RESULTS

SYNCHRONETICS:
MUC-3 TEST RESULTS AND ANALYSIS

James Mayfield
Computer Science Dept.
University of Maryland, Baltimore County
Baltimore, MD 21228-5398
mayfield@umbc3.umbc.edu

(301) 455-3099

Edwin Addison
Synchronetics, Inc.
3700 Koppers St., Suite 131
Baltimore MD 21227
76366.1115@compuserve.com
(301) 644-2400

The Synchronetics entry in the MUC-3 competition is a full-parser, semantic net-based system written in
C. Our system attempts to fill the first four slots of each template and, in some cases, the three perpetrator
slots and the human-target-ids slot. The Synchronetics system achieved the following official scores on the

tst2 corpus:

SLOT REC PRE OVG FAL
template-id 31 51 49
incident-date 17 66 0
incident-type 19 61 0 O
category 24 56 28 11
indiv-perps 0 * *
org-perps o = *
perp-confidence 0 * * 0
phys-target-ids 0 * *
phys-target-num 0 = *
phys-target-types 0O * * 0
human-target-ids 2100 O
human-target-num o * %
human-target-types 0O * * 0
target-nationality 0 * x 0
instrument-types o * * 0
incident-location 0 * x
phys-effects 0 x* * 0
human-effects 0 = * 0
MATCHED ONLY 18 55 25
MATCHED/MISSING 7 55 25
ALL TEMPLATES 7 35 B3
SET FILLS ONLY 7 58 14 O

These official results were achieved despite a system bug that caused almost half of the roughly 1400 sentences

108



in the corpus to be thrown away without being processed at all. The bug arose because a buffer that was
supposed to be 200 items long was inadvertantly changed to be 20 items long. With this bug fixed, we
achieved the following unofficial scores:

SLOT REC PRE OVG FAL
template-id 48 49 51
incident-date 22 47 O
incident-type 34 69 0 O
category 36 b4 27 18
indiv-perps 0 * =*
org-perps o = *
perp-confidence 0O * * 0
phys-target-ids o =* *
phys-target-num 0 * %
phys-target-types 0O * * 0
human-target-ids 2 62 0
human-target-num o *
human-target-types 0 = * 0
target-nationality 0 * *= 0
instrument-types 0 * *x 0
incident-location 0 * x
phys-effects 0 * x 0
human-effects 0 * x 0
MATCHED ONLY 20 54 26
MATCHED/MISSING 10 54 26
ALL TEMPLATES 10 33 55
SET FILLS ONLY 11 62 13 O

We do not at present have any settings that can be modified to alter the recall/precision tradeoff.

ALLOCATION OF TIME

The most time-consuming of our activities were the development of the semantic net software, and the
development of the phrase and sentence interpreters. Next came the development of the grammars for the
two parsers, and the template generation software. Development of the dictionary was quite rapid, thanks
to our automatic acquisition software. The activity we spent the least amount of time on was the encoding
of world knowledge into the knowledge base.

LIMITING FACTORS

Our primary limiting factor was the tenuous nature of the lines of communication between our team members.
With personnel spread across six different sites, we were forced to rely on weekly meetings to resolve problems
that would ordinarily be cleared up on a daily basis if everyone were working at the same site.

109



The second limiting factor for our system was the amount of time we had available to us. Most of the
system was developed from scratch (only the NL-Builder software was written prior to the commencement
of our project). We had only a few weeks between the time we were first able to process 100 texts and the
time that the final test was due. Thus, we were unable to be as careful as we would have liked to be in the
development of the final system configuration.

The third limiting factor for our system was the lack of a detailed and well thought out world model.
We did most of our development using a very small world model that had fewer than 50 concepts. Just
before running the final test, we quickly developed and switched to a world model containing almost 900
concepts. However, we did not have time to examine it closely before running the test. We believe that we
could considerably increase our system’s performance for the slots we are currently filling by improving the
world model.

SUCCESSES AND FAILURES

Our biggest successes were the development of the dictionary, and the speed of the parsers. Our automatic
acquisition software allowed us to obtain a dictionary of 10000 words quite painlessly. Together, both parsers
took less than one hour to process every word of all 100 texts, running on a DecStation 3100.

Our biggest failures were lack of development of the knowledge base and the speed of the semantic net 1/0
routines. Our knowledge base was a last-minute effort, which significantly degraded system performance. The
semantic net 1/O routines were slow enough to be the main time drain on the three non-parser components.
For these reasons the knowledge base and the semantic net I/O routines are our prime candidates to be
rewritten.

REUSABILITY

We expect to be able to reuse all system components except for the template generator in other projects.
We are currently working on a project to automatically convert linear text to hypertext. We plan to use our
MUC system as the front end to the conversion system. This will require only the development of software
to generate hypertext links based on the semantic net built by the MUC system, and the development of a
new knowledge base for the target domain.

LESSONS LEARNED

Participation in MUC-3 has led us to the following conclusions:

¢ Our software engineering paradigm (which is thrust upon us by virtue of the fact that our personnel
are spread out across several sites) is a poor one, but it is not fatal.

e Several person-years of work is needed to build a parser-based system that has the potential to do well
at the MUC task. Even then, a weakness in any component can easily reduce the system’s abilities to
those of a stupid keyword-matching system.

110



o Evaluation of natural language processing systems through a MUC-like competition is significantly
complicated by the fact that it is hard to know what is being measured. Nonetheless, we believe
that our architecture will be excellent for evaluation of the various components of a natural language
processing system, because we will be able to mix and match the components that go into our system.
We will have this flexibility because each of cur components is a stand-alone program, and because all
of our programs communicate with each other via the same semantic net representation language. For
example, if we develop both a script-processing component and an anaphora component, we will be able
to put them together in either order, or omit either or both of them. By comparing the results of each
of these configurations, we will gain insight into the relative merits of these two forms of processing.

111





