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Abstract
Commonsense knowledge as provided by scripts is crucially relevant for text understanding systems, providing a basis for commonsense
inference. This paper considers a relevant subtask of script-based text understanding, the task of mapping event mentions in a text to script
events. We focus on script representations where events are associated with paraphrase sets, i.e. sets of crowdsourced event descriptions.
We provide a detailed annotation of event mention/description pairs with textual entailment types. We demonstrate that representing events
in terms of paraphrase sets can massively improve the performance of text-to-script mapping systems. However, for a residual substantial

fraction of cases, deeper inference is still required.
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1. Introduction and Motivation

Scripts represent knowledge about everyday activities, or
scenarios, like “going to the movies” or “having dinner at
arestaurant” (Schank and Abelson, 1975)). They consist of
events like ORDER MENU or EAT that take place in the sce-
nario, plus information about the typical temporal order in
which these events happen, as well as knowledge about par-
ticipants that play a role in the script, such as the waiter or
plates and cutlery. Figure|[I]shows a graphical representation
of the script of the BAKING A CAKE scenario. The nodes
in the graph represent events and the edges their temporal
order. Relevant script participants, such as CAKE, KITCHEN
or INGREDIENTS, are listed in the lower right corner. The
dashed boxes represent possible linguistic realizations of the
individual events in terms of paraphrase sets, described in
more detail below.
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Figure 1: An example for a temporal script graph (BAKING
A CAKE).

In communication, script knowledge is assumed to be part
of the common ground, and people often do not mention
events which can easily be inferred to have happened by the
addressee. For instance, if someone tells about the last time
they baked a cake, it is likely that they do not mention the
fact that the cake was put into the oven, because it is obvious
that this event took place. In contrast, a text understanding
system that does not have access to script knowledge will
probably not be able to draw this inference.

BUY
INGRE-
DIENTS

1 stiri’ed all ingredients well and baked the batter in the oven. I then waited for a while.

Figure 2: An example for text-to-script mapping in the
BAKING A CAKE scenario

Script knowledge has been shown to be useful for a variety
of tasks that are required for text understanding, such as
event prediction (Chambers and Jurafsky, 2009; [Pichotta
and Mooney, 2014} Modi et al., 2016), event ordering (Modi
and Titov, 2014), paraphrasing (Wanzare et al., 2017) or
discourse referent prediction (Modi et al., 2017).

One important aspect in which models that make use of
script knowledge differ is the representation of events.
Chambers and Jurafsky (2009), for instance, use a “shallow”
surface-oriented representation of events which is based
on the verb of an event-denoting clause. A different ap-
proach has been proposed by [Regneri et al. (2010) (hence-
forth, RKP), who adopt a richer representation of events in
terms of paraphrase sets, as depicted in Figure (1| Script
knowledge of this kind is acquired by first crowdsourcing
alternative descriptions of an activity type in terms of se-
quences of short, telegram-style natural-language event de-
scriptions (ED). Then, paraphrase sets are induced automat-
ically as clusters of EDs, using multiple sequence alignment
(Regneri et al., 2010) or semi-supervised clustering (Wan+
zare et al., 2016)).

In order to tap the potential of script knowledge in text un-
derstanding, systems must be able to link event mentions
in texts to the corresponding event types of a script, as in-
dicated by the dotted lines in Figure 2| To our knowledge,
Ostermann et al. (2017) is the only existing work on this
text-to-script mapping task. Their approach is based on
RKP-style script representations. Using this representation,
the identification of the correct event type of an event men-
tion is in many cases reduced to a simple identity check
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Figure 3: An example annotation in InScript (lower part), and the corresponding paraphrase sets from DeScript (upper part),

for the PLANTING A TREE scenario.

between the event mention and one of the EDs in the cor-
responding paraphrase set. The model achieves promising
results when compared to a non-trivial baseline (0.55 F}
over a baseline of 0.40 F}), but one would expect even bet-
ter performance given that the crowdsourced paraphrase sets
should substantially facilitate the mapping task.

In this paper, we investigate which types of knowledge and
inference are required to assign correct event types to event
mentions in text, and to which degree crowdsourced script
representations help to facilitate text-to-script mapping. We
do so by determining the type of semantic relations between
pairs of an event mention and the paraphrase set representing
the corresponding event type. In Figure [2] for example, we
determine the type of semantic relation that needs to be
modeled in order to align the phrase stir all ingredients with
the MIX_INGREDIENTS paraphrase set.

The contributions of this work are as follows:

e We provide a manual annotation of word-level en-
tailment types on verbs/events and nouns/participants
(e.g. Synonymy, Hypernymy, Inference etc., Section[3.)
based on an existing corpus of narrative texts and an
existing collection of script data. In a second step, we
compositionally derive clause-level entailment types
(e.g. Equality, Entailment, etc., Section[d)) that illus-
trate the types of inference that need to be modeled for
the alignment of the clause with an event paraphrase
set.

e We provide a detailed analysis of our annotation and
show that (1) paraphrase sets as a constitutive part of
script representations massively reduce the difficulty
of automatic text-to-script mapping and increase its
accuracy. We also find that (2) a substantial sub-class
of cases cannot be handled using just identity checks
or shallow semantic modeling, but require deeper infer-
ence methods (Section[5)).

e We demonstrate the usefulness of our dataset as a
testbed and diagnostic tool for the differentiated assess-
ment of text-to-script mapping systems, by applying it
to the system of [Ostermann et al. (2017) (Section[6)).

2. Data

For our study, we use two existing resources that form the
basis for evaluating text-to-script mapping: InScript (Modi
et al., 2016), a collection of narrative texts centered around

10 script scenarios, and DeScript (Wanzare et al., 2016),
a resource of structured script knowledge in the form of
paraphrase sets, covering the same 10 scenarios.

InScript contains 910 stories in total. Verbs and nouns in
InScript are manually annotated with participant and event
type labels, respectively (see the lower part of Figure[3). The
labels are based on manually created, scenario-specific tem-
plates, which list all central event and participant types, such
as GET_TOOLS or DIG (events) and SHOVEL or GARDENER
(participants) for the PLANTING A TREE scenario.

For target script representations, we use DeScript. It con-
tains crowdsourced event sequence descriptions for 40 differ-
ent everyday scenarios, including the 10 InScript scenarios,
as well as manually created paraphrase sets for the latter,
which are labeled with the same event types as used in In-
Script, as can be seen in the upper part of Figure 3} Each
event that is labeled in InScript has a corresponding para-
phrase set in DeScript. This provides a gold standard align-
ment between textual event mentions and paraphrase sets, as
indicated by the dotted lines, which is the basis for our an-
notation. The paraphrase sets in this kind of representation
contain not only lexical synonyms, but also scenario-specific
paraphrases of the same event: use your shovel and dig hole
are not synonyms in a narrow sense, but in the context of
PLANTING A TREE, they both describe the DIG event.
While DeScript provides manually created gold event para-
phrase sets, the corresponding information on participant
level is missing. Since we need entailment relations on the
noun phrase/participant level for our compositional deriva-
tion of clause-level entailment (see Section E]) we extended
DeScript with paraphrase sets for participant descriptions
(as depicted in the lower right corner of Figure|[T)). For this
purpose, we annotated all nouns in the 10 scenario subset
of DeScript with labels from the InScript inventory of par-
ticipant types. Data from the BUS and TREE scenarios were
annotated by two annotators to assess the inter-annotator
agreement, which was almost perfect (Landis and Koch
(1977), x = 0.91).

From this annotation, paraphrase sets for participants were
derived, i.e. the sets of all nouns describing the same par-
ticipant. In the BAKING A CAKE scenario for example, all
different ingredients such as eggs, flour, milk etc. are mem-
bers of the INGREDIENT paraphrase set.

For our study, we selected 3 out of the 10 scenarios that
differ with respect to their complexity: TAKING THE BUS,
BAKING A CAKE and PLANTING A TREE. We annotated
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Figure 4: Combining the EDs in the DIG event into patterns (upper part) and the actual verb annotation (lower part).

all script-relevant verb instances and all relevant participant
instances in every story.

3. Lexical Entailment: Annotation Study

To identify the type of semantic relation that needs to be
modeled in order to align an event-denoting clause in the
text with a paraphrase set representing the same event, the
most straightforward way would be to conduct a clause-
level entailment annotation between the clause and EDs in
the paraphrase set, e.g. with a set of clausal entailment
types similar to the ones used in (MacCartney and Manning.
2009).

We found, however, that the assessment of entailment types
is time-consuming and unreliable, when based on a direct
comparison of complex text clauses and paraphrase sets. We
therefore simplify the task, breaking it down into two steps:
First, annotators were asked to assign semantic relations be-
tween the event descriptions in the paraphrase sets and their
instantiations in narrative texts on the lexical level only, la-
beling the event-denoting verbs and the participant-denoting
noun phrases, as is described in this section. Second, we
automatically derive an approximate clause-level entailment
type from the lexical-level labels in a quasi-compositional
way from the manually annotated lexical entailment rela-
tions, as addressed in Section 4]

In the following subsections, we describe the lexical entail-
ment annotation we conducted on the DeScript and InScript
data for events/verbs (Section[3.1)) and participants/nouns

(Section[3.2)).

3.1. Events

To prepare the data for the event annotation, we made use of
the gold alignment (cf. Figure[3): Each event-denoting verb
in InScript was presented with the corresponding paraphrase
set in DeScript.

Comparing every ED in the paraphrase set to the clause in
the text is cumbersome due to the number of EDs (up to 76)
in each paraphrase set. We therefore simplified the event
paraphrase sets by building equivalence classes of EDs that
use the same head verb, which we called event patterns.
They are derived semi-automatically by summarizing EDs
that contain the same main verb, and replacing noun phrases
with their participant type label (upper part of Figure [).

Also, participants that do not appear in every ED are put in
brackets to mark them as optional.

In the annotation process, annotators were only shown the
patterns instead of the full paraphrase set. In the lower part
of Figure[d] the verb labeled as DIG is compared to the event
patterns extracted from the DIG paraphrase set. Verbs were
presented in their sentential context and highlighted.
Instead of annotating each pattern, the guidelines required
annotators to select only the most similar pattern for the
event-denoting verb, and to do the annotation only for this
pattern. While this selection results in a non-exhaustive
annotation, no important information is lost: The procedure
of selecting the most similar pattern retains the minimal
inference steps required for the alignment.

After selecting a pattern, annotators were instructed to assess
the relation between the verb in DeScript and the verb in
InScript and use the context only for lexical disambiguation,
i.e. not to assess clause-level entailment. In our annotation
schema, we include the following labels:

e [dentity, Synonymy, Hyponymy, Hypernymy. Defined
as in WordNet (Fellbaum, 1998)). Hyponymy describes
the case in which the verb in the text is more specific
than in the pattern, Hypernymy the opposite.

e [ncorporation. One verb includes a participant, which
is explicitly mentioned with the other verb.
Example: 1 sprinkled flour in the pan.
CAKE_TIN

— flour

e Diathesis. This covers active/passive alternation (Ex. 1)
and verbs that are conceptually equivalent but have
different syntactic realizations. In FrameNet (Rupt
penhofer et al., 2000), these verbs would typically be
associated with the same frame (Ex. 2).

Example 1: The cake was cut. — cut CAKE
Example 2: The cake went in the preheated oven — put
(CAKE) in OVEN

e Phrasal Verb. One of the verbs is a particle verb that
has the same meaning as the other verb.
Example: I went out to the grocery store. — go to
STORE

e [nference. A complex inference is needed to associate
the verbs with the same event.
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Figure 5: Aligning participants with a pattern (left), selec-
ting a noun from the participant paraphrase set and labeling
(right).

Example 1: I put the decorations on the cake. - use
DECORATION

Example 2: I made sure that I had all the ingredients
that I needed. - gather INGREDIENTS

e NoMatch. No match is possible. This is typically the
case when annotation errors occur in InScript.

3.2. Participants

Associating verbs in a textual mention with the ED verb is
straightforward, since there is only one head verb on each
side. Linking participants in contrast requires additional
annotation effort: They can be left out or appear more than
once in one clause. We thus divided the participant annota-
tion into two steps:

Participant Alignment. In order to distinguish missing
from realized participants, annotators had to align all partic-
ipants that are relevant to the event in question in the text
with their counterparts in the pattern, i.e. with the participant
type labels. In Figure[3] this step corresponds to the dotted
arrow on the left side. Participants that were mentioned in
the text and that play a role in the event, but that do not
have a counterpart in the ED, were marked as Additional.
Required participants in the pattern that were not aligned
were automatically labeled as Missing afterwardsm As an
example for this label, consider the text clause I used a
shovel, with the matching pattern use TOOL for HOLE. The
participant HOLE is omitted, but mentioned as mandatory
in the pattern, i.e. it appears in every ED of the respective
paraphrase set (use shovel for making a hole and use shovel
for hole). Therefore, it is marked as Missing in the pattern.

Lexical Entailment Annotation. To find the appropriate
type of lexical entailment for the realized participants, an-
notators were then shown the participant paraphrase sets
from DeScript for all aligned participants. Just as for event
patterns, annotators had to choose the best matching, most
similar noun from the set and assign a lexical entailment
label.

As for verbs, the annotation schema includes the rela-
tion types, Identity, Synonymy, Hyponymy, Hypernymy,
Meronymy, Holonymy and Co-Hyponomy, and the additional
labels Inference and NoMatch, as defined in Section @]
We add the label Instance, which is used when the noun
in InScript is a proper noun or entity mention of the type
expressed by the DeScript noun (e.g. number 77 — bus).
The right side of Figure [3]illustrates this part of the annota-
tion: The noun “ditch” (which was previously aligned with

!The protagonist of the story, being very rarely mentioned in
the EDs, was excluded from the alignment.

Entailment Type Labels
Identity = Identity
Equality = Synonymy, Phrasal Verb, Diathesis

Entailment C
Reverse ent. J

Hyponymy, Instance, Additional
Hypernymy, Missing

Partial Entailment co  Inference, Incorporation,
Meronymy, Holonymy, Co-
Hyponymy

Non-Entailment # NoMatch

Figure 6: Entailment types.
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Figure 7: Combination table for lexical entailment classes.

the pattern) is compared to all participant descriptions for
HOLE, linked to the lexical description “hole” and labeled
with Hyponymy. Figure[§shows the fully labeled instance
with participant and event annotations.

To simplify the annotation, we make the assumption that
each noun has only one sense per scenario: In the PLANTING
A TREE scenario, the polysemous word stem e.g. always
describes a part of a tree. In order to reduce the annotation
effort, we presented all different noun types per participant
type only once, rather than every single mentioned token in
its sentential context. This on sense per scenario assumption
is similar to the one sense per discourse hypothesis, which
is often used in word sense disambiguation models (Gale et
al., 1992).

4. Clause-Level Entailment: Composition

In the previous section, we described the lexical entailment
annotation on verbs and nouns, i.e. on a sub-event level.
In this section, we now explain a method for an automatic,
quasi-compositional computation of clausal-level entailment
types. We compose the types from the lexical-level entail-
ment labels of the verb and all its annotated noun depen-
dents.

Inspired by the textual inference method used inMacCartney|
and Manning (2007) and MacCartney and Manning (2009),
we compute the type of clause-level entailment between
InScript event mentions and DeScript patterns from the man-
ually annotated word-level entailment labels. Following
MacCartney, we group these labels according to their truth-
conditional effects, and associate each group with one of six
entailment types, shown in Figure[6] We adopt four entail-
ment types from the schema of MacCartney and Manning
(2009) and add two new types: We extend the schema with
Identity, which is logically speaking a sub-case of Equal-
ity. Also, we use Partial Entailment to cover all cases of
semantic relatedness which do not correspond to a direct
entailment type; most prominent are the Inference cases.
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Figure 8: One fully labeled event instance, with composition-
ally derived clausal entailment label (Reverse Entailment).

Cases of Additional and Missing participants are deletions
and insertions in MacCartney’s terminology, and therefore
have entailment and reverse entailment effects, respectively.
To compute the clausal entailment type, we combine the
word-level entailment labels for verbs and nouns, according
to the composition table in Figure[7} The result of combining
two lexical labels is in general the weaker entailment relation
of the twcﬂ The only exception is the pair {Z, 3}, which
results in Partial Entailment. The application of the binary
computation is commutative, so the clausal entailment type
can be read off the set of lexical labels.

Figure 8] shows the running example with all lexical entail-
ment annotations. The set of word-level entailment labels
is {=, C}, given the lexical entailment labels {Identity, Hy-
ponymy}. The clausal entailment type is the weakest lexical
type, i.e., C (Reverse Entailment).

5. Annotation Statistics

The annotation was performed on all 280 texts of the In-
Script corpus addressing one of the three selected scenarios.
Annotation was done by two native speakers of German with
a good command of English. A total of 3,427 verb mentions
and 1248 noun types was annotated, respectively. We used
SWANE] (Giihring et al., 2016) for the annotation.

5.1. Lexical Level

5.1.1. Inter-Annotator Agreement

For both verb and participant annotation, agreement is com-
puted on two levels: First, we report how often the same
pattern or head noun was selected. Second, in cases where
the same pattern/noun was selected, we report the label
agreement. For the verb annotation, annotators chose the
same pattern in 82.4% of cases. For participants, the anno-
tators chose the same realization from DeScript in 74.3% of
cases.

On verbs, the annotators agreed on the label with x = 0.72
(substantial agreement, (Landis and Koch, 1977)). On par-
ticipants, they agreed with k = 0.742 (substantial agree-
ment).

Not every case of disagreement is critical: In many cases
there is more than one plausible solution. In the PLANTING
A TREE scenario, for example, the word shovel could be
interpreted either as a Synonym or Co-Hyponym of spade.
There are also no sharp boundaries between classes. In
particular, annotators had difficulties with annotating Infer-
ence cases. Therefore, we decided not to adjudicate the
annotation, but average over the distributions for evaluation.

The list =, =, {C, 1}, 0o, # orders the labels from strongest
to weakest.
3https://github.com/annefried/swan

Label Events Participants
Identity 58% 76%
Synonymy 5% 6%
Hyponymy 5% 5%

Phrasal Verb 5% -

Inference 13% 1%
NoMatch 7% 7%

Other 7% 5%

Table 1: Distribution of lexical labels on events and partici-
pants.

5.1.2. Label Distribution

Table|l| gives label distributions for participants and events
on the lexical level, averaged over both annotations. As
mentioned before, we annotated each noun type only once
per participant type rather than annotating every mention
of a noun separately. To compute the numbers depicted in
Table |1} we copy the type-level annotation to every single
appearance of the noun, to give a better idea of the actual
distribution.

For both verbs and participants, the most frequent rela-
tion chosen by both annotators is Identity. Among the
lexical relations, Hyponymy is more frequent than Hyper-
nymy, which is consistent with the expectation that concrete
event/participant mentions use more specific verbs/nouns
than the abstract descriptions in the script knowledge base
(cf. Modi et al. (2016))). Diathesis, Incorporation and Hy-
pernymy for verbs, and Meronymy, Hypernymy, Holonymy,
Instance and Co-Hyponymy for participants appear only very
rarely and are subsumed under Other in the table.

5.2. Clausal Level

Figure 0] shows the distribution of the resulting clausal en-
tailment labels for both annotators. Identity makes up for
the largest part of cases (38 %), illustrating the high lexical
coverage of crowdsourced script representations.
Entailment cases are significantly more frequent than Re-
verse Entailment, which is in line with the leading assump-
tion that an event mention should entail a description of
its event type, and with the observation that event-denoting
clauses usually use longer sentences and more specific vo-
cabulary than event descriptions given by the script knowl-
edge base.

Both Entailment and Reverse Entailment mainly contain
cases in which the participant is not realized on one side,
and are only rarely composed from Hypernymy or Hyponymy
cases. A typical example from the TAKING A BUS scenario
is the text clause wait for several minutes. The most similar
ED in the scenario is just wait, so the time expression is
an additional participant and thus results in a clause-level
entailment.

There is a large number of Partial Entailment cases (20%),
which are in many cases composed of one or several Infe-
rence labels. One typical example of such a case from the
TAKING A BUS scenario is the text clause the driver pulled
over. The paraphrase sets only contain phrases like bus stops
or arrive at destination. In this case, a system would need
to know that pull over in the bus context is a paraphrase for
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Figure 9: Distribution of composed labels.

stop, which requires contextual inference. These cases also
appear in other scenarios, e.g. in the PLANTING A TREE
scenario: look at trees is a contextual paraphrase of choose
a tree. This can be seen as an indicator for the difficulty
of the text-to-script mapping task, but it also indicates that
the script resource is not exhaustive enough to contain all
possible formulation variants for events.

Lastly, we found that a large number of Non-Entailment
cases are derived from annotation errors in InScript.

6. Entailment Type and System
Performance

The previous section investigated the difficulty of the task
of text-to-script mapping itself. In this section, we now
look at the performance of the only published model for
text-to-script mapping and show that the cases we identified
as complex are indeed most challenging for the model. We
apply the entailment-type annotation to
(2017))’s text-to-script mapping system, breaking down its
event-labeling performance on our annotated InScript sub-
corpus to clause-level entailment classes. The results for all
script-relevant clauses are shown in Figure[T0]

Identity (verb and all head nouns are lemma-identical) is
easiest to model, and so as expected provides the best re-
sults. That the accuracy is not 100% is due to the fact that
sometimes the same verb lemma occurs in different para-
phrase sets. This holds in particular for light verbs such as
get, which can be used to instantiate many different events
throughout a scenario. In the BAKING A CAKE SCENARIO,
for example, get appears in the CHOOSE_RECIPE paraphrase
set (get your recipe), as well as in GET_INGREDIENTS (get
a box of cake mix), GET_UTENSILS (get a pan), etc.

In general, the important result is not the accuracy of the
identity case in itself, but in connection with the high per-
centage of identity cases (38%). The high number of realiza-
tion variants for event mentions contained in the paraphrase
sets carry out a large part of the mapping task.

To illustrate the positive effect of a large paraphrase set on
system performance, we compare the result with a situation
in which there is only one ED per paraphrase set. To this
end, we picked one ED randomly from the paraphrase sets
(average size is 25, using a token-based count), as represen-
tative(s) of the event type, and then computed the number
of verb identity cases automatically: They would drop from

incorrect

B correct

Identity 13 %

Equality 28 %

Entailment 39 %

Reverse Ent. 35%

Partial Ent. 65 %

Non-Ent. 62 %
0% 25 % 50 % 75 % 100 %

Figure 10: Performance of Ostermann et al. (2017)) on
clausal entailment classes.

58% to 26.9%. With a similar drop for participant identity
cases, the resulting clause-based percentage of identity cases
would be below 20% (instead of 38%), probably leading to
a dramatic drop in labeling accuracy.

Partial entailment is the class that is most difficult to model.
This result provides a complementary message about the
script knowledge base. About 80% of the clause-level Par-
tial Entailment cases contain a word-level Inference relation,
which is a strong indicator of the need for methods able
to handle more complex inference: Crowdsourced collec-
tions of linguistic realization variants help to avoid complex
inference in many cases, but cannot completely replace it.
This emphasizes the need for larger script data collections
that cover even more description variants for events and
participants.

The low performance on the Equality cases is mainly due to
the fact that it subsumes the difficult Diathesis and Phrasal
Verb relations. In contrast, the results for Reverse Entail-
ment are better than one would expect: This is mostly due to
the fact that most Reverse Entailment cases (approx. 85%)
consist of combinations of Equality or Identity with an Un-
realized participant. Even if one participant is unrealized,
the correct label is mostly identified. For the text clause
I placed the tree, hole is a required participant, occurring
in every ED, but nevertheless the overlap is high enough
to select the correct label. The more difficult Hypernymy
cases make up only 15% of the Reverse Entailment cases.
The situation is similar for the Entailment cases. Here, the
simpler Additional participant cases make up 50%.

Finally, the model has low accuracy for the Non-Entailment
cases. However, it is substantially above the random base-
line. A possible reason is that the compositional computa-
tion of the clause-level entailment type amounts to a gene-
ralization to the worst case. Thus a number of pairs end up
in the Non-Entailment class although there is only a minor
local incompatibility.

7. Background and Related Work

Our work is based on script representations in which events
are encoded as paraphrase sets. There also exist other re-
search directions on modeling script knowledge. The most
prominent alternative representation of script knowledge is
that of narrative chains, proposed by (Chambers and Juraf
and subsequently extended by
Jurafsky (2009)), [Pichotta and Mooney (2014)) and (Ahrendt]
land Demberg, 2016), to name but a few. Narrative chains
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have been used for event prediction (Chambers and Juraf}
sky, 2009; [Pichotta and Mooney, 2014; Rudinger et al.!
2015; Modi et al., 2016)) or the related story cloze task
(Mostafazadeh et al., 2016; [Pichotta and Mooney, 2016)), in
which complete sentences are predicted.

Narrative chains (and their aforementioned extensions) dif-
fer in two relevant aspects from the script representations
used in our study. Instead of using paraphrase sets, events
are represented as typed dependency relations between a
verb and one of its dependents (the protagonist). Another
difference is that narrative chains are intended to be learned
automatically from large collections of unannotated text.
By contrast, the script representations used in our study are
learned from crowdsourced sequences of event descriptions,
which are more focused and more detailed compared to nar-
rative chains: They also contain events which are often not
mentioned in text, since they are assumed to be background
knowledge (Chambers, 2017). These two differences imply
that the results of our annotation cannot easily be transferred
to script representations along the lines of |(Chambers and
Jurafsky (2008).

Text-to-script mapping is similar to the task of recognizing
textual entailment (RTE, Dagan et al. (2006)), in which
systems have to decide whether a text entails a hypothesis.
The text entails the hypothesis if a human reader would infer
from the text that the hypothesis is most likely true. In our
case, event mentions and event descriptions correspond to
texts and hypotheses, respectively. The lexical entailment
annotation in our study is inspired by similar annotation
efforts in the context of RTE, for instance |Garoufi (2007),
who used lexical entailment annotations to annotate the
RTE-2 data set (Bar Haim et al., 2006). The label set we
use is inspired by their set of lexical entailment catego-
ries, and they also conducted an alignment step similar to
our participant alignment. Our computational derivation
of clausal-level labels is built on[MacCartney and Manning
(2007), MacCartney and Manning (2009)), and MacCartney)
(2009).

8. Conclusion

In this work, we annotated event mentions in narrative
texts with semantic relations that need to be modeled when
mapping the mentions to script events that are represented
as paraphrase sets. We provide a lexical-level entailment
annotation between event-denoting verbs and participant-
denoting nouns of narrative texts on the one side, and event
and participant descriptions of a script on the other side. We
then derive clause-level entailment labels that highlight the
coverage of crowdsourced paraphrase sets associated with
event types, as compared to the textual variation in natural-
istic texts. We find that script representations in the form
of paraphrase sets can cover a large number of description
variants of an event in a text. However, the alignment of
a substantial amount of event mentions requires a deeper
inference of multiple semantic relations.

Based on our annotation, we analyze the performance of an
existing text-to-script mapping system on the different en-
tailment classes. The results indicate (1) that paraphrase sets
as constitutive part of script representations can massively
increase the accuracy of text-to-script mapping systems and

(2) that the tested model is mostly unable to account for the
more complex cases.

The data set is available at http://www.sfb1102.
uni-saarland.de/?page_1d=2582.
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