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Abstract
The pyramid method is a content analysis approach in automatic summarization evaluation for manual construction of a content model
from reference summaries, and manual scoring of unseen summaries with the pyramid model. PyrEval automates the manual pyramid
method. PyrEval uses low-dimension distributional semantics to represent phrase meanings, and a new algorithm, EDUA (Emergent
Discovery of Units of Attraction), to solve a set cover problem to construct the content model from vectorized phrases. Because the
vectors are pretrained, and EDUA is an efficient greedy algorithm, PyrEval can apply pyramid content evaluation with no retraining, and
in excellent time. Moreover, PyrEval has been tested on many datasets derived from humans and machine generated summaries, and
shown good performance on both.
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1. Introduction
Automatic summarization methods that produce a para-
graph to express the main ideas of one or more texts have
shifted in recent years. The long-standing prevalence of
extractive summarizers, which select complete sentences
from source documents, has begun to give way to abstrac-
tive summarizers, which rewrite or generate sentences to
eliminate less important content (Bing et al., 2015; Rush
et al., 2015; Liu et al., 2015; Durrett et al., 2016; Nema et
al., 2017). Automatic content evaluation of summarization
systems has not seen the same progress. ROUGE has long
been the dominant method for evaluating summary con-
tent, and is used in most of the papers cited above. Here
we present PyrEval, which applies pyramid content anal-
ysis (Nenkova and Passonneau, 2004), a method intended
for evaluation of abstractive summarization. The main in-
novation in PyrEval is a novel formulation of the pyramid
construction problem, and a greedy algorithm whose ap-
proximate solution is both efficient and effective.
The pyramid method, introduced in (Nenkova and Passon-
neau, 2004), groups the distinct ideas (content units) men-
tioned in reference summaries to create a pyramid model
of content, and differentiates the content units by impor-
tance as well as meaning. It then evaluates target sum-
maries against the pyramid content model. Early work ap-
plied manual annotation of the pyramid method for largely
extractive automated summarizers at a series of Document
Understanding Conferences (DUC) and Text Analysis Con-
ferences (TAC) administered by the National Institute of
Standards (NIST) from 2006 through 2011 (Passonneau et
al., 2006; Varma et al., 2009; Ji et al., 2010). Figure 1
shows a content unit from one of the pyramids created for
the NIST pyramid evaluation at DUC 2006, along with a
sentence in a summary from a peer (automated summarizer)
that was matched to the content unit (CU). The illustrated
content unit, labeled by the annotator, lists a phrase from
each of three reference summaries (D, E, H) that express
the labeled meaning. The importance weight of the CU is
the number of contributing reference summaries.
Automated pyramid methods such as PyrScore (Passon-

Example Content Unit
Summary Label: Black boxes record vehicle data (Wt = 3)

D1 ”black boxes” that record data in the last seconds
before a crash

E3 record data on vehicle performance (”black box”)
H4 black boxes . . . record data pertinent to an auto

crash to lead to safety improvements

Matched phrase from a peer summary
Peer a device similar to an airliner’s black box, . . .

that automatically records the vehicle’s

Figure 1: A content unit (CU) of weight 3 from a NIST
manual pyramid for topic D0608, and a phrase from an ex-
tractive summary (peer) that was matched to the CU.

neau et al., 2013) or PEAK (Yang et al., 2016) have
been used in recent work on abstractive summarization,
as in (Bing et al., 2015) (PyrScore) and (Peyrard and
Eckle-Kohler, 2017) (PEAK), but have disadvantages that
PyrEval addresses. PyrScore requires manual construction
of a pyramid content model, and PEAK depends on exter-
nal resources that are computationally inefficient for large-
scale use. This paper introduces the PyrEval software and
gives an overview of how PyrEval builds on the earlier
PyrScore. 1 Details of each component will be presented
in other publications. Tests of PyrEval performance on five
years of manual pyramid evaluations conducted by NIST
show that average performance on all topics for a given year
correlates well with manual pyramid.

2. Related Work
The most widely used content evaluation tool for machine-
generated summaries is ROUGE (Lin, 2004), which takes
model summaries as references and scores target sum-
maries by matching substrings. It correlates well with hu-
man scores in ranking performance of systems on multiple
summarization tasks. But it is not reliable for evaluating a

1Availablefordownloadfromhttps://github.
com/serenayj/PyrEval
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single summary (Louis and Nenkova, 2009). In addition,
it does not provide informative feedback on the ideas con-
tained in a summary, or the important ideas that have not
been mentioned. In contrast, pyramid content scores are
reliable for individual summaries, the scores can be inter-
preted as indicating whether a summary contains mainly
important ideas, and whether it contains enough of the im-
portant ideas. Finally, the scores can be justified with re-
spect to specific ideas that are included or missing.
Interest in the pyramid method has been revived by devel-
opment of PEAK (Yang et al., 2016), a fully automated ver-
sion that performs well on student summaries. (Peyrard
and Eckle-Kohler, 2017) incorporate PEAK scores into an
optimization objective for generating summaries.
PEAK is one of two recent automated systems that im-
plement pyramid evaluation (Yang et al., 2016). It con-
structs a pyramid from reference summaries, and scores
target summaries against its automated pyramid. It ex-
tracts subject-predicate-object triples from reference sum-
mary sentences using ClauseIE (Del Corro and Gemulla,
2013), then assembles a hypergraph where each triple is
a hyperedge containing three nodes: subject, predicate
and object. The semantic similarity of all pairs of nodes in
distinct hyperedges is measured using Align, Disambiguate
and Walk (ADW) (Pilehvar et al., 2013), which relies on
WordNet (Miller, 1995). Triples from distinct summaries
with high similarity are combined into content units. To
assess a new summary, its triples are extracted, and the
Munkres-Kuhn algorithm (Kuhn, 1955) is applied to a bi-
partite graph from content unit (CU) nodes u to nodes v
that represent target summary triples.
PyrScore (Passonneau et al., 2013) uses manual pyramids
to score target summaries, with Weighted Textual Ma-
trix Factorization (WTMF) for latent semantic representa-
tion (Guo and Diab, 2012), and ngram segmentation to find
all possible combinations of covering segmentations of in-
put sentences. The scoring procedure can be formulated as
a graph covering problem, where each sentence is a sub-
graph, and each segmentation assigned to a sentence is a
vertex of the graph. The goal is to align a candidate sen-
tence segmentation with content units from a manual pyra-
mid via semantic similarity between each segment and ev-
ery contributor in a content unit, under the constraint that a
content unit can be allocated to no more than one segment.
PyrScore applies WMIN (Sakai et al., 2003), a greedy al-
gorithm, to solve this weighted set covering problem.
Both PyrScore and PEAK correlate well with manual pyra-
mid scores, yet both methods have drawbacks. PyrScore
does not construct a pyramid, so is not fully automated.
ADW does random walks over WordNet, and ClauseIE
generates a large number of low-quality triples; these steps
result in high computation time. The PEAK pyramids are
less interpretable because they contain many variants of the
same CUs. PyrEval applies the same latent semantic meth-
ods used in PyrScore, and includes all the functionality of
PEAK. It is faster than PEAK, and includes additional func-
tions. To construct a pyramid, PyrEval relies on a new al-
gorithm we developed (detailed in a separate publication),
to produce a pyramid with a single version of each CU. It
incorporates an improved version of PyrScore. Here we re-

Figure 2: Venn diagram of summary content overlap

Figure 3: Example of a segment from D1004A automated
summary and the matched content unit from D1004A
PyrEval pyramid.

port on PyrEval’s performance and present it for public use.

3. Pyramid Content Evaluation
The pyramid method was developed to capture the observa-
tion that high quality summaries from different individuals
of the same source texts will express overlapping content,
but will have even more content that is unique to each sum-
mary. This makes it challenging to define the gold standard
content. Figure 2 illustrates the typical case by means of a
Venn diagram to show that, given n reference summaries,
among the set of all distinct ideas from the n summaries,
relatively few ideas will occur in all n, and for each de-
creasing cardinality from n to 1, there will be a larger num-
ber of such ideas. Here one idea occurs in three summaries,
three occur in two, and nine occur in only one. The font
size of the schematically represented ideas in the figure re-
flects their importance, with the highest importance going
to ideas that are expressed in all the reference summaries.
Importance represents which ideas should be included in a
new summary to adhere to the distribution of ideas found
in the reference summaries.
The pyramid method defines content units (CUs) to corre-
spond largely to clauses, and asks annotators to select all
the phrases from distinct summaries that express the same
content as a single CU (cf. Figure 1). The DUCView anno-
tation tool developed for pyramid annotation elicits a label
that the annotator writes. The CU consists of the label, and
clauses (or sometimes phrases) selected from different ref-
erence summaries (e.g., D1, E3 and H4) that express the
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Step Description Size Runtime (sec)
1 Preprocessing with Stanford CoreNLP 26 summaries (312 sent; 6K words) 73.40
2 Sentence Decomposing and WTMF same as above 208.68
3 Building Pyramid from Model Summaries 4 (human) summaries 4.35
4 Scoring Target Summaries by Pyramid 22 (machine) summaries 14.17

Table 1: Steps and times for PyrEval on one DUC topic(D0608).

same content. The weight is automatically assigned as the
number of phrases. Each summary can contribute no more
than once to the same content unit. The instructions require
annotators to select, as far as possible, all the text from the
reference summaries. The final pyramid consists of all the
CUs identified by the annotator, with weights from 1 to N .
To annotate a target summary against a pyramid model, the
same annotation tool can be used to match phrases in the
target summary to CUs in the pyramid. Figure 3 shows
an example of scoring a segment from a target summary
with the pyramid built by PyrEval. The sum of the weights
of the matched CUs from the target summary is normal-
ized in different ways to produce a score. Previous work
has found this method to produce very stable and reliable
scores (Nenkova et al., 2007), and to have very good inter-
annotator agreement (Passonneau, 2010). Despite the la-
bor intensiveness of manual annotation, pyramid has been
applied in much work on summarization. We developed
PyrEval to facilitate more widespread usage.

4. PyrEval
4.1. System Overview
Like PEAK, PyrEval implements pyramid construction and
automated scoring. In contrast to PEAK, it can also score
target summaries against a manually annotated pyramid
that has been produced with the DUCView annotation tool.
DUCView was developed for pyramid annotation, and has
been used for all the NIST manual pyramid evaluations.
Two initial procedures for processing input texts are:
Step 1-segmentation of sentences into clause-like units by

Figure 4: System Flow of PyrEval

The death toll, mostly children and old people, has
reached 9 but is expected to rise and there are thou-
sands of injured and homeless, with no food or water.

Figure 5: A sentence from D1004A and its constituency
parse output from Stanford CoreNLP. The subtrees domi-
nated by the nodes marked with bold font are the structures
extracted by the decomposition parser.

PyrEval’s sentence decomposition parser; Step 2-latent se-
mantic representation via WTMF (see first two interior
boxes in Figure 4). Then pairwise cosine similarities are
computed between clause-like units from different model
summaries, or clause-like units from target summaries and
model CUs. Step 3 is Pyramid Construction, the second
new component of PyrEval. Step 4 is PyrEval scoring;
it is similar to PyrScore, but uses clause-like units rather
than ngrams. Table 1 shows an example of running times
for these four steps on one of the development sets from
DUC06.
PyrEval was developed and tested on English. To apply it
with other languages would require replacing the prepro-
cessing steps that segment sentences into distinct clauses,
and that produce low-dimensional vectors for their seman-
tic representation. In principle, the current code package
could easily be extended to substitute a sentence segmenter
designed for a distinct language, and a pretrained matrix of
words by sentences.
The installation for PyrEval requires Stanford
CoreNLP (Manning et al., 2014), perl, python2.7 (or
anaconda) with packages NLTK, statistics, beautifulsoup,
networkx, sklearn and numpy. All the experiments reported
here were conducted on an ubuntu machine, with 4 Intel
i5-6600 CPUs.

4.1.1. Sentence Decomposition
PyrEval relies on our sentence decomposition parser to ex-
tract clause-like units (segments) from sentences. Each
set of semantic units yielded by a sentence is a segmenta-
tion, and there will be at least one segmentation per sen-
tence. The sentence decomposition parser takes results
from the Stanford CoreNLP constituency parser and depen-
dency parser as input. For each sentence, the decomposi-
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Figure 6: Enhanced dependency parser output from Stan-
ford CoreNLP for the sentence in Figure 5.The bold fonts
are the dependency relations extracted by our decomposi-
tion parser.

Sentence Decomposition Example
Segmentation 1

Segment 1 The death toll, mostly children and old people
has reached 9 but is expected to rise

Segment 2 and there are thousands of injured and homeless
with no food or water .

Segmentation 2
Segment 1 toll The death, mostly children and old people

has reached 9 but
Segment 2 toll is expected to rise and there are thousands of

of injured and homeless, with no food or water.

Figure 7: Sentence decomposition parser output for sen-
tence shown in Figure 5

tion parser extracts verb phrases and clauses from the con-
stituency parses, and relation arcs from dependency parses,
then associates verb phrases with subjects. Unconsumed
words are attached to segments based on their linear posi-
tion relative to words in segments. Each segmentation con-
tains one or more segments (see Figure 7), and covers all
words in a sentence. Every segment is then represented as
a WMTF vector.

4.1.2. Pyramid Construction
In this paper, we give a high level description of the algo-
rithm for constructing the pyramid. Each candidate con-
tent unit is represented as an undirected, complete graph G
where vertices are vectors of segments from different sum-
maries, and edges are cosine similarities (See Figure 3).
To construct CU graphs, pairwise similarities between seg-
ments from different summaries are computed, and edges
are added if every pair of vertices vi, vj has a cosine sim-
ilarity above a fixed threshold t. Semantic coherence of a
CU graph is measured as the Average Similarity (AS) of all
segment pairs. Given G with n vertices, we define k as the
number of edges and calculate AS as:

AS =

∑
u,v∈G,u 6=v

similarity(u, v)

k
(1)

CU weight produces a partition over all CUs; that is, all
CUs of the same weight are one equivalence class. The
sizes of the n equivalence classes for n reference sum-

maries are observed to have a power law distribution in-
versely related to the weights (Nenkova et al., 2007); that
is, the smallest class is the one with the highest weight.
We developed a greedy algorithm to allocate segments to
CUs that achieves the maximum average of the AS values
for each equivalence class, and that adheres to a power law
distribution.

4.1.3. Automated Scoring
PyrEval can score target summaries using a manually or
automatically constructed pyramid. As with pyramid con-
struction, sentences in target summaries are processed by
the Stanford CoreNLP tools and sentence decomposition
parser to produce candidate segmentations for each sen-
tence, then WTMF is used to generate their vector represen-
tations. The scoring function is the one used in PyrScore.
The quantitative output includes a raw score (the sum of
matched CU weights), and several ways to normalize. The
user can choose to output a qualitative analysis as well.

5. Experiments
We first tested PyrEval on single-document summaries
from community college students that PEAK and PyrScore
were tested on (Passonneau et al., 2017). PyrEval has four
parameters: two that control the size of the equivalence
classes corresponding to CUs of each weight (a, b), and
two similarity thresholds (for CU construction, t1; for scor-
ing, t2). In each set of reference summaries, cosine simi-
larities are computed for all pairs of segments from differ-
ent summaries. Values are distributed differently for differ-
ent sets of reference summaries, so we define t1 as a per-
centile over the range of observed cosine values for a given
set of reference summaries, and conduct grid search over
a range of percentile values, as detailed below. For t2 we
use 0.50 cosine similarity, as in previous work (Passonneau
et al., 2017). The Pearson correlation with manual pyra-
mid scores on 20 student summaries reached 89%, a 10%
improvement over the previous results.
When we turned to DUC and TAC datasets (see above),
consisting of extractive summarizers on newswire with
model summaries written by NIST assessors, new chal-
lenges arose. The decomposition parser for all results pre-
sented here was extended to handle the more complex syn-
tax found in newswire, relative to the student summaries.
We performed grid search for DUC06 dev consisting of
four of the twenty topics, and selected the best four sets
of parameters. For each next year, we tested these same
four parameter sets on a randomly selected dev set of size
four, and found the best performance for a = 100, b = 2.5,
t1 = 83%; these values yielded the smallest standard devi-
ations for average correlations with the manual pyramids.
The value of the a parameter is apparently sensitive to the
number of reference summaries. We tested PyrEval on the
same student data reported in (Passonneau et al., 2017),
which has five model summaries instead of the four that
come with the NIST datasets. When we did grid search on
a development set of the student data, we got better perfor-
mance for a ∈ [125, 250].
Table 2 presents results on five years of DUC/TAC. In each
year, testing was performed on all data apart from the devel-
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Dataset Size Avg Med Min Max StdDev
DUC06 16 41.47 46.62 -2.31 76.34 24.42
DUC07 19 44.66 39.63 -3.27 89.18 27.05
TAC08 96 42.26 43.29 -13.93 79.09 18.92
TAC09 88 55.14 57.36 15.64 84.54 16.67
TAC10 92 51.95 53.33 10.16 83.88 16.27

Table 2: Pearson correlations (Pearson’s r × 100) with manual pyramid scores from DUC and TAC.

opment set. Because the semantic vectors are constructed
from pretrained data, there is no training set. As shown, the
trend over time is for PyrEval’s average correlation to be
higher, and for the standard deviation to be lower. This
could result simply from the much larger datasets as of
2008, or that PyrEval performs better on data from summa-
rizers whose performance is better. Conroy & Dang (2008)
report that the top ROUGE scores increase from about 0.27
in 2005 to about 0.34 in 2007. The maximum correla-
tions for an individual topic in one year can be as high as
0.89. The minimum values tend to be many standard de-
viations below the mean, suggesting that these are outliers,
and that the median is a better summary statistic. Apart
from DUC07, the medians are higher than the means.

6. Discussion and Conclusion
The results in Table 2 show that PyrEval can achieve good
average correlations of up to 0.55 (TAC10), and much
higher (e.g., 0.89) on individual summarization tasks. As
discussed in the next paragraph, we have identified a num-
ber of needed improvements we plan to address.
Inspection of the pyramid for one of the DUC06 dev topics
(D0608) that had lower performance illustrates one of the
two issues our future work will address, both of which are
classic problems in NLP: noun-noun compounds (includ-
ing Named Entities) and conjunction. As shown in CU 1
of Figure 8, there are noun-noun compounds and NEs in
all four segments (e.g., ”booster seat”, ”back seat”, ”crash
test”, ”sport utility model”; ”MercedesBenz”, ”BodyS-
mart”). The vector representations treat the compounds
as sequences of individual words, which does not capture
the correct semantics. Identification of multi-word expres-
sions prior to generating the phrase vectors might correct
this. We have also observed that conjunctions, which typi-
cally introduce a great deal of syntactic ambiguity, are often
parsed incorrectly. This can lead to incoherent output from
the decomposition parser. Possible methods to address this
include neural net dependency parsing, as in (Ficler and
Goldberg, 2017), or clause-chart parsing (Krı́ž and Hladká,
2016).
Figure 8 also shows a CU produced by PyrEval that cap-
tures the same content as the manual content unit shown
in Figure 1. The PyrEval CU has no label, but is other-
wise similar to the manual CU: it has the same weight, and
the contributing clauses come from the same sentences of
the same summaries. The phrases selected by the human
annotator for this CU are subphrases of the clauses that
PyrEval groups together. Future work could rely on im-
proved parsing to identify all distinct propositions, not just
tensed clauses.

Figure 8: Examples of an incoherent CU (CU 1) and a co-
herent CU (CU 5) from DUC0608.

In sum, PyrEval is a fast, complete, multi-use tool. In tests
on summaries from extractive, multi-document summariz-
ers, it achieves good average correlations with manual pyra-
mid evaluations on five years of DUC/TAC .
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