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Abstract 

This paper presents a fine-grained error comparison of the English-to-Dutch translations of a commercial neural, phrase-based and rule-
based machine translation (MT) system. For phrase-based and rule-based machine translation, we make use of the annotated SCATE 
corpus of MT errors, enriching it with the annotation of neural MT errors and updating the SCATE error taxonomy to fit the neural MT 

output as well. Neural, in general, outperforms phrase-based and rule-based systems especially for fluency, except for lexical issues. On 
the accuracy level, the improvements are less obvious. The target sentence does not always contain traces or clues of content being 
missing (omissions). This has repercussions for quality estimation or gisting operating only on the monolingual level. Mistranslations 

are part of another well represented error category, comprising a high number of word-sense disambiguation errors and a variety of other 
mistranslation errors, making it more complex to annotate or post-edit.  
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1. Introduction 

Since 2016, the landscape of automated translation has 
substantially changed with the arrival of neural machine 

translation (NMT). The output quality of this newest 

system is a hot topic for research at the moment. It has 
already been compared with the previous state-of-the-art 

phrase-based machine translation (PBMT) engines and 

even with rule-based machine translation (RBMT) engines, 
focusing on the overall performance by applying various 

automatic metrics, by manual ranking and scoring 

(Shterionov, Casanellas, Superbo, & O’Dowd, 2017), post-
editing or manual error classification (Bentivogli, Bisazza, 

Cettolo, & Federico, 2016). The scope of the studies range 

from one to multiple language directions  (Toral and 
Sánchez-Cartagena 2017; Klubička, Toral, and Sánchez-

Cartagena 2017; Bojar et al. 2016). Unlike previous work, 

where engines are developed in research institutes or test 
suites are built for evaluation, in this paper, we take a 

different angle by using commercial MT systems and real-

life texts from different genres, and thus bring more 
ecological validity into the field. 

In this article, we compare the output of commercial NMT, 

PBMT and RBMT systems for English to Dutch. Since it 
provides a detailed overview of the types of errors , we want 

to discover if the findings for other language pairs apply to 

English-to-Dutch as well, identify the actual improvements  
that NMT systems bring to automated translation and get a 

grip on their potential shortcomings.  

2. Related Work 

This analysis is carried out in the framework of the SCATE 
project (Tezcan, Hoste, & Macken, 2017b) and draws on  

its corpus of PBMT and RBMT errors . We used SCATE’s  

error taxonomy to annotate the same sentences, this time 
translated by Google’s Neural Machine Translation 

(GNMT)1.  

A substantial part of the research in the field focuses on the 
language pair English-German. For English to German , 

Bentivogli et al. (2016) found that NMT output contains 

less lexical, morphological and word-order errors, which 

                                                                 
1 MT output generated in June 2017. 
2 Character n-gram F-score (Popovic, 2015) 

leads to a lower overall post-editing effort. However, 
according to the authors, the performance of NMT 

degraded more quickly for longer sentences.  

Popović (2017) looked into both the overall performance 
and the specific language-related issues for German-

English, using the output of the best NMT and a PBMT 

engine which participates in the WMT 2016 shared news 
translation task. The BLEU score and ChrF-score2 for 

NMT were higher than for the PBMT output in both 

language directions. She manually annotated a subset of 
264 sentences for English-to-German and 204 for German -

to-English extracted from the total corpus of 3000 

sentences. In her study, the number of correct sentences 
was remarkably higher for the NMT system than for the 

PBMT system. As for the language-specific issues, NMT 

outperformed the PBMT system in terms of verb aspects 
(form, order and omission), articles, English noun 

collocations and German compounds, as well as phrase 

structure. This led to improved fluency. Burchardt et al. 
(2017) use a test suite drawn from grammatical resources, 

and online lists, consisting of typical translation errors , to 

compare the output of different NMT, PBMT and RBMT 
systems. This very controlled, difficulty-isolating method, 

showed a higher intra-system output variation among NMT 

systems. They also found that NMT scores best on 
composition, function words, long-distance dependency, 

multiword expressions, subordination and verb valence. 

Ambiguity, tense and mood of verbs, on the other hand, are 
handled best by RBMT systems. Terminology and named 

entities, finally, form the mainstay of PBMT systems based 

on their results. By using a similar challenge-set approach, 
Isabelle, Cherry, and Foster (2017) focus on short 

sentences that contain one particular language phenomenon 

at a time, which reveals the strengths and weaknesses of 
NMT compared to PBMT for English to French. The 

controlled input in both studies is both a strength and a 

trade-off for ecological validity. Language-specific errors 
hardly ever occur in isolation. The performance of systems 

can differ if multiple difficulties need to be handled in the 

same sentence.  
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Toral and Sánchez-Cartagena (2017), Bojar et al. (2016) 

and Castilho et al. (2017) take more language directions 
into account to evaluate and compare NMT and PBMT.  

The MT systems involved in the news-shared task at WMT 

2016 (Bojar et al., 2016) covered the language pairs 
English to German, Czech, Russian, Finnish, Romanian  

and Turkish. Thanks to a combination of BLEU scores and 

human ranking, the output of the best systems could be 
determined, listing NMT (more specifically the engine 

submitted by the University of Edinburgh) on top in most 

language directions or in second place except for English-
Finnish. Toral and Sánchez-Cartagena (2017) took the 

output of the best NMT and PBMT systems from the news 

translation task of WMT16 as a starting point. They have 
proven that for all language pairs, there is a higher 

intersystem variability for NMT output and that the NMT 

output was more fluent. Furthermore, NMT generates more 
(correct) word reorderings for almost all language pairs 

(not the case for EN-DE and EN-FI). A negative correlation 

between sentence length and performance was confirmed  
for the majority of language directions. For sentences 

longer than 40 words, the PBMT systems even 

outperformed NMT, which they ascribe to the sub-word 
unit operating level of NMT. Finally, NMT performs better 

on inflection and reordering for all language directions.  

A word of caution has been added by Castilho et al. (2017). 
For English-German, English-Portuguese, English-Greek 

and English-Russian professional translators were asked to 

perform three tasks: post-editing, annotating and ranking 
the PBMT and NMT output. Although for all language 

pairs, NMT was ranked as most fluent, NMT produced 

more correct sentences, contained fewer inflectional and 
word order errors, and needed less effective post-edits, “the 

progress is not always evident” they warn. The participants 

indicated that NMT errors were more difficult to identify, 
compared to the obvious word-order errors and disfluencies 

occurring in PBMT output. This is attributable to the higher 

omission, addition and mistranslation rates for NMT (as 
opposed to PBMT) in some language directions. They 

concluded that the throughput and temporal effort only 

marginally improved thanks to NMT.  

3. Error classification 

For the annotation and classification of the MT errors, we 

made use of the SCATE error taxonomy (Tezcan et al., 

2017b), which differentiates between fluency (assessing 

the well-formedness of the target language) and accuracy 

errors (concerning the transfer of source content).  

For more information on the annotation guidelines and 

process, we would refer to Tezcan, Hoste, and Macken 

(2017). The advantage of the SCATE annotation method is 

that both fluency and accuracy errors are annotated 

separately and that the erroneous MT section is linked to 

the source section in the case of accuracy errors (except for 

omissions and additions, which are only labelled in source 

and target, respectively). The categories in the 

classification are based on MT-specific errors. A text span 

can receive multiple labels if different types of errors occur 

in this span. The fine-grained MT error annotations  of 

                                                                 
3 The Dutch Parallel Corpus comprises two additional text types 

that were not used by SCATE: administrative texts and instructive 

texts. 

SCATE serve as training material to develop Quality  

Estimation systems for MT (Tezcan, Hoste, & Macken, 

submitted, 2017a). 

For the annotation of NMT, we added two extra categories: 

i) ‘fluency-grammar-extra-repetition’ (see section 5.2.2), 

and ii) ‘accuracy-mistranslation-semantically unrelated’ 

(see section 5.1.1). The existing annotations for ‘fluency-

grammar-extra’ in the RBMT and PBMT subsets were 

revised in case the new category suited the output better. 

Accordingly, all subsets now bare the same updated 

annotation labels, allowing for a fair comparison. 

4. Research setup 

4.1 Data Sets 

The SCATE corpus of MT errors was built with sentences 

extracted from the Dutch Parallel Corpus (Macken, De 

Clercq, & Paulussen, 2011). From this balanced, 

commercial and copy-right-cleared corpus, an equal 

number of 665 sentences was selected from three different  

text types (non-fiction, external communication and 

journalistic texts3). 

4.2 MT systems 

For the SCATE corpus of MT errors , created in 2014, 

Systran4 was used as RBMT system and Google Translate 

as PBMT system. Around the beginning of October 2016, 
Google switched to neural, launching Google’s Neural 

Machine Translation system. The architecture of this model 

consists of deep Long Short-Term Memory recurrent 
neural networks (LSTM RNNs) with eight encoder and 

eight decoder layers that use residual connections and 
attention connections (Wu et al., 2016). 

4.3 Annotations 

A total of six annotators (all with a linguistic background) 
worked on this project. For the PBMT and RBMT subsets, 

two pairs annotated in parallel in June 2014; in June 2016, 

one pair was assigned this task for NMT. For the actual 
annotation process, the brat rapid annotation5 tool was 

used. To ensure consistency and a higher inter-annotator 

agreement, annotation guidelines and a reference 
translation were provided, together with periodic revision 
moments for questions and answers. 

5. Error analysis 

A quick glimpse at the overall error statistics in Table 1 
reveals that also for English-Dutch, NMT makes fewer 

mistakes and generates more sentences that are completely 
correct. 

 RBMT PBMT NMT 

Accuracy 1309 741 472 

Fluency 1831 1531 719 

Total 3140 2272 1191 

Table 1: Total number of errors 

4 Systran Enterprise Edition, version 7.5 
5 http://brat.nlplab.org/ 
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 RBMT PBMT NMT 

Correct sentences 81 130 217 

In % 12% 20% 33% 

Table 2 : Correct sentences in MT output 

Table 2 illustrates that the NMT output surpasses the other 

systems. One third of the sentences has been translated 

correctly by NMT, while this rate is much lower for RBMT 
and PBMT. 

5.1 Accuracy errors 

Accuracy concerns the transfer of information and meaning  

from source to target language. The following main  

categories can be distinguished: mistranslation, do-not-
translate (DNT), untranslated, addition, omission, and 

mechanical.6 ‘Mistranslations’ comprise all errors for 

which the source content has been translated incorrectly 
(the subcategories will be mentioned below). The label 

‘DNT’ is used for instances in which one or more source 

words have been translated unnecessarily, e.g. for proper 
names. ‘Addition’ refers to errors in which the target 

content is not present in the source, while for ‘omission’ 

some source content is absent in the target sentence. All 
mistakes concerning non-meaning (mostly punctuation 

errors only visible on bilingual level) fall under the 
category ‘mechanical’.  

Accuracy errors RBMT PBMT NMT 

Mistranslation 972 483 330 

DNT 116 14 22 

Untranslated 65 69 44 

Addition 61 39 2 

Omission 43 115 62 

Mechanical 52 21 12 

Total  1309 741 472 

Table 3: Overview of the number of accuracy errors 

Table 3 shows that overall, NMT scores better on accuracy 
than previous systems. However, upon closer inspection, it 

becomes evident that PBMT handles DNT issues better 

than NMT. This comes as no surprise, since most of the 
DNT errors are instances of proper names, a reported 

strength of PBMT (Burchardt et al., 2017). We also observe 

that RMBT output contains the fewest omissions. The main  
category ‘mistranslation’ is obviously a tough nut to crack 

for automated translation, as it is the category with the 

highest number of accuracy errors in all three systems, 
urging us to dig a little deeper. 

5.1.1 Mistranslation errors 

‘Mistranslation’ refers to incorrectly translated source 

content and is subdivided in the following subcategories: 

multiword expressions (MWE), part of speech (POS), 
sense, partial and other. The label ‘partial’ is used for 

partial translations of verbs  (especially for Dutch, separable 

verbs). The container ‘other’ comprises mistranslations of 
the verb tense and voice, or the number (noun/ verb). To 

cover the instances for which the target word(s) could never 

                                                                 
6The actual SCATE taxonomy also includes the categories  

‘terminology’, ‘source’ and ‘other’, but  these are left out here as 

there were no occurrences for any of the three systems. 

be a plausible translation of the given source word, we 

introduce the label “semantically unrelated”. An example: 

EN: … to build the first ever dynamic billboard to grace 

the streets of Glasgow. 

NL:  … om het eerste dynamische billboard te bouwen om 

de straten van Glasgow te grazen. 

In the sentence above ‘grace’ is translated by ‘grazen’, the 

Dutch equivalent of ‘to graze’. This new category reveals 
a high number of semantically unrelated mistranslations in 

the NMT output, an error that does  not occur in RBMT 

and only rarely in PBMT output. 

 RBMT PBMT NMT 

MWE 288 139 87 

POS 52 44 19 

Sense 580 208 117 

Partial  4 41 6 

Semantically 

Unrelated 

0 9 44 

Other 48 42 57 

Total  972 483 330 

Table 4 : Differentiation of mistranslation errors  

Table 4 further illustrates the improvement that NMT has 

made on almost all mistranslation categories, except for 
‘other’. 

5.1.2 Omissions 

Castilho et al. (2017) reported the problem of omissions in 
NMT output. When scanning the error statistics in Table 5, 

we can see that also in our data set, NMT makes fewer 

omission errors than PBMT. However, the ratio of omitted 
words per omission error is much higher in NMT than in 

PBMT and RBMT.  
 

# Omissions # Annotated 

words 

Average # words 

per omission 

RBMT 43 46 1,07 

PBMT 115 125 1,09 

NMT 62 93 1,50 

Table 5: The number of omission errors compared to the 
number of words per omission error 

Looking back at the corpus , we see that the nature of the 

omission errors has changed. Often, the NMT output does 
not provide any clues that source content has been omitted. 

Wu et al. (2016) already commented: “MT systems 

sometimes produce output sentences that do not translate 
all parts of the input sentence – in other words, they fail to 

completely ‘cover’ the input, which can resu lt in surprising 

translations”.  
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RBMT PBMT NMT 

Total omissions 43 115 62 

Content words 6 80 53 

Function words 37 35 9 

% Content words  0,14 % 69,96 % 85,48 % 

Visibility 40 89 19 

Invisibility 3 26 43 

% Invisibility 7 % 23 % 69 % 

Table 6: Subdivision of omission errors based on their 
type and visibility 

For each omission, the number of words, type and visibility  

was annotated. The type of omission differentiates between 
content words and function words, the latter having a less 

severe impact on the accuracy of the translation. NMT 

drops, on average, more content words than RBMT and 
PBMT.  

Another interesting aspect is the visibility of the omission 

error when there are traces in the target sentence that source 
content is missing. The visibility of an omission error can 

be defined as the expectation of content being missing 

when only reading the translation (without comparing it to 
the source). In other words, is the omission visible/ 

expected at monolingual level? To check for visibility of 

omission errors, all sentences with omission errors were  
extracted. The annotator indicated, with yes or no, if it was 

evident from reading only the target sentences if source 

content was missing.  
 

A few examples will illustrate the invisibility of the 

omission error in the MT output when only the Dutch target 
translation is read. These are all examples from NMT. 

 

EN: In Kinshasa, a Belgian colleague is busy with a similar 

fistula project with which we would like to collaborate more 

effectively. 

NL: In Kinshasa is een Belgische collega bezig met een 

soortgelijk fistelproject waarmee we effectiever samenwerken. 

 

EN: “There is almost no contact now between Israeli and 

Palestinian writers,” Grossman told me. 

NL: “Er is nu bijna geen contact tussen Israëlische en 

Palestijnse schrijvers, “ vertelde Grossman. 

 
For RBMT and PBMT, the omissions are being anticipated 

by fluency errors. The reverse is true for NMT, where the 

fluency is no indicator that all the source content is being 
transferred into the target. Even text spans of 4 words are 

being fluently omitted by NMT. We can conclude that the 

nature of the omission errors has changed. This forms a 
major issue not only for annotators and post-editors, but 

also for everybody using these commercial systems online 

for free, disposing only of the target text. In research, this 
issue challenges quality estimation of NMT output and 

gisting. 

5.2 Fluency errors 

As mentioned before, fluency deals with the well-

formedness of the target language, regardless of the 

transmission of content and meaning from the source into 
the target sentence. The following categories are identified : 

grammar, lexicon, orthography, multiple errors and other. 

The labels of most error categories are self-explanatory , 

except for the label ‘multiple errors’, which is used when 

an accumulation of fluency errors on a text span makes it 
hard to identify the error separately. Table 7 gives an 

overview of the fluency performance of the different  
systems. 

Fluency RBMT PBMT NMT 

Grammar 864 932 260 

Orthography 290 253 95 

Lexicon 533 235 358 

Multiple errors 144 110 6 

Other 0 1 0 

Total 1831 1531 719 

Table 7: Overview of the number of fluency errors  

As previous research confirms, fluency is handled best by 

NMT for English-Dutch as well. The improvements are 

enormous for all categories, except for lexicon, which, 
therefore, draws our attention. 

5.2.1 Lexicon 

Lexical errors are split into two subcategories: ‘non-
existent’ and ‘lexical choice’. The latter distinguishes 

‘content words’ from ‘function words’. Table 8 g ives an 

overview of all the lexical errors in the MT output. From 
the results in Table 8, it is clear that NMT makes much 

more lexical choice errors than PBMT, but it is actually 

only the content words that cause difficulties. For function 

words, NMT scores best. 

Lexical choice RBMT SMT NMT 

Total 468 181 304 

Content word 290 91 226 

Function Word 178 90 78 

Table 8: Subdivision of lexical choice errors  

In many instances, the category ‘Fluency-Lexical Choice’ 
occurs together with an accuracy error for ‘Mistranslation-

Sense-Content word’. This type of fluency error is the clue 
that source content has not been rendered correctly.  

5.2.2 Grammar 

Another well represented fluency error category is 
grammar. Comparing the three paradigms, we see the 

progress that has been made. A further subdivision of this 
category is presented in Table 9. 

Grammar RBMT PBMT NMT 

Word form 143 245 73 

Word order 372 311 42 

Extra word(s) 162 99 46 

Missing word(s) 162 247 83 

Multi word syntax 24 27 11 

other 1 3 5 

Total 864 932 260 

Table 9: Subdivision of grammar errors  

It is worthwhile to take a look into ‘extra words’. Table 10 
shows the newly added ‘repetition’ subcategory to label 

words or word groups that are unnecessarily repeated. The 

rest category ‘other’ contains all other extra words in the 
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target sentences, that should not be there. An example of 
repetition is illustrated below: 

EN: Located above Glasgow Central Station, on the corner 

of Union Street and Gordon Street, the 55 square metre 

LED screen faces directly onto Renfield street-- the second 

largest retail location in the United Kingdom, and is visible 

across a range of over 600 metres. 

NL: Het 55 vierkante meter LED- scherm ligt boven het 

central station van Glasgow, op de hoek van Union Street 

en Gordon Street. Het scherm heeft een oppervlakte van 

55 meter en is direct zichtbaar op Renfield Street, de tweede 

grootste winkelplaats in het Verenigd Koninkrijk. 

The words in bold in the source sentence have been 

translated in 2 places (also in bold) in the target sentences. 

A subdivision of all extra word errors is presented in Table 
10. 

 RBMT PBMT NMT 

Extra words 162 99 46 

Repetition 9 6 15 

Other 153 93 31 

Table 10: Subdivision of ‘grammar extra words’ errors  

Although NMT has less superfluous words in its output, it 

has a higher number of repetitions of one or more words 
than the other systems.  

5.3 Long sentences 

In literature, long sentences have been reported as a 

weakness of NMT systems. Bentivogli et al. (2016) found 

that the performance of NMT degraded faster with 
increased segment length. Toral and Sánchez-Cartagena 

(2017) confirmed this negative correlation and even 

reported that PBMT outperforms NMT for sentences 
consisting of 40 or more words.  

 RBMT PBMT NMT 

Long sentences 

# Errors 446 335 157 

# Target words  1791 1749 1677 

# Unique annotated words  821 685 195 

% Erroneous words 46% 39% 12% 

Short sentences 

# Errors 230 175 104 

# Target words  969 958 950 

# Unique annotated words  225 228 113 

% Erroneous words 23% 24% 12% 

Table 11: Performance on long sentences (min. 40 words) 
compared to short sentences (max. 10 words) 

Table 11 shows us that NMT still outstrips PBMT for long 

sentences. In fact, two of the 38 long sentences in our 
corpus were translated without errors by NMT. PBMT and 

RBMT produced no correct long sentences . For the sake of 

completeness, we include the performance of all engines on 
all 145 short sentences found in our corpus as well. In 

addition to the number of errors, Table 11 also presents the 

number of target words and the number of unique annotated 
words for each system. In the number of unique annotated 

words, every erroneous word is only counted once, even 

though it might be annotated multiple times in the same 
sentence.  

The percentage of wrong words in long and short sentences 

in our subset for NMT is the same. The expected 
degradation of NMT performance in long sentences, 

doesn’t hold (anymore). To overcome the accumulation of 

errors in longer sentences in NMT, different architectures 
have been examined and tested (Barone, Helcl, Sennrich, 

Haddow, & Birch, 2017) and all kinds of attentional 

mechanisms have been investigated (Luong, Pham, & 
Manning, 2015) and implemented. The GNMT’s  

architecture has also been enhanced by a bi-directional 

encoder for the bottom layer only, allowing for a maximu m 
possible parallelisation during computation (Wu et al., 
2016). 

6. Conclusions and outlook 

In this paper we compared the NMT output with RBMT 
and PBMT translations, providing an overview of the 

strengths and weaknesses of NMT. We explained why we 

expect that NMT output is more difficult to post-edit, by 
elaborating on the special and less transparent character of 

some types of NMT errors. Omissions and mistranslations 

that are semantically unrelated to the source, will be a 
future challenge, especially for all activities that only take 

the translation product into account (e.g. gisting and quality 

estimation of MT output). 
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