
WikiDragon: A Java Framework For Diachronic Content And Network
Analysis Of MediaWikis

Rüdiger Gleim1, Alexander Mehler1, Sung Y. Song2

Text-Technology Lab, Goethe University1

Robert-Mayer-Straße 10, 60325 Frankfurt
{gleim, mehler}@em.uni-frankfurt.de, gnosygnu@gmail.com2

Abstract
We introduce WikiDragon, a Java Framework designed to give developers in computational linguistics an intuitive API to build, parse
and analyze instances of MediaWikis such as Wikipedia, Wiktionary or WikiSource on their computers. It covers current versions of
pages as well as the complete revision history, gives diachronic access to both page source code as well as accurately parsed HTML and
supports the diachronic exploration of the page network. WikiDragon is self-enclosed and only requires an XML dump of the official
Wikimedia Foundation website for import into an embedded database. No additional setup is required. We describe WikiDragon’s
architecture and evaluate the framework based on the simple English Wikipedia with respect to the accuracy of link extraction,
diachronic network analysis and the impact of using different Wikipedia frameworks to text analysis.

Keywords: Wikipedia, Java Framework, Diachronic Text Analysis, Diachronic Network Analysis, Link Extraction

1. Introduction
Wikis such as Wikipedia, Wiktionary, WikiSource or
WikiNews constitute a popular form of collaborative writ-
ing and thus a valuable resource for computational lin-
guistics. This relates to research exploiting wiki data as
a resource, e.g. for word sense disambiguation (Uslu et
al., 2018; Dandala et al., 2013), explicit semantic analy-
sis (Gabrilovich and Markovitch, 2007) or training data for
named entity recognition (Nothman et al., 2008). Further-
more, wikis are also considered as a research object on their
own, for example with respect to measuring the impact of
authors and edits (Priedhorsky et al., 2007), studies on dis-
course structure (Mehler et al., 2018) as well as on edit
categories (Daxenberger and Gurevych, 2012) or dynamics
of conflicts in Wikipedias (Yasseri et al., 2012). The Wiki
principle is also used to publish research results like digital
editions of texts as Wikiditions (Mehler et al., 2016).
Generally speaking, researchers need efficient as well as
manageable means to access wiki data. However, one has
to face the challenge that this data is not limited to arti-
cles but also includes discussions, pages in other names-
paces such as portals, rich metadata, revision histories, in-
formation about (anonymous or registered) writers as well
as about the link-based networking of pages. For small
queries, using the Web API of wikis to collect data may be
feasable. But in order to analyse large amounts of data (e.g.
all articles of the main namespace) the approach to work
online is inadequate because of the intense use of bandwith
and server load. The alternative is to work offline based on
local reconstructions of wikis. Notice that this scenario in-
duces a big data problem: take the example of the German
Wikipedia: as of 2016-02-03 its pages sum up to 23.84 GB
of uncompressed data (current versions only). Its history
pages sum-up to 2.92 TB of uncompressed data. Build-
ing an offline instance of a wiki based on the MediaWiki
software requires extensive work to setup the environment,
ensuring that all plugins are installed and importing the of-
ficial XML dumps into a local MySQL database. Alter-

native approaches to work with wikis offline lack proper
interfaces to explore the data or cover only certain aspects:
for example by modeling only a subset of all namespaces
(e.g. the main namespace and categories) or by developing
interfaces to special instances such as Wiktionary.

Wikimedia’s XML dumps, which are the only and most
complete data sets available contain revision texts in a pro-
prietary markup which needs to be processed to get HTML.
This process is a challenging task, since MediaWiki allows
for recursively including templates, uses parser functions
and even a scripting language (Lua). Ignoring these partic-
ularities entails a high risk of information loss. This also
holds, for example, for text network analysis, since page
links are only provided as part of SQL dumps which, in
contrast to the latter XML dumps, only map the latest state
of text linkage. Thus, reconstructing past states of a wiki’s
article network cannot be done by referring to SQL dumps.

WikiDragon aims to solve the challenge of providing
(nearly) complete representations of wikis offline and de-
liver a Java API which meets all requirements to import,
represent, extract and analyze MediaWikis in a diachronic
manner with respect to text, authorship, network structure
and metadata. It is self-contained, runs on Windows as well
as Linux and does not require any additional setup. Java
developers can use WikiDragon to focus on their research
question and code extensions fitting their needs.

Section 1.1. gives an overview of related work in this field.
Section 2. points out special features of WikiDragon’s ar-
chitecture and sketches the essential qualities of the Core
API. Section 3. provides an evaluation by measuring com-
putation time and required space to build a database, by
measuring the accuracy of link extraction against a gold
standard, by performing an exemplary diachronic network
analysis and by examining the impact of variants of markup
parsing to subsequent text analysis. Section 4. gives a sum-
mary and a prospect of future work.

3728

1.1. Related Work
There is a vast number of alternative parsers to MediaWiki
markup 1 and related tools to extract specific information.
Simple approaches attempt to convert MediaWiki Markup
into plain text or HTML by applying replacement rules
such as regular expressions. More sophisticated approaches
also try to implement functions and templates. Nonethe-
less such advanced frameworks still lack supporting the
MediaWiki extension Scribuntu which allows the use of
the scripting language Lua. This becomes an issue espe-
cially in Wiktionary where whole conjugation and declina-
tion tables are written in Lua. The Sweble Wikitext Parser2

(Dohrn and Riehle, 2011) is a Java framework to transform
MediaWiki markup into a full fledged object model which
can then be transformed into plaintext or HTML. Sweble
supports template expansion and a selection of parser func-
tions. The Java Wikipedia API (Bliki engine)3 takes it a
step further by providing support for Lua. XOWA4 is an
offline reader for Wikimedia wikis such as Wikipedia and
Wiktionary, dedicated to accurate rendering of MediaWiki
markup. It provides template expansion, parser functions
and processing of Lua code. The project consists of the
XOWA App and the underlying XOWA Embeddable Parser.
The offline reader is implemented in Java and based on
SWT and Mozilla XULRunner for visualization and HTML
rendering. SQLite is used as database backend and Apache
Lucene for indexing. The Embeddable Parser is based on
Java, Lua and JTidy. It provides an API which allows it
to be used for MediaWiki source parsing by other applica-
tions bringing their own data model and store. WikiDragon
uses XOWA Embeddable Parser to provide (nearly) accu-
rate HTML rendering of Wiki pages and to extract network
structures induced by page links.
The Java Wikipedia Library (JWPL) (Zesch et al., 2008;
Ferschke et al., 2011) is a framework which, based on a
MySQL database, provides local access to Wikipedia in-
stances. It includes Sweble to provide plain text versions
of articles as well as access to the object model. The stan-
dard integration of Sweble into JWPL does not include tem-
plate expansion. Current versions of a Wikipedia can be
build based on dumps using the JWPL DataMachine and
imported into MySQL. The JWPL Core is supplemented
by the JWPL RevisionMachine to get access to the edit his-
tory whereas JWPL TimeMachine provides means to create
automatized snapshots of a Wikipedia in a specific time in-
terval. Both data model and API of JWPL Core focus by
design on the Wikipedia and on the Article- and Category
Namespace (including discussion). JWPL supports the im-
port of SQL dumps representing article as well as category
links and provide access to this network structure by means
of the Java API. Past states of contents can be generated
via RevisionMachine or TimeMachine. However it is not
possible to reconstruct past states of the network structure
as SQL dumps only represent the current state of pages.

1MediaWiki maintains a list of alternative parser on
https://www.mediawiki.org/wiki/Alternative parsers

2https://osr.cs.fau.de/software/sweble-wikitext/
3https://bitbucket.org/axelclk/info.bliki.wiki/
4http://xowa.org/

Java Wiktionary Library (JWKTL) (Zesch et al., 2008) is
a related but stand-alone project which uses an embedded
BerkeleyDB to create a parsed lexicon based on a Wik-
tionary XML dump for English, German and Russian.
WikiWho (Flöck and Acosta, 2014) is an algorithm to com-
pute token-level provenance and changes for Wiki revi-
sioned content. The approach thus focuses on the aspect
of the authorship of text components at token level. The
system can be used via a web service5. WikiWho does not
expand templates nor does it track links of pages.
DBpedia (Lehmann et al., 2015) is a community project to
extract structured information from Wikipedia in different
languages on large scale. Parsed information is represented
in RDF which can either be downloaded or queried online
via SPARQL. Thus the focus is on explicating information
which is hidden in uni- or semi-structured text. Even if
extraction- and data projects use their own pipelines for
the acquisition and processing of raw data, there could be
added value in quickly making any past state available of-
fline using WikiDragon. That way, the information growth
of a Wikipedia instance could be investigated over time. In
this context, the integration of XOWA for the translation of
wiki markup into HTML could is also interesting to related
projects.
WikiDragon goes beyond the objectives of offline readers
for an accurate representation of the current state by in-
cluding all content and meta data available to current and
past states. Furthermore it is unique in the way it com-
bines the design goal of complete coverage with access
through a consistently object-oriented Java API, which can
be adapted to any database system via interface implemen-
tation.

2. WikiDragon Architecture

Figure 1: Architecture of WikiDragon depicting the layer
model of the system. Italic components are subject of future
work.

WikiDragon is designed on the principle to focus on ac-
cessing a collection of MediaWiki instances by means of
an intuitive Java API while minimizing efforts for setting
up the system environment. Figure 1 depicts the general
architecture of the framework. The WikiDragon Java API
marks the top layer of the architecture. This is the primary
interface for users to work on Wikis. Importing, compress-
ing and representing Wiki instances is an integral part of the
system: A new Wiki is imported by providing a path to a
compressed XML dump file (either current revisions only,
or the full history version) to the XMLDumpParser. The
import applies multi-threading to speed up the compression
of revisions. The most effective compression is achieved

5https://api.wikiwho.net/en/api/

3729

by only storing differences between subsequent page revi-
sions. However, other compression techniques like BZip2,
LZMA2 or none at all are also available and may be used
when disc space is less an issue. Another important com-
ponent of WikiDragon is the integration of XOWA for ad
hoc or multi-threaded mass parsing of page-revisions or di-
achronic snapshots called PageTiers.
WikiDragon supports multiple database systems by design
to be able to provide the best fitting paradigm for a given
user environment or task: An embedded database requires
no setup, is ideal for a user working on a workstation and
yet suitable to host a collection of small or medium-size
Wikis or one large instance. Server-based DBMS require
additional setup but have the opportunity to detach the ex-
perimentation environment from the storage layer. Large
scale distributed DBMS like Cassandra are perfect to host
multiple large Wikis and still access them by using the same
Java API as for the embedded databases. Currently there
exist two implementations which use the embeddable graph
database management system Neo4J as backend: One vari-
ant is based on the batch-inserter interface of Neo4J which
is fast, but at the cost of reduced features such as lack of
transactions and deletion of elements. The second variant
is based on the transactional interface of Neo4J and pro-
vides concurrent access which makes it suitable to build a
webservice on top of WikiDragon. Note that the integra-
tion of Cassandra, MySQL and the Live-mode (based on
Web APIs) are subject of future work.

2.1. Process Chain

M
et

a-
C

ur
re

nt

X
M

L
Im

po
rt

P
T

E
xt

ra
ct

io
n

P
T

N
et

w
or

k

S
Q

L
Li

nk
-Im

po
rt

M
et

a-
H

is
to

ry

X
M

L
Im

po
rt

P
T

E
xt

ra
ct

io
n

P
T

N
et

w
or

k

S
Q

L
Li

nk
-Im

po
rt

MediaWikis

Namespaces

Pages

Revisions

Contributors

MW Markup

HTML

Out-Links (HTML)

In-Links (HTML)

Out-Links (SQL)

In-Links (SQL)

Figure 2: Resource-Feature matrix of WikiDragon for two
XML dump variants meta-current and meta-history. Green
denotes direct availability, red unavailability and orange in-
dicates that the information can be parsed ad hoc (not nec-
essarily efficient). Split circles distinguish availability with
regard to current (top) or history (bottom) version.

Figure 2 depicts the availability of API features with respect

to the XML dump used and the processing steps executed.
Using the Meta-Current XML dump is the fastest way to
build up a database as it contains only the most recent ver-
sion of each page. In contrast the Meta-History dump takes
considerably more time for import but allows diachronic
access. Most features are available directly after the XML
import. HTML can be parsed ad hoc (marked yellow in the
matrix), which is suitable for small amounts of access. For
mass text processing, performing a PageTier (PT) extrac-
tion is required which represents a snapshot of a specific
point in time (which could also be the most recent state).
Outgoing page links are available by ad hoc parsing. For
incoming links a PageTier Network needs to be extracted.
Finally it is possible to import SQL link dumps from the of-
ficial Wikimedia sources which represent the current state
of linking.6

2.2. Core API
The WikiDragon Core Model API (see figure 3) provides
classes and methods to browse through collections of Medi-
aWikis, pages, revisions, namespaces and contributors. For
example a developer can fetch a page by a specific names-
pace and title, ask for the latest revision, get the contributor
and then ask for all revisions he or she has written. Also ac-
cessing HTML and outgoing and incoming links (depend-
ing of the kind of processing, c.f section 2.1.) is possible.

1
*

1*
1 *

1
*

1

1..*

1

*

1
source

*

1
target

*

*1
* 1 1

11

1

*
1..*

1

1

MediaWikiCollection

MediaWiki ContributorNamespace

PageWikiPageLink

RevisionPageTier ZonedDateTime

Text/HTML/TEI

Figure 3: UML diagram depicting the (simplified) Core
Model API.

WikiDragon provides two means to access past states of
a MediaWiki instance. The first and most straight-forward
solution is to fetch the revision of a page which has been ac-
tive at a specific point in time. This gives access to HTML
as well as outgoing links because they are parsed ad hoc. It
is possible to perform a complete parsing of all revisions in
HTML. Because of the extensive amount of time and space
this takes on large MediaWiki instances it is also possible
to restrict the parsing to specific pages or revisions by im-
plementing a filter. The second method to access past states

6Import links from SQL is performed into whatever database
system used- it does not depend on a relational DBMS.

3730

is to create a PageTier representing a snapshot at a specific
point in time. A snapshot is solely identified by its times-
tamp and contains all contents parsed in HTML. Optionally
this HTML can be used to explicitly compute and store the
page network at that time. The advantage is that with this
performed it is possible to ask for all all incoming links
of a given page at a specific time. In practice this second
approach is the best choice when a sequence of snapshots
should be examined since only those revisions are parsed
and processed which are relevant.

3. Evaluation
In this section we evaluate how WikiDragon performs on
typical use cases when working on Wikis. We start by im-
porting the history dump of the simple English Wikipedia
into a Neo4J database as backend using non-transactional
mode7. For our experiments we use uncompressed versions
of XML und SQL dumps which are available online8. The
import is done using up to 8 threads for a combined Diff-
BZip2 compression of revisions. This is the basis for all
subsequent experiments. As a reference, we also perform
an import without any compression. Then we create an-
nual snapshots within the system to get parsed HTML of
all pages (including all namespaces) and extract the page
networks. Finally we create and evaluate the page network
of the latest state of each page against an import of the offi-
cial SQL dumps representing the current state of page- and
category-links as well as redirects.

Task Time DB Size |V | |E| |GCC|
|V |

Import ref 00:29:01 32.35 GB - - -
Import Diff 01:29:05 5.18 GB - - -
2004-01-01 00:02:12 5.39 GB 1,025 3,250 0.870,244
2005-01-01 00:01:10 5.40 GB 3,938 25,248 0.886,237
2006-01-01 00:02:08 5.44 GB 12,158 109,030 0.898,339
2007-01-01 00:04:54 5.53 GB 32,821 301,002 0.925,932
2008-01-01 00:12:17 5.70 GB 61,773 619,343 0.940,039
2009-01-01 00:28:00 6.00 GB 106,729 1,099,710 0.947,371
2010-01-01 00:35:39 6.63 GB 152,914 2,784,841 0.953,771
2011-01-01 00:42:35 7.17 GB 193,434 3,463,370 0.950,913
2012-01-01 00:53:36 7.81 GB 225,884 4,169,790 0.951,347
2013-01-01 01:12:14 8.75 GB 268,830 5,157,335 0.961,254
2014-01-01 03:09:10 9.40 GB 309,732 3,727,148 0.961,431
2015-01-01 01:11:51 10.23 GB 342,115 6,669,247 0.961,530
2016-01-01 01:07:12 11.10 GB 382,936 7,119,001 0.930,064
2017-01-01 01:11:26 12.03 GB 410,131 7,545,065 0.931,100
2017-10-01 01:08:56 13.00 GB 433,189 7,895,909 0.932,076
Link-Dump 06:20:37 13.31 GB 433,214 8,022,464 0.938,425

Table 1: Statistics of the creation of PageTiers of the simple
English Wikipedia representing annual snapshots of HTML
content and page network.

Table 1 summarizes our evaluation on import and PageTier
creation. The latter consists of two steps: parsing content
in HTML and extracting a network based on the HTML
code. Extracted information is stored in the database. If the
network structure is not needed, this step could be skipped
to save disc space and computing time. The combined
Diff-Zip2 compression for revisions results in a database
of 5.18GB, saving about 84% of disc space compared the
uncompressed version while taking about 3 times longer for

7Transactional mode can be activated in Neo4J lateron without
the need to rebuild the database. All experiments published in this
work are conducted without transactions.

8https://dumps.wikimedia.org/simplewiki/20171001/

import. While the number of pages |V | constantly grows,
the number of |E| edges drops intermediately when ex-
tracted on 2014-01-01. Nonetheless the ratio of the size
of the greatest connected component |GCC| to the number
of vertices |V | is generally stable, even around this time.
We use the network structure of the PageTier on midnight
2017-10-01 to evaluate the extraction against an import of
the official SQL link dumps9. Table 2 shows that the re-
sults for page-links and redirects are above 98%. Recall
and FScore for categorization is about 4% less, indicating
that the extraction still misses an overproportional amount
of category links. This will be adressed in future work.

Link-Type Precision Recall FScore
Page-Link 0.990,380 0.987,971 0.985,423
Categorization 0.988,782 0.944,177 0.944,971
Redirect 0.999,885 0.999,901 0.999,785

Table 2: Evaluation of link extraction based on HTML
against SQL link dumps of the simple English Wikipedia.

These experiments were conducted using Neo4J as back-
end. However WikiDragon is by design not limited to a spe-
cific backend but can be adapted to other database systems
by implementing specific interfaces. Since Neo4J does not
provide horizontal scaling for write operations, incorpo-
rating other database systems like Cassandra10 or Blaze-
Graph11 are likely to significantly improve performance for
import- especially when processing large Wikipedias like
German or English. Neo4J has been chosen because it pro-
vides sufficient performance in many use cases and does
not require any additional standalone installation.

3.1. Comparing WikiDragon and JWPL
Whenever conclusions are drawn on any given resource we
need to ensure that the representation of the resource is as
accurate as possible. In this subsection we examine the im-
pact of the different approaches of WikiDragon (XOWA)
and JWPL (Sweble) to HTML rendering on exemplary use
cases of language studies. We assume that different tech-
nologies lead to different results which should be reflected
in terms of distribution characteristics such as the type-
token ratio. We use the actual Web API of the simple En-
glish Wikipedia to build a reference as gold standard. We
chose this instance because it allows us to perform a com-
plete analysis over all articles. A complete download based
on the English Wikipedia based on the Web API would not
have been feasable.
For WikiDragon and JWPL we use the meta-current dumps
of the simple English Wikipedia. The import for JWPL
was created using DataMachine with standard parameters.
Since JWPL only considers pages in the namespaces of ar-
ticles, articles talk and categories, we focus our analysis
on articles. Furthermore JWPL appears to automatically re-
solve redirects by default so that only non-redirect articles
are considered. For our experiment we use the intersection

9Note that there is a delta of 25 pages which have been created
on 2017-10-01 after midnight.

10http://cassandra.apache.org/
11https://www.blazegraph.com/

3731

extracted by WikiDragon, JWPL and Web API of the sim-
ple English Wikipedia (extracted on 2017-09-29, using the
latest revision IDs of the dump used for WikiDragon and
JWPL) resulting in 127,634.00 articles. We extract plain
text from each article by the default methods provided by
the frameworks. As normalization towards JWPL we strip
the title header as well as the categories section from the
WikiDragon output. From the reference Web API output
we strip the section index which is automatically created
for larger pages as well as the “edit”-labels which are gen-
erated for section titles. For tokenization we use PTBTok-
enizer of Stanford CoreNLP(Manning et al., 2014).
Figure 4 shows a comparison of the type-token ratio dis-
tributions based on WikiDragon/XOWA (blue) and JW-
PL/Sweble (red) against the Web API as reference. The
distributions are sorted in ascending order based on the
Web API variant. As the plots indicate, both distributions
deviate from the gold standard to some degree. In case
of Sweble the distribution is scattered much more, indi-
cating a significant difference to the original data. Ac-
cordingly, the correlation coefficients12 between XOWA
and Web API are considerably higher (0.955, T=15,679,
P < 2.2e−16) than between Sweble and Web API (0.663,
T=3,462, P < 2.2e−16).

Figure 4: Comparison of the type-token distributions based
on WikiDragon/XOWA (blue) and JWPL/Sweble (red)
against the Web API as reference.

4. Conclusion
We introduced WikiDragon as a Java framework to build,
process and analyse Wikis offline. It is unique in terms of
combining the aim of complete coverage of wikis with an
efficient API access for developers. We showed that the
system enables researchers to conduct diachronic studies
on content and network structure of wikis. An evaluation
against the official Wikimedia dumps showed high accu-
racies for link extraction based on HTML. To our knowl-
edge the diachronic network analysis on the simple English
Wikipedia is the first ever performed. We examined the
impact of using different HTML rendering engines for Me-
diaWiki markup. Results show that XOWA performs more

12The distance correlations haven been computed and averaged
over random samples based on 10 cycles using 10,000 items each.

accurate than Sweble. Future work will address the inte-
gration of additional DBMS, the development of API ex-
tensions for Wikimedia projects such as Wiktionary and
WikiNews and increasing accuracy of link detection.
WikiDragon is available on GitHub13.

5. Bibliographical References
Dandala, B., Mihalcea, R., and Bunescu, R. (2013). Word

sense disambiguation using wikipedia. In Gurevych I.
et al., editors, The People’s Web Meets NLP. Theory and
Applications of Natural Language Processing., pages
241–262. Springer, Berlin, Heidelberg.

Daxenberger, J. and Gurevych, I. (2012). A corpus-based
study of edit categories in featured and non-featured
wikipedia articles. In Proceedings of the 24th Interna-
tional Conference on Computational Linguistics (COL-
ING 2012), pages 711–726, December.

Dohrn, H. and Riehle, D. (2011). Design and implementa-
tion of the sweble wikitext parser: Unlocking the struc-
tured data of wikipedia. In Proceedings of the 7th Inter-
national Symposium on Wikis and Open Collaboration,
WikiSym ’11, pages 72–81, New York, NY, USA. ACM.

Ferschke, O., Zesch, T., and Gurevych, I. (2011).
Wikipedia revision toolkit: Efficiently accessing
wikipedia’s edit history. In Proceedings of the ACL-
HLT 2011 System Demonstrations, pages 97–102,
Portland, Oregon, June. Association for Computational
Linguistics.

Flöck, F. and Acosta, M. (2014). Wikiwho: Precise and
efficient attribution of authorship of revisioned content.
In Proceedings of the 23rd International Conference on
World Wide Web, WWW ’14, pages 843–854, New York,
NY, USA. ACM.

Gabrilovich, E. and Markovitch, S. (2007). Computing
semantic relatedness using wikipedia-based explicit se-
mantic analysis. In In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, pages
1606–1611.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M.,
van Kleef, P., Auer, S., and Bizer, C. (2015). DBpedia
- a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 6(2):167–195.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Association for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

Mehler, A., Gleim, R., vor der Brück, T., Hemati, W., Uslu,
T., and Eger, S. (2016). Wikidition: Automatic lexi-
conization and linkification of text corpora. Information
Technology, pages 70–79.

Mehler, A., Gleim, R., Lücking, A., Uslu, T., and
Stegbauer, C. (2018). On the self-similarity of
Wikipedia talks: a combined discourse-analytical and
quantitative approach. Glottometrics, 40:1–44.

Nothman, J., Curran, J. R., and Murphy, T. (2008). Trans-
forming wikipedia into named entity training data. In In

13https://github.com/texttechnologylab/WikiDragon

3732

Proceedings of the Australasian Language Technology
Association Workshop 2008, pages 124–132.

Priedhorsky, R., Chen, J., Lam, S. T. K., Panciera, K.,
Terveen, L., and Riedl, J. (2007). Creating, destroy-
ing, and restoring value in wikipedia. In Proceedings of
the 2007 International ACM Conference on Supporting
Group Work, GROUP ’07, pages 259–268, New York,
NY, USA. ACM.

Uslu, T., Mehler, A., Baumartz, D., Henlein, A., and
Hemati, W. (2018). fastsense: An efficient word sense
disambiguation classifier. In Proceedings of the 11th edi-
tion of the Language Resources and Evaluation Confer-
ence, May 7 - 12, LREC 2018, Miyazaki, Japan.

Yasseri, T., Sumi, R., Rung, A., Kornai, A., and Kertész, J.
(2012). Dynamics of conflicts in wikipedia. 7:e38869,
06.

Zesch, T., Müller, C., and Gurevych, I. (2008). Extract-
ing lexical semantic knowledge from wikipedia and wik-
tionary. In in Proceedings of LREC.

3733

	Introduction
	Related Work

	WikiDragon Architecture
	Process Chain
	Core API

	Evaluation
	Comparing WikiDragon and JWPL

	Conclusion
	Bibliographical References

