PRC PAKTUS:
MUC-3 TEST RESULTS AND ANALYSIS

Cheryl Kariya
PRC Inc.
1500 Planning Research Drive
McLean, VA 22102
email: kariya_cheryl@po.gis.prc.com

For natural language understanding researchers at PRC, preparing for MUC-3 was a useful
endeavor in many respects. The value of having a well-defined task, a large corpus, and an
automated scoring program can hardly be overestimated. This exercise has pointed out the
strengths of our system, confirmed our feelings about which aspects most need work, and taught
us how to approach a task of this magnitude efficiently. In this paper, we will discuss our test
results, the ways in which we prepared for the task, and lessons learned.

RESULTS
Table 1 summarizes PRC's scores for MUC-3 Phase 2.

SLOT REC PRE ovG FAL
template-id 88 61 39
incident-date 51 60 0
incident-type 69 78 0 1
category 68 58 24 30
indiv-perps 3 30 10

org-perps 1 100 0
perp-confidence 20 13 47 12
phys-target-ids 9 32 12
phys-target-num 26 66 6
phys-target-types 10 67 0 0
human-target-ids 2 42 0
human-target-num 4 100 0
human-target-types 2 70 0 0
target-nationality 6 100 0 0
instrument-types 0 * * 0
incident-location 47 53 0
phys-effects 18 24 41 2
human-effects 5 21 14 1
MATCHED ONLY 32 53 20
MATCHED/MISSING 28 53 20

ALL TEMPLATES 28 36 46

SET FILLS ONLY 28 47 24 1

Table 1: PRC Scores

Overall, we were pleased with PAKTUS's capabilities and performance, and we are
excited about planned improvements to the system. It was particularly satisfying to observe that

99



only a few changes had to be made to the grammar, and that the lexicon structure and tools easily
accomodated new additions.

It came as no surprise to us that the discourse module was the component most in need of
development, as it is the most recent and least-developed part of the system. Pieces for a fairly
major restructuring are already in place, and discourse development will be one of our main efforts
in the coming year. To a large extent, our overgeneration of templates was due to the unfinished
state of the discourse component. Currently, PAKTUS proposes one template for each sentence
which contains an interesting-looking incident. In discourse processing, the incident templates are
merged for the same incident type, if the date and location are not missing and not different. This
was a temporary solution designed to prevent wild overgeneration. As we achieve greater recall in
the other slots, those fills can be used in a more sophisticated merging strategy; for the moment, a
simple strategy was all that was feasible. ‘

The main limiting factor for PRC was the availability of people for development. CPU
cycles was also a factor, insofar as it limited the number of development tests that could be runin a
given amount of time. It took from 4 to 6 hours to process 100 documents, depending on trace
options.

We directed most of our energies to linguistic development, as shown in Table 2 below,
and except for the discourse component, the linguistic aspects of the task have essentially been
completed. Because we had less time remaining to devote to engineering issues, much of the
information that PAKTUS produced has not yet been used in template-filling. In using the
linguistic output to fill templates, we began with the two aspects of the template-filling task we
considered the most important: identification of relevant incidents (template id) and identification
of incident type. Our recall and precision scores for those slots reflect the amount of time we spent
on them (see Table 1). We believe that, given more time to convert linguistic output to template
fills, we will be able to achieve comparable scores for the other slots as well.

TIME SPENT ON DEVELOPMENT

Five PRC researchers participated in MUC-3 development. Table 2 shows an estimate of
our level of effort for MUC-3 and a breakdown of tasks.

% of % of LING
HOURS TOTAL DEVEL

LING. DEVEL.

preprocessor 284 11 22
grammar 154 6 12
lexicon 457 18 35
discourse 100 4 8
linguistic troubleshooting 300 11 23
TOTAL 1295 50 100
ENGINEERING & TECHNICAL

TROUBLESHOOTING

system integration 150 6

back-end engineering 300 11

technical troubleshooting 308 12

TOTAL 758 29

100



% of % of LING

HOURS TOTAL DEVEL
MISC.
technical direction 80 3
other* 467 18
TOTAL 547 21

*learning emacs, scoring program, committee work, papers, presentations

Table 2: Breakdown of MUC-related hours

PAKTUS DEVELOPMENT

In adapting PAKTUS (PRC's Adaptive Knowledge-based Text Understanding System) to
any new domain, adjustments to each of the core system components must be made. We briefly
discuss the types and amounts of adjustments that were necessary in each component, and outline
some of the new features that were added as we worked on MUC-3.

Preprocessor

As for any new message type, a new template specifying the format of the input stream had
to be built, so that the input could be separated into messages. Methods for handling corpus-
specific use of punctuation -- for example, [square] brackets and double dashes -- were developed.
Header information (time and location) was saved for later processing. Also, because time (date of
incident) played such an important role in the MUC-3 task, a new feature was added to the
preprocessor which bracketed time expressions in the text, calculated a date, and passed it on to the
parser as a symbol. In general, adaptations to the preprocessor are only a small proportion of the
entire development effort.

Lexicon

Adding the domain-specific lexicon required a considerable amount of time. This is
primarily due to the volume of new items to be entered. Especially time-consuming was
identifying the terrorist organizations (due to variation in names, acronyms, translations) and their
associated countries. PAKTUS's automated tools for entering words, synonyms and compounds,
together with feature inheritance in the lexical and semantic networks, made actually entering
individual items easy. Because the MUC-3 corpus contains large numbers of similar items (e.g.,
locations, terrorist organizations), facilities for batch-entering words were developed. In addition
to adding lexical items, a few features had to be added to categories of words; for example, a slot
was added to words in the PERSON category to aid in classifying the TYPE of human target.
Again, inheritance in the network made this process straightforward and fast.

Another new feature for the lexicon is the use of heuristics for guessing at unknown words
whose roots are unknown. (PAKTUS uses inflectional and derivational morphology if the roots
are in the lexicon.) Word regularities are identified using forward and reverse concordances of the
MUC-3 corpus, and exceptions to those regularities are entered in the lexicon. An example of a
heuristic used for MUC-3 is the guess that an unknown word ending in "-z" or "-0" is a Spanish
name. We have thus far developed about two dozen heuristics.

101



Grammar

The only significant change made to the core grammar for MUC-3 involved time
expressions. A new arc was added to handle bracketed time expressions as adverbs, and the case-
frame-applier was also adjusted. Some additional work was done on apposition, but this was not
corpus-specific development. Altogether the grammar was well-suited to handle a MUC-3-like
task, and changes were minimal.

Discourse

PAKTUS's discourse component is currently fairly application-specific. Many of the
patterns which identify important information (for this task) had to be written from scratch,
although a few were recycled from previous applications, such as MUC-2. The discourse
component, both for MUC-3 and in general, is, as we said above, the least-developed aspect of
PAKTUS, and the area in which we expect to make the most improvement in the coming year.
One new feature already implemented is the addition of "word patterns,” which use only lexical
information (but include conceptual associations), to supplement the discourse patterns, which use
parse output. These word patterns accounted for roughly one-third of our recall.

Future directions

We put some effort into developing a pattern-based filter, to be used at the pre-parse stage,
for identifying relevant sentences and/or documents. This filter was not used in the tests, but we
expect to complete development and implement it for MUC-4. In addition, we plan to expand the
bracketing capabilities to include at least names, titles, and locations. The major thrusts in the
coming year, however, will be:

- to modify the discourse component to include more broadly-based, linguistic information; and
- to develop more tools for analyzing our output.

Reusability

One of the best aspects of the MUC-3 corpus is its generality. Nearly all of the
development we did for this effort can be reused for another application. The exceptions would be
some domain-specific lexicon and some of the specific discourse patterns.

TRAINING AND IMPROVEMENT

We relied almost exclusively on the 100 messages in Test 1 for training after the February
interim conference, as it had a reliable, consistent key. Using Test 1, we ran approximately 30
tests. A few of these were run to determine the effect of different timing strategies on output; the
others, to test improvements in slot-filling from using lexical patterns, partial parses, run-ons, etc.
The development corpus was used primarily for lexical development. Two large tests were run on
the entire development corpus to locate a few coding errors and measure linguistic performance.

The improvement in PAKTUS's linguistic performance between February and May 1991
can be seen in the following tables, derived from the test runs on the development corpus.

102



February results

total completed partial run-ons failed
parses parses
Total # of sentences 18016 7039 5460 4887 630
% of sentences 100 39.1 303 27.1 3.5
Total time (%) 100 12.7 41.6 45.7 N/A
Avg time for parse 7.0 2.3 9.5 11.7 N/A
(in seconds)
Avg time for preprocessor 0.4 0.3 0.4 0.5 N/A
(in seconds)
May results
total completed partial run-ons failed
parses parses
Total # of sentences 18584 8741 4263 5074 506
% of sentences 100 47.0 229 27.3 2.7
Total time (%) 100 17.7 34.5 47.9 N/A
Avg time for parse 6.3 24 9.5 11.1 N/A
(in seconds)
Avg time for preprocessor 25 2.1 2.9 3.0 N/A

(in seconds)

The most significant changes is that the number and percentage of sentences that were fully
parsed went up nearly 8% between February and May. This reflects changes in all PAKTUS
components except the discourse components. Comparison between PRC's scores for the Test 1
and Test 2 reflects the discourse improvements as well.

WHAT WE LEARNED
About PAKTUS

As PAKTUS had never before been exercised on a scale as large as the MUC-3 corpus,
this was an opportunity to find out how it would hold up in a life-sized scenario. We learned that
the system architecture, knowledge representation and algorithms were more than adequate for the
task, that it was possible to do all we needed to do, with no major changes. Further, we
discovered just how robust PAKTUS is. We were pleasantly surprised, for example, that
PAKTUS was able to parse 47% of the sentences in the development corpus, particularly since
relatively little ime was spent on grammar development for MUC-3.

The MUC-3 corpus and automatic scoring tool made it possible for us to do extensive

experimentation on PAKTUS's timer. We discovered several points in the parsing where speed
could be improved, while losing little or no important information.

103



Although we had been working on extensions to the preprocessor (e.g., document/sentence
filtering, word patterns) before the MUC-3 Phase 1 conference, participation in MUC-3 helped
crystallize our ideas on how best to use those extensions. Further work showed us that
preprocessor output could be used in many profitable ways (e.g., helping to resolve anaphora),
without compromising linguistic principles.

Finally, as mentioned above, our participation in MUC-3 gave added impetus to the
development of an improved discourse component.

About the task

Working on MUC-3 provided the PRC team of researchers valuable experience in large-
scale system development. Basically, we learned what needed to be done and how to divide the
work among ourselves efficiently. We also, albeit somewhat belatedly, learned to make maximum
use of the tools provided us. For example, rather late in the game, it surprised us that we had not
thought to use the development corpus as a source of information about perpetrator organizations!

About evaluation

Task design: Complete specification of a complex task to be performed is a non-trivial
undertaking, requiring multiple iterations to resolve outstanding issues. MUC-3 has clearly
demonstrated that, in spite of excellent initial task design, unforeseen issues inevitably arise, and
an ongoing mechanism to provide clarification is indispensable for such complex problems.

Training: A valid evaluation must be representative of the domain and type of text on
which the system was trained. The training corpus must therefore be sufficiently large and varied
to cover most of the issues which are likely to arise in a test. (This is one of many areas where
MUC-3 was vastly superior to MUC-2.) Furthermore, for complex tasks such as MUC-3, it is
critical to have an authority available to judge the correctness of a system's response to the training
corpus. The development corpus keys, to which each site contributed 100 messages' worth,
provided such an "authority"”. The process of manually generating keys pointed out many issues
which required task clarification, and thus reduced the risk of misinterpreting some aspects of the
task.

Test Set: Selection of test messages should be done, as it was in MUC-3, from the corpus
before development begins. How to ensure that the test set is representative of the corpus,
linguistically and in terms of content, is a question which it may be useful to address for MUC-4,
as is the issue of the appropriate size of a test set. The "answers" to the test set should be produced
independently of the test, by an unbiased party (not the system developers). Agreement by all
participants to abide by the decisions of the unbiased party must be obtained before the test, and
must be adheréd to after the test.

Metrics and Scoring: The automatic scoring program is a valuable tool for both
development and testing. It ensures a base level of impartiality in scoring, although that
impartiality is mitigated by the fact that participants could assign themselves credit interactively,
possibly using different standards. A possible solution, ultimately adopted for MUC-3, is to have
all results scored blindly by an unbiased party.

The MUC-3 scoring program has been useful not only as a means for standardization in
testing, but also as a development tool. The fact that different metrics (e,g., recall, precision,
overgeneration) were provided on a slot-by-slot basis gave us a clear picture of our progress. For
viewing test results, this means of reporting highlights the strengths and weaknesses of different
aspects of the systems, rather than providing a single numeric score which masks the details. It
thus provides a larger, fairer picture of the systems than would otherwise be possible.

104





