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Abstract
We present BPEmb, a collection of pre-trained subword unit embeddings in 275 languages, based on Byte-Pair Encoding (BPE).
In an evaluation using fine-grained entity typing as testbed, BPEmb performs competitively, and for some languages bet-
ter than alternative subword approaches, while requiring vastly fewer resources and no tokenization. BPEmb is available at
https://github.com/bheinzerling/bpemb.
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1. Introduction
Learning good representations of rare words or words not
seen during training at all is a difficult challenge in natu-
ral language processing. As a makeshift solution, systems
have typically replaced such words with a generic UNK to-
ken. Recently, based on the assumption that a word’s mean-
ing can be reconstructed from its parts, several subword-
based methods have been proposed to deal with the un-
known word problem: character-based recurrent neural net-
works (RNN) (Luong and Manning, 2016), character-based
convolutional neural networks (CNN) (Chiu and Nichols,
2016), word embeddings enriched with subword informa-
tion (FastText) (Bojanowski et al., 2017), and byte-pair
encoding (BPE) (Sennrich et al., 2016), among others.
While pre-trained FastText embeddings are publicly avail-
able, embeddings for BPE units are commonly trained on
a per-task basis (e.g. a specific language pair for machine-
translation) and not published for general use.
In this work we present BPEmb, a collection of pre-trained
subword embeddings in 275 languages, and make the fol-
lowing contributions:

• We publish BPEmb, a collection of pre-trained byte-
pair embeddings in 275 languages;

• We show the utility of BPEmb in a fine-grained entity
typing task; and

• We show that BPEmb performs as well as, and for
some languages better than, alternative approaches
while being more compact and requiring no tokeniza-
tion.

2. BPEmb: Byte-pair Embeddings
Byte Pair Encoding is a variable-length encoding that views
text as a sequence of symbols and iteratively merges the
most frequent symbol pair into a new symbol. E.g., encod-
ing an English text might consist of first merging the most
frequent symbol pair t h into a new symbol th, then merg-
ing the pair th e into the in the next iteration, and so on.
The number of merge operations o determines if the result-
ing encoding mostly creates short character sequences (e.g.
o = 1000) or if it includes symbols for many frequently

occurring words, e.g. o = 30, 000 (cf. Table 1). Since the
BPE algorithm works with any sequence of symbols, it re-
quires no preprocessing and can be applied to untokenized
text.
We apply BPE1 to all Wikipedias2 of sufficient size with
various o and pre-train embeddings for the resulting BPE
symbol using GloVe (Pennington et al., 2014), resulting in
byte-pair embeddings for 275 languages. To allow study-
ing the effect the number of BPE merge operations and
of the embedding dimensionality, we provide embeddings
for 1000, 3000, 5000, 10000, 25000, 50000, 100000 and
200000 merge operations, with dimensions 25, 50, 100,
200, and 300.

3. Evaluation: Comparison to FastText and
Character Embeddings

To evaluate the quality of BPEemb we compare to Fast-
Text, a state-of-the-art approach that combines embeddings
of tokens and subword units, as well as to character embed-
dings.
FastText enriches word embeddings with subword infor-
mation by additionally learning embeddings for character
n-grams. A word is then represented as the sum of its asso-
ciated character n-gram embeddings. In practice, represen-
tations of unknown word are obtained by adding the em-
beddings of their constituting character 3- to 6-grams. We
use the pre-trained embeddings provided by the authors.3

Character embeddings. In this setting, mentions are rep-
resented as sequence of the character unigrams4 they con-
sist of. During training, character embeddings are learned
for the k most frequent characters.
Fine-grained entity typing. Following Schütze (2017) and
Yaghoobzadeh and Schütze (2017), we use fine-grained en-

1We use the SentencePiece BPE implementation: https://
github.com/google/sentencepiece.

2We extract text from Wikipedia articles with WikiExtract
(http://attardi.github.io/wikiextractor), low-
ercase all characters where applicable and map all digits to zero.

3https://github.com/facebookresearch/
fastText

4We also studied character bigrams and trigrams. Results were
similar to unigrams and are omitted for space.

2989

https://github.com/bheinzerling/bpemb
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
http://attardi.github.io/wikiextractor
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText


Merge ops Byte-pair encoded text

5000 豊 田 駅 ( と よ だ え き ) は 、 東京都 日 野 市 豊 田 四 丁目 にある
10000 豊 田 駅 ( と よ だ えき ) は 、 東京都 日 野市 豊 田 四 丁目にある
25000 豊 田駅 ( とよ だ えき ) は 、 東京都 日 野市 豊田 四 丁目にある
50000 豊 田駅 ( とよ だ えき ) は 、 東京都 日 野市 豊田 四丁目にある

Tokenized 豊田 駅 （ と よ だ え き ） は 、 東京 都 日野 市 豊田 四 丁目 に ある

10000 豐 田 站 是 東 日本 旅 客 鐵 道 ( JR 東 日本 ) 中央 本 線 的 鐵路 車站
25000 豐田 站是 東日本旅客鐵道 ( JR 東日本 ) 中央 本 線的鐵路車站
50000 豐田 站是 東日本旅客鐵道 ( JR 東日本 ) 中央 本線的鐵路車站

Tokenized 豐田站 是 東日本 旅客 鐵道 （ JR 東日本 ） 中央本線 的 鐵路車站

1000 to y od a station is a r ail way station on the ch ū ō main l ine
3000 to y od a station is a railway station on the ch ū ō main line

10000 toy oda station is a railway station on the ch ū ō main line
50000 toy oda station is a railway station on the chū ō main line

100000 toy oda station is a railway station on the chūō main line
Tokenized toyoda station is a railway station on the chūō main line

Table 1: Effect of the number of BPE merge operations on the beginning of the Japanese (top), Chinese (middle), and
English (bottom) Wikipedia article TOYODA STATION. Since BPE is based on frequency, the resulting segmentation is
often, but not always meaningful. E.g. in the Japanese text,豊 (toyo) and田 (ta) are correctly merged into豊田 (Toyoda, a
Japanese city) in the second occurrence, but the first田 is first merged with駅 (eki, train station) into the meaningless田
駅 (ta-eki).

tity typing as test bed for comparing subword approaches.
This is an interesting task for subword evaluation, since
many rare, long-tail entities do not have good represen-
tations in common token-based pre-trained embeddings
such as word2vec or GloVe. Subword-based models are a
promising approach to this task, since morphology often re-
veals the semantic category of unknown words: The suffix
-shire in Melfordshire indicates a location or city, and the
suffix -osis in Myxomatosis a sickness. Subword methods
aim to allow this kind of inference by learning representa-
tions of subword units (henceforth: SUs) such as character
ngrams, morphemes, or byte pairs.
Method. Given an entity mention m such as Melfordshire,
our task is to assign one or more of the 89 fine-grained en-
tity types proposed by Gillick et al. (2014), in this case
/location and /location/city. To do so, we first
obtain a subword representation

s = SU(m) ∈ Rl×d

by applying one of the above SU transformations resulting
in a SU sequence of length l and then looking up the corre-
sponding SU embeddings with dimensionality d. Next, s is
encoded into a one-dimensional vector representation

v = A(s) ∈ Rd

by an encoder A. In this work the encoder architecture is
either averaging across the SU sequence, an LSTM, or a
CNN. Finally, the prediction y is:

y =
1

1 + exp(−v)

(Shimaoka et al., 2017).

Data. We obtain entity mentions from Wikidata (Vrandečić
and Krötzsch, 2014) and their entity types by map-
ping to Freebase (Bollacker et al., 2008), resulting

in 3.4 million English5 instances like (Melfordshire:
/location,/location/city). Train and test set are
random subsamples of size 80,000 and 20,000 or a propor-
tionally smaller split for smaller Wikipedias. In addition
to English, we report results for a) the five languages hav-
ing the largest Wikipedias as measured by textual content;
b) Chinese and Japanese, i.e. two high-resource languages
without tokenization markers; and c) eight medium- to low-
resource Asian languages.
Experimental Setup. We evaluate entity typing perfor-
mance with the average of strict, loose micro, and loose
macro precision (Ling and Weld, 2012). For each com-
bination of SU and encoding architecture, we perform a
Tree-structured Parzen Estimator hyper-parameter search
(Bergstra et al., 2011) with at least 1000 hyper-parameter
search trials (English, at least 50 trials for other languages)
and report score distributions (Reimers and Gurevych,
2017). See Table 3 for hyper-parameter ranges.

4. Results and Discussion
4.1. Subwords vs. Characters vs. Tokens
Figure 1 shows our main result for English: score dis-
tributions of 1000+ trials for each SU and architecture.
Token-based results using two sets of pre-trained embed-
dings (Mikolov et al., 2013; Pennington et al., 2014) are
included for comparison.
Subword units. BPEmb outperforms all other sub-
word units across all architectures (BPE-RNN mean score
0.624 ± 0.029, max. 0.65). FastText performs slightly
worse (FastText-RNN mean 0.617 ± 0.007, max. 0.63)6,

5 Numbers for other languages omitted for space.
6Difference to BPEmb significant, p < 0.001, Approximate

Randomization Test.
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Figure 1: English entity typing performance of subword embeddings across different architectures. This violin plot shows
smoothed distributions of the scores obtained during hyper-parameter search. White points represent medians, boxes quar-
tiles. Distributions are cut to reflect highest and lowest scores.

even though the FastText vocabulary is much larger than
the set of BPE symbols.

BPEmb performs well with low embedding dimensionality
Figure 2, right) and can match FastText with a fraction of
its memory footprint (6 GB for FastText’s 3 million embed-
dings with dimension 300 vs 11 MB for 100k BPE embed-
dings (Figure 2, left) with dimension 25.). As both Fast-
Text and BPEmb were trained on the same corpus (namely,
Wikipedia), these results suggest that, for English, the com-
pact BPE representation strikes a better balance between
learning embeddings for more frequent words and relying
on compositionality of subwords for less frequent ones.

FastText performance shows the lowest variance, i.e., it
robustly yields good results across many different hyper-
parameter settings. In contrast, BPEmb and character-
based models show higher variance, i.e., they require more
careful hyper-parameter tuning to achieve good results.

Architectures. Averaging a mention’s associated embed-
dings is the worst architecture choice. This is expected for
character-based models, but somewhat surprising for token-
based models, given the fact that averaging is a common
method for representing mentions in tasks such as entity
typing (Shimaoka et al., 2017) or coreference resolution
(Clark and Manning, 2016). RNNs perform slightly better
than CNNs, at the cost of much longer training time.

Language FastText BPEmb ∆

English 62.9 65.4 2.5
German 65.5 66.2 0.7
Russian 71.2 70.7 -0.5
French 64.5 63.9 -0.6
Spanish 66.6 66.5 -0.1

Chinese 71.0 72.0 1.0
Japanese 62.3 61.4 -0.9

Tibetan 37.9 41.4 3.5
Burmese 65.0 64.6 -0.4
Vietnamese 81.0 81.0 0.0
Khmer 61.5 52.6 -8.9
Thai 63.5 63.8 0.3
Lao 44.9 47.0 2.1
Malay 75.9 76.3 0.4
Tagalog 63.4 62.6 -1.2

Table 2: Entity typing scores for five high-resource lan-
guages (top), two high-resource languages without explicit
tokenization, and eight medium- to low-resource Asian lan-
guages (bottom).

4.2. Multilingual Analysis
Table 2 compares FastText and BPEmb across various lan-
guages. For high-resource languages (top) both approaches
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Figure 2: Impact of the number of BPE merge operations (left) and embedding dimension (right) on English entity typing.

perform equally, with the exception of BPEmb giving a
significant improvement for English. For high resources
languages without explicit tokenization (middle), byte-pair
encoding appears to yield a subword segmentation which
gives performance comparable to the results obtained when
using FastText with pre-tokenized text7.
Results are more varied for mid- to low-resource Asian lan-
guages (bottom), with small BPEmb gains for Tibetan and
Lao. The large performance degradation for Khmer appears
to be due to inconsistencies in the handling of unicode con-
trol characters between different software libraries used in
our experiments and have a disproportionate effect due to
the small size of the Khmer Wikipedia.

5. Limitations
Due to limited computational resources, our evaluation was
performed only for a few of the 275 languages provided
by BPEemb. While our experimental setup allows a fair
comparison between FastText and BPEmb through exten-
sive hyper-parameter search, it is somewhat artificial, since
it disregards context. For example, Myxomatosis in the
phrase Radiohead played Myxomatosis has the entity type
/other/music, which can be inferred from the contex-
tual music group and the predicate plays, but this ignored in
our specific setting. How our results transfer to other tasks
requires further study.

6. Replicability
All data used in this work is freely and publicly available.
BPEmb and code to replicate our experiments is available
at https://github.com/bheinzerling/bpemb.

7. Conclusions
We presented BPEmb, a collection of subword embeddings
trained on Wikipedias in 275 languages. Our evaluation
showed that BPEmb performs as well as, and for some

7Tokenization for Chinese was performed with Stanford
CoreNLP (Manning et al., 2014) and for Japanese with Kuromoji
(https://github.com/atilika/kuromoji).

languages, better than other subword-based approaches.
BPEmb requires no tokenization and is orders of magni-
tudes smaller than alternative embeddings, enabling poten-
tial use under resource constraints, e.g. on mobile devices.
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Unit Hyper-parameter Space

Token embedding type GloVe, word2vec

Character vocabulary size 50, 100, 200, 500, 1000
embedding dimension 10, 25, 50, 75, 100

FastText - -

BPE
merge operations 1k, 3k, 5k, 10k, 25k

50k, 10k, 200k
embedding dimension 25, 50, 100, 200, 300

Architecture Hyper-parameter Space

RNN

hidden units 100, 300, 500, 700,
1000, 1500, 2000

layers 1, 2, 3
RNN dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
output dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

CNN

filter sizes (2), (2, 3), (2, 3, 4),
(2, 3, 4, 5), (2, 3, 4, 5, 6),
(3), (3, 4), (3, 4, 5), (3, 4, 5, 6),
(4), (4, 5), (4, 5, 6), (5), (5, 6), (6)

number of filters 25, 50, 100, 200,
300, 400, 500, 600, 700

output dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

Average output dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

Table 3: Subword unit (top) and architecture (bottom)
hyper-parameter space searched.
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