 ,

~-40

20 ~, I -

0 n

o U,I
IflhiuiU

n_U
0

40
..~20

0 nn..nu=,

y
0
C l

E 1
m
C)

1v
0
Z 1
0.
U
a) 1
C
O
U

aa,
z
0
a0

E
3
z

2 4

	

6 7

	

8 9 10 11 12 1 3
Blocks of 100 DEV Texts

Figure 2: Dictionary Saturation Under AutoSlo g

154

TST3 ERROR ANALYSIS

We have conducted a post hoc analysis of our system's performance on TST3 in order to better understand th e
various problems encountered on TST3. Most of this data describes the behavior of CIRCUS, its use of concept
node definitions, and the effects of memory-based consolidation . As detailed and useful as the score reports are, scor e
reports are not designed to tease apart the performance contributions of a sentence analyzer, discourse analyzer, o r
template generator. Subcomponents like these must be analyzed separately if we want to understand where to focu s
future development efforts.

Recall Limitations

The dictionary used by the official UMass/MUC-4 system contained 389 concept node definitions . Of these ,
172 (44%) were enabled2 to process TST3 . On average, each definition was enabled nearly 9 times for a total of 151 5
concept node enablements (—15 per text on average) . For TST3, CIRCUS extracted 943 string fills to fill variabl e
slots in enabled concept nodes. Because there are a lot of redundant concept node definitions, almost half of these
string fills were duplicates, leaving 520 unique string fills extracted by CIRCUS . According to our analysis, 214 of
these string fills were discarded during consolidation and 306 string fills made it into a response template .

Of the 520 non-redundant string-fills, 38% were correctly incorporated into a response template where the y
matched the string or strings listed in a key template . A full 34% were correctly discarded or merged by consolidation
(and therefore did not make it into a response template) . The sum of these instances accounts for 72% of the tota l
string fills - all handled correctly by consolidation. Of the remaining string fills, 21% appeared in response template s
as spurious slot fills, and 7% were incorrectly discarded . Of the 237 string fills that did legitimately correspond to
slot fills in key templates, consolidation correctly incorporated 199 (84%) into response templates . Even so, our
overall recall score was only 46% . Where are the other string fills ?

Our analysis shows that CIRCUS generated 225 good (full match) string fills and 12 partially good (partia l
match) string fills . According to the score report, there were 416 possible string fills for TST3 . That tells us
CIRCUS is producing only 55% of the possible string fills for TST3 . This 55% hit rate effectively imposes a rough
ceiling on our overall recall, and suggests that significant gains in recall will require stronger performance level s
during sentence analysis .

PRECISION LIMITATIONS

When we examine the 306 string fills present in our TST3 response templates, we find that 187 could b e
matched to slot fills in some key template and 12 could be partially matched to a key template slot fill . If all of
these string fills were in correct slots and correct templates, our string fill precision would be 63% . But only 142
string fills result in full matches with key template slots and 24 result in partial matches . Of the 107 strings that
can ' t be matched to any key template, we have found the following breakdown of errors :

49 (46%) should have been discarded as irrelevan t
16 (15%) were from mis-fired concept node definition s
15 (14%) were from parser error s
14 (13%) should have been merged with a more specific strin g
12 (11%) were from words not covered adequately by the dictionar y
1 (1%) was from a source string altered by preprocessin g

2 An enabled concept node is one that produces a case frame instantiation . All output generated by CIRCUS is based
on enabled concept nodes .

155

v

5

0
a small number of definitions account fo r

0

74% of all string fill s

5

0 -f't' fT18f1 A rrfT77 ,At r A A A,A . PA r, r, .,,

	

r,, A g ,, r rr, .,,

0 5 10 15 20 25 30 :35 40 45 50 55 60 65
total string fills per definitio n

Figure 3 : Concept Node Frequency Distributio n

Of the 49 false hits associated with relevancy discriminations, our single greatest precision error came fro m
30 false hits on military clashes. After that, four general problem areas were about equally responsible for a
significant number of errors : (1) false hits associated with faulty concept node definitions, (2) CIRCUS sentence
analysis errors, (3) consolidation merging failures, and (4) inadequate dictionary coverage .

Dictionary Coverage

Although inadequate dictionary coverage was identified as a source of visible precision loss, we have bee n
remarkably well-served by a relatively small dictionary of 5436 lexical items augmented by 2102 proper names . An
analysis of the TST3 lexicon shows that 1008 words appearing in TST3 were not recognized by our system . Of
these, 696 occurred only once . Of the remaining 312 words, the vast majority were proper names . A visua l
inspection of the unrecognized word list suggested that our lexicon was apparently adequate for the demands of TST3 .
However, this does not mean that all of our associated definitions were above reproach .

Although our dictionary contains a total of 389 concept node definitions, only 172 of these were used durin g
TST3 . A frequency analysis of these 172 definitions showed that 20% of the definitions generated 74% of the string
fills. A total of 37 (22%) concept node definitions failed to produce any string fills (perhaps these contain no variabl e
slots or maybe they were discarded during consolidation), while one concept node definition produced 65 string fills ,
and three others produced over 50 string fills (each) . Figure 3 shows the complete frequency distribution .

Comparing TST3 and TST4

Although our F-scores suggest dramatic differences between TST3 and TST4, there appears to be a singl e
factor that is responsible for these divergent score summaries . Table 2 shows a more detailed perspective on th e
differences and similarities between TST3 and TST4 .

Reviewing the scores in Table 5, we see that there is a remarkable similarity across most of the scores fo r
TST3 and TST4. TST4 was even better than TST3 under String Fills Only . The major differences appear in th e
precision and overgeneration scores for Matched/Spurious and All Templates . These differences also correspond to a
striking difference in the number of spurious templates generated for TST3 (16) and TST4 (31) . Looking deeper into
the problem, we determined that two factors seemed to contribute to the large number of spurious templates i n
TST4 .

-o

-a0c

m 2
U
C
o
0
a) 1
E
c

15 6

	 TST3	 	 TST4	
REC PRE OVG REC PRE OVG

MATCHED/MISSING 47 67 14 48 69 1 3
MATCHED/SPURIOUS 60 2 26 63 45 41
MATCHED/ONLY 60 67 14 63 69 1 3
ALL TEMPLATES 47 2. 26 48 45 41
SET FILLS ONLY 50 71 13 51 74 1 3
STRING FILLS ONLY 37 57 20 43 64 1 5

F-SCORES 51 .52 54 .67 48 .71 46 .45 45 .57 47.37

Table 2: TST3 and TST4 score reports from the official UMass/MUC-4 test run s

First, many legitimate templates were deemed spurious because of mapping problems . We can see some
evidence of this by running a comparative test designed to assess the impact of templates lost due to incorrec t
incident-type slot fills . In the comparative test, we will use "ATTACK" as the slot fill for all incident-type slots.
This will ensure that no template is deemed spurious because an incident-type is blocking it from being mapped to a
key template. Table 3 shows the resulting F scores from comparative test runs for both TST3 and TST4, runnin g
the official UMass/MUC-4 system and generating batch score reports throughout.

P R 2P&R P&2R

TST3 - official system 46 .47 49 .64 43 .6 8
TST3 - "all attacks" is on 45 .46 48 .63 42 .67

TST4 - official system 39 .44 38 .56 40 .36
TST4 - "all attacks" is on 40 .98 40 .38 41 .5 8

Table 3 : The Effect of Spurious Templates Lost to Incorrect Incident-Types

In comparing the net effect of the "all attacks" heuristic, we find that there is no advantage to any of the F -
scores when all templates are typed as attacks in TST3 . Indeed, there is a uniform drop of one point across the board
when "all attacks " is turned on . On the other hand, the F scores for TST4 all benefit from the "all attacks" heuristic .
P&R goes up 1 .54, 2P&R goes up 1 .82, and P&2R goes up 1 .22. This tells us that we did not tend to lose
otherwise legitimate templates because of their incident types in TST3, whereas a significant number of legitimat e
templates were lost for this reason in TST4 . Precision is most dramatically affected by these errors, but P&R may
have lost at least 2 points because of this problem (it is not possible to extrapolate from batch scores to interactive
scores with complete certainty) .

Second, a large number of spurious templates were created when military targets were not recognized to b e
military in nature . We have already seen how military clashes were the single greatest source of spurious string fill s
in TST3 . Even so, we generated only 3 spurious templates due to false hits on military targets in TST3 . In TST4
we generated 12 spurious templates for the same reason . If we assume that each spurious template contains 11 slo t
fills (a reasonable assumption when template filtering is in place), it follows that 132 spurious slot fills are comin g
from false hits on military targets in TST4 . Removing 132 spurious slot fills from the TST4 score report, th e
precision score under All Templates goes from 42 to 48, and the P&R score goes up about 3 points as a result .

RESOURCES, SPIN-OFFS, AND FUTURE RESEARC H

Our primary system development and testing took place on three Texas Instruments Explorer II workstation s
each configured with 8 megabytes of RAM. Two Texas Instrument MicroExplorers, each with 8 megabytes o f
RAM, were used for the development of the AutoSlog lexicon . All development was done in Common Lisp . The
system code and lexicons required 14 megabytes of storage on a Vax VMS fileserver, 8 of which comprised th e

15 7

AutoSlog development files . System output was stored on a Decstation running Ultrix, where the scoring program
was run . System testing required 250 megabytes of storage for response files and score reports . The two official test
sets, TST3 and TST4, each took about 75 minutes to process on an Explorer II, using the workstation's local dis k
for all file output .

The development of our UMass/MUC-4 system has continued off and on for two years now . Last year we
estimated that 2.25 person/years was invested in the UMass/MUC-3 system. This year we were able to build on that
investment, and focus our effort more effectively on the critical issues of portability and scalability . All told, we
estimate that one person/year of effort went into MUC-4 after MUC-3 : 30% on testing, maintenance, and data
analysis; 30% on CIRCUS enhancements and dictionaries ; 15% on memory-based consolidation ; 15% on MUC-4
updates and documentation ; 10% on training for new personnel .

In the period since MUC-3, a number of related research projects have been pursued that did not directl y
contribute to MUC-4, but which address basic research issues associated with CIRCUS and text extraction systems.
We have demonstrated that case-base reasoning and machine learning techniques can be successfully applied to the
disambiguation of relative pronouns [1, 2, 3] ; experiments have shown how CIRCUS can be used to support
relevancy feedback algorithms for text classification [5] ; and additional experiments have been conducted with a
stochastic database derived from the MUC-3 corpus [4] .

We expect to see similarly successful spin-offs from MUC-4 in the areas of automated dictionary construction
and automated system scale-up. We will continue to exploit the MUC-3 corpus in pursuing these new directions, and
we expect to gain additional experience with at least one new application domain as well .

ACKNOWLEDGEMENT S

This work was supported in part by the Defense Advance Research Projects Agency and monitored by Scienc e
Applications International Corporation under contract No. N666001-90-D-0192; DO#22 .

BIBLIOGRAPH Y

[1] Cardie, C. (1992a) "Corpus-Based Acquisition of Relative Pronoun Disambiguation Heuristics" to appear in
Proceedings of the 30th Annual Conference of the Association of Computational Linguisitcs. University of
Delaware, Newark DE.

[2] Cardie, C . (1992b) "Learning to Disambiguate Relative Pronouns" to appear in Proceedings of the Tenth
National Conference on Artificial Intelligence . San Jose, CA .

[3] Cardie, C. (1992c) "Using Cognitive Biases to Guide Feature Set Selection" to appear in Proceedings ,
Fourteenth Annual Conference of the Cognitive Science Society, University of Indiana, Bloomington, IA.

[4] Fisher, D. and Riloff, E. (1992) "Applying Statistical Methods to Small Corpora: Benefiting from a Limited
Domain" to appear in Probabilistic Approaches to Natural Language, a AAAI Fall Symposium . Cambridge,
MA .

[5] Riloff, E . and Lehnert, W . (1992) "Classifying Texts Using Relevancy Signatures" to appear in Proceedings of
the Tenth National Conference on Artificial Intelligence . San Jose, CA .

158

